| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | Long double expansions are |
| 14 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 15 | and are incorporated herein by permission of the author. The author |
| 16 | reserves the right to distribute this material elsewhere under different |
| 17 | copying permissions. These modifications are distributed here under |
| 18 | the following terms: |
| 19 | |
| 20 | This library is free software; you can redistribute it and/or |
| 21 | modify it under the terms of the GNU Lesser General Public |
| 22 | License as published by the Free Software Foundation; either |
| 23 | version 2.1 of the License, or (at your option) any later version. |
| 24 | |
| 25 | This library is distributed in the hope that it will be useful, |
| 26 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 27 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 28 | Lesser General Public License for more details. |
| 29 | |
| 30 | You should have received a copy of the GNU Lesser General Public |
| 31 | License along with this library; if not, see |
| 32 | <https://www.gnu.org/licenses/>. */ |
| 33 | |
| 34 | /* __ieee754_asin(x) |
| 35 | * Method : |
| 36 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
| 37 | * we approximate asin(x) on [0,0.5] by |
| 38 | * asin(x) = x + x*x^2*R(x^2) |
| 39 | * |
| 40 | * For x in [0.5,1] |
| 41 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
| 42 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
| 43 | * then for x>0.98 |
| 44 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| 45 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
| 46 | * For x<=0.98, let pio4_hi = pio2_hi/2, then |
| 47 | * f = hi part of s; |
| 48 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
| 49 | * and |
| 50 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| 51 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
| 52 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
| 53 | * |
| 54 | * Special cases: |
| 55 | * if x is NaN, return x itself; |
| 56 | * if |x|>1, return NaN with invalid signal. |
| 57 | * |
| 58 | */ |
| 59 | |
| 60 | |
| 61 | #include <float.h> |
| 62 | #include <math.h> |
| 63 | #include <math_private.h> |
| 64 | #include <math-underflow.h> |
| 65 | #include <libm-alias-finite.h> |
| 66 | |
| 67 | static const long double |
| 68 | one = 1.0L, |
| 69 | huge = 1.0e+4932L, |
| 70 | pio2_hi = 0x1.921fb54442d1846ap+0L, /* pi/2 rounded to nearest to 64 |
| 71 | bits. */ |
| 72 | pio2_lo = -0x7.6733ae8fe47c65d8p-68L, /* pi/2 - pio2_hi rounded to |
| 73 | nearest to 64 bits. */ |
| 74 | pio4_hi = 0xc.90fdaa22168c235p-4L, /* pi/4 rounded to nearest to 64 |
| 75 | bits. */ |
| 76 | |
| 77 | /* coefficient for R(x^2) */ |
| 78 | |
| 79 | /* asin(x) = x + x^3 pS(x^2) / qS(x^2) |
| 80 | 0 <= x <= 0.5 |
| 81 | peak relative error 1.9e-21 */ |
| 82 | pS0 = -1.008714657938491626019651170502036851607E1L, |
| 83 | pS1 = 2.331460313214179572063441834101394865259E1L, |
| 84 | pS2 = -1.863169762159016144159202387315381830227E1L, |
| 85 | pS3 = 5.930399351579141771077475766877674661747E0L, |
| 86 | pS4 = -6.121291917696920296944056882932695185001E-1L, |
| 87 | pS5 = 3.776934006243367487161248678019350338383E-3L, |
| 88 | |
| 89 | qS0 = -6.052287947630949712886794360635592886517E1L, |
| 90 | qS1 = 1.671229145571899593737596543114258558503E2L, |
| 91 | qS2 = -1.707840117062586426144397688315411324388E2L, |
| 92 | qS3 = 7.870295154902110425886636075950077640623E1L, |
| 93 | qS4 = -1.568433562487314651121702982333303458814E1L; |
| 94 | /* 1.000000000000000000000000000000000000000E0 */ |
| 95 | |
| 96 | long double |
| 97 | __ieee754_asinl (long double x) |
| 98 | { |
| 99 | long double t, w, p, q, c, r, s; |
| 100 | int32_t ix; |
| 101 | uint32_t se, i0, i1, k; |
| 102 | |
| 103 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
| 104 | ix = se & 0x7fff; |
| 105 | ix = (ix << 16) | (i0 >> 16); |
| 106 | if (ix >= 0x3fff8000) |
| 107 | { /* |x|>= 1 */ |
| 108 | if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0) |
| 109 | /* asin(1)=+-pi/2 with inexact */ |
| 110 | return x * pio2_hi + x * pio2_lo; |
| 111 | return (x - x) / (x - x); /* asin(|x|>1) is NaN */ |
| 112 | } |
| 113 | else if (ix < 0x3ffe8000) |
| 114 | { /* |x|<0.5 */ |
| 115 | if (ix < 0x3fde8000) |
| 116 | { /* if |x| < 2**-33 */ |
| 117 | math_check_force_underflow (x); |
| 118 | if (huge + x > one) |
| 119 | return x; /* return x with inexact if x!=0 */ |
| 120 | } |
| 121 | else |
| 122 | { |
| 123 | t = x * x; |
| 124 | p = |
| 125 | t * (pS0 + |
| 126 | t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
| 127 | q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t)))); |
| 128 | w = p / q; |
| 129 | return x + x * w; |
| 130 | } |
| 131 | } |
| 132 | /* 1> |x|>= 0.5 */ |
| 133 | w = one - fabsl (x); |
| 134 | t = w * 0.5; |
| 135 | p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
| 136 | q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t)))); |
| 137 | s = sqrtl (t); |
| 138 | if (ix >= 0x3ffef999) |
| 139 | { /* if |x| > 0.975 */ |
| 140 | w = p / q; |
| 141 | t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); |
| 142 | } |
| 143 | else |
| 144 | { |
| 145 | GET_LDOUBLE_WORDS (k, i0, i1, s); |
| 146 | i1 = 0; |
| 147 | SET_LDOUBLE_WORDS (w,k,i0,i1); |
| 148 | c = (t - w * w) / (s + w); |
| 149 | r = p / q; |
| 150 | p = 2.0 * s * r - (pio2_lo - 2.0 * c); |
| 151 | q = pio4_hi - 2.0 * w; |
| 152 | t = pio4_hi - (p - q); |
| 153 | } |
| 154 | if ((se & 0x8000) == 0) |
| 155 | return t; |
| 156 | else |
| 157 | return -t; |
| 158 | } |
| 159 | libm_alias_finite (__ieee754_asinl, __asinl) |
| 160 | |