| 1 | /* s_tanhl.c -- long double version of s_tanh.c. |
| 2 | * Conversion to long double by Ulrich Drepper, |
| 3 | * Cygnus Support, drepper@cygnus.com. |
| 4 | */ |
| 5 | |
| 6 | /* |
| 7 | * ==================================================== |
| 8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 9 | * |
| 10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 11 | * Permission to use, copy, modify, and distribute this |
| 12 | * software is freely granted, provided that this notice |
| 13 | * is preserved. |
| 14 | * ==================================================== |
| 15 | */ |
| 16 | |
| 17 | #if defined(LIBM_SCCS) && !defined(lint) |
| 18 | static char rcsid[] = "$NetBSD: $" ; |
| 19 | #endif |
| 20 | |
| 21 | /* tanhl(x) |
| 22 | * Return the Hyperbolic Tangent of x |
| 23 | * |
| 24 | * Method : |
| 25 | * x -x |
| 26 | * e - e |
| 27 | * 0. tanhl(x) is defined to be ----------- |
| 28 | * x -x |
| 29 | * e + e |
| 30 | * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). |
| 31 | * 2. 0 <= x <= 2**-55 : tanhl(x) := x*(one+x) |
| 32 | * -t |
| 33 | * 2**-55 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) |
| 34 | * t + 2 |
| 35 | * 2 |
| 36 | * 1 <= x <= 23.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) |
| 37 | * t + 2 |
| 38 | * 23.0 < x <= INF : tanhl(x) := 1. |
| 39 | * |
| 40 | * Special cases: |
| 41 | * tanhl(NaN) is NaN; |
| 42 | * only tanhl(0)=0 is exact for finite argument. |
| 43 | */ |
| 44 | |
| 45 | #include <float.h> |
| 46 | #include <math.h> |
| 47 | #include <math_private.h> |
| 48 | #include <math-underflow.h> |
| 49 | #include <libm-alias-ldouble.h> |
| 50 | |
| 51 | static const long double one=1.0, two=2.0, tiny = 1.0e-4900L; |
| 52 | |
| 53 | long double __tanhl(long double x) |
| 54 | { |
| 55 | long double t,z; |
| 56 | int32_t se; |
| 57 | uint32_t j0,j1,ix; |
| 58 | |
| 59 | /* High word of |x|. */ |
| 60 | GET_LDOUBLE_WORDS(se,j0,j1,x); |
| 61 | ix = se&0x7fff; |
| 62 | |
| 63 | /* x is INF or NaN */ |
| 64 | if(ix==0x7fff) { |
| 65 | /* for NaN it's not important which branch: tanhl(NaN) = NaN */ |
| 66 | if (se&0x8000) return one/x-one; /* tanhl(-inf)= -1; */ |
| 67 | else return one/x+one; /* tanhl(+inf)=+1 */ |
| 68 | } |
| 69 | |
| 70 | /* |x| < 23 */ |
| 71 | if (ix < 0x4003 || (ix == 0x4003 && j0 < 0xb8000000u)) {/* |x|<23 */ |
| 72 | if ((ix|j0|j1) == 0) |
| 73 | return x; /* x == +- 0 */ |
| 74 | if (ix<0x3fc8) /* |x|<2**-55 */ |
| 75 | { |
| 76 | math_check_force_underflow (x); |
| 77 | return x*(one+tiny); /* tanh(small) = small */ |
| 78 | } |
| 79 | if (ix>=0x3fff) { /* |x|>=1 */ |
| 80 | t = __expm1l(two*fabsl(x)); |
| 81 | z = one - two/(t+two); |
| 82 | } else { |
| 83 | t = __expm1l(-two*fabsl(x)); |
| 84 | z= -t/(t+two); |
| 85 | } |
| 86 | /* |x| > 23, return +-1 */ |
| 87 | } else { |
| 88 | z = one - tiny; /* raised inexact flag */ |
| 89 | } |
| 90 | return (se&0x8000)? -z: z; |
| 91 | } |
| 92 | libm_alias_ldouble (__tanh, tanh) |
| 93 | |