| 1 | /* getifaddrs -- get names and addresses of all network interfaces |
| 2 | Copyright (C) 2003-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <alloca.h> |
| 20 | #include <assert.h> |
| 21 | #include <errno.h> |
| 22 | #include <ifaddrs.h> |
| 23 | #include <net/if.h> |
| 24 | #include <netinet/in.h> |
| 25 | #include <netpacket/packet.h> |
| 26 | #include <stdbool.h> |
| 27 | #include <stdint.h> |
| 28 | #include <stdlib.h> |
| 29 | #include <string.h> |
| 30 | #include <sys/ioctl.h> |
| 31 | #include <sys/socket.h> |
| 32 | #include <sysdep.h> |
| 33 | #include <time.h> |
| 34 | #include <unistd.h> |
| 35 | |
| 36 | #include "netlinkaccess.h" |
| 37 | |
| 38 | |
| 39 | /* There is a problem with this type. The address length for |
| 40 | Infiniband sockets is much longer than the 8 bytes allocated in the |
| 41 | sockaddr_ll definition. Hence we use here a special |
| 42 | definition. */ |
| 43 | struct sockaddr_ll_max |
| 44 | { |
| 45 | unsigned short int sll_family; |
| 46 | unsigned short int sll_protocol; |
| 47 | int sll_ifindex; |
| 48 | unsigned short int sll_hatype; |
| 49 | unsigned char sll_pkttype; |
| 50 | unsigned char sll_halen; |
| 51 | unsigned char sll_addr[24]; |
| 52 | }; |
| 53 | |
| 54 | |
| 55 | /* struct to hold the data for one ifaddrs entry, so we can allocate |
| 56 | everything at once. */ |
| 57 | struct ifaddrs_storage |
| 58 | { |
| 59 | struct ifaddrs ifa; |
| 60 | union |
| 61 | { |
| 62 | /* Save space for the biggest of the four used sockaddr types and |
| 63 | avoid a lot of casts. */ |
| 64 | struct sockaddr sa; |
| 65 | struct sockaddr_ll_max sl; |
| 66 | struct sockaddr_in s4; |
| 67 | struct sockaddr_in6 s6; |
| 68 | } addr, netmask, broadaddr; |
| 69 | char name[IF_NAMESIZE + 1]; |
| 70 | }; |
| 71 | |
| 72 | |
| 73 | void |
| 74 | __netlink_free_handle (struct netlink_handle *h) |
| 75 | { |
| 76 | struct netlink_res *ptr; |
| 77 | int saved_errno = errno; |
| 78 | |
| 79 | ptr = h->nlm_list; |
| 80 | while (ptr != NULL) |
| 81 | { |
| 82 | struct netlink_res *tmpptr; |
| 83 | |
| 84 | tmpptr = ptr->next; |
| 85 | free (ptr); |
| 86 | ptr = tmpptr; |
| 87 | } |
| 88 | |
| 89 | __set_errno (saved_errno); |
| 90 | } |
| 91 | |
| 92 | |
| 93 | static int |
| 94 | __netlink_sendreq (struct netlink_handle *h, int type) |
| 95 | { |
| 96 | struct req |
| 97 | { |
| 98 | struct nlmsghdr nlh; |
| 99 | struct rtgenmsg g; |
| 100 | char pad[0]; |
| 101 | } req; |
| 102 | struct sockaddr_nl nladdr; |
| 103 | |
| 104 | if (h->seq == 0) |
| 105 | h->seq = time_now (); |
| 106 | |
| 107 | req.nlh.nlmsg_len = sizeof (req); |
| 108 | req.nlh.nlmsg_type = type; |
| 109 | req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST; |
| 110 | req.nlh.nlmsg_pid = 0; |
| 111 | req.nlh.nlmsg_seq = h->seq; |
| 112 | req.g.rtgen_family = AF_UNSPEC; |
| 113 | if (sizeof (req) != offsetof (struct req, pad)) |
| 114 | memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad)); |
| 115 | |
| 116 | memset (&nladdr, '\0', sizeof (nladdr)); |
| 117 | nladdr.nl_family = AF_NETLINK; |
| 118 | |
| 119 | return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0, |
| 120 | (struct sockaddr *) &nladdr, |
| 121 | sizeof (nladdr))); |
| 122 | } |
| 123 | |
| 124 | |
| 125 | int |
| 126 | __netlink_request (struct netlink_handle *h, int type) |
| 127 | { |
| 128 | struct netlink_res *nlm_next; |
| 129 | struct sockaddr_nl nladdr; |
| 130 | struct nlmsghdr *nlmh; |
| 131 | ssize_t read_len; |
| 132 | bool done = false; |
| 133 | |
| 134 | #ifdef PAGE_SIZE |
| 135 | /* Help the compiler optimize out the malloc call if PAGE_SIZE |
| 136 | is constant and smaller or equal to PTHREAD_STACK_MIN/4. */ |
| 137 | const size_t buf_size = PAGE_SIZE; |
| 138 | #else |
| 139 | const size_t buf_size = __getpagesize (); |
| 140 | #endif |
| 141 | bool use_malloc = false; |
| 142 | char *buf; |
| 143 | |
| 144 | if (__libc_use_alloca (buf_size)) |
| 145 | buf = alloca (buf_size); |
| 146 | else |
| 147 | { |
| 148 | buf = malloc (buf_size); |
| 149 | if (buf != NULL) |
| 150 | use_malloc = true; |
| 151 | else |
| 152 | goto out_fail; |
| 153 | } |
| 154 | |
| 155 | struct iovec iov = { buf, buf_size }; |
| 156 | |
| 157 | if (__netlink_sendreq (h, type) < 0) |
| 158 | goto out_fail; |
| 159 | |
| 160 | while (! done) |
| 161 | { |
| 162 | struct msghdr msg = |
| 163 | { |
| 164 | .msg_name = (void *) &nladdr, |
| 165 | .msg_namelen = sizeof (nladdr), |
| 166 | .msg_iov = &iov, |
| 167 | .msg_iovlen = 1, |
| 168 | .msg_control = NULL, |
| 169 | .msg_controllen = 0, |
| 170 | .msg_flags = 0 |
| 171 | }; |
| 172 | |
| 173 | read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0)); |
| 174 | __netlink_assert_response (h->fd, read_len); |
| 175 | if (read_len < 0) |
| 176 | goto out_fail; |
| 177 | |
| 178 | if (nladdr.nl_pid != 0) |
| 179 | continue; |
| 180 | |
| 181 | if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC)) |
| 182 | goto out_fail; |
| 183 | |
| 184 | size_t count = 0; |
| 185 | size_t remaining_len = read_len; |
| 186 | for (nlmh = (struct nlmsghdr *) buf; |
| 187 | NLMSG_OK (nlmh, remaining_len); |
| 188 | nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len)) |
| 189 | { |
| 190 | if ((pid_t) nlmh->nlmsg_pid != h->pid |
| 191 | || nlmh->nlmsg_seq != h->seq) |
| 192 | continue; |
| 193 | |
| 194 | ++count; |
| 195 | if (nlmh->nlmsg_type == NLMSG_DONE) |
| 196 | { |
| 197 | /* We found the end, leave the loop. */ |
| 198 | done = true; |
| 199 | break; |
| 200 | } |
| 201 | if (nlmh->nlmsg_type == NLMSG_ERROR) |
| 202 | { |
| 203 | struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh); |
| 204 | if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr))) |
| 205 | errno = EIO; |
| 206 | else |
| 207 | errno = -nlerr->error; |
| 208 | goto out_fail; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | /* If there was nothing with the expected nlmsg_pid and nlmsg_seq, |
| 213 | there is no point to record it. */ |
| 214 | if (count == 0) |
| 215 | continue; |
| 216 | |
| 217 | nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res) |
| 218 | + read_len); |
| 219 | if (nlm_next == NULL) |
| 220 | goto out_fail; |
| 221 | nlm_next->next = NULL; |
| 222 | nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len); |
| 223 | nlm_next->size = read_len; |
| 224 | nlm_next->seq = h->seq; |
| 225 | if (h->nlm_list == NULL) |
| 226 | h->nlm_list = nlm_next; |
| 227 | else |
| 228 | h->end_ptr->next = nlm_next; |
| 229 | h->end_ptr = nlm_next; |
| 230 | } |
| 231 | |
| 232 | if (use_malloc) |
| 233 | free (buf); |
| 234 | return 0; |
| 235 | |
| 236 | out_fail: |
| 237 | if (use_malloc) |
| 238 | free (buf); |
| 239 | return -1; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | void |
| 244 | __netlink_close (struct netlink_handle *h) |
| 245 | { |
| 246 | /* Don't modify errno. */ |
| 247 | INTERNAL_SYSCALL_CALL (close, h->fd); |
| 248 | } |
| 249 | |
| 250 | |
| 251 | /* Open a NETLINK socket. */ |
| 252 | int |
| 253 | __netlink_open (struct netlink_handle *h) |
| 254 | { |
| 255 | struct sockaddr_nl nladdr; |
| 256 | |
| 257 | h->fd = __socket (PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_ROUTE); |
| 258 | if (h->fd < 0) |
| 259 | goto out; |
| 260 | |
| 261 | memset (&nladdr, '\0', sizeof (nladdr)); |
| 262 | nladdr.nl_family = AF_NETLINK; |
| 263 | if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0) |
| 264 | { |
| 265 | close_and_out: |
| 266 | __netlink_close (h); |
| 267 | out: |
| 268 | return -1; |
| 269 | } |
| 270 | /* Determine the ID the kernel assigned for this netlink connection. |
| 271 | It is not necessarily the PID if there is more than one socket |
| 272 | open. */ |
| 273 | socklen_t addr_len = sizeof (nladdr); |
| 274 | if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0) |
| 275 | goto close_and_out; |
| 276 | h->pid = nladdr.nl_pid; |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | |
| 281 | /* We know the number of RTM_NEWLINK entries, so we reserve the first |
| 282 | # of entries for this type. All RTM_NEWADDR entries have an index |
| 283 | pointer to the RTM_NEWLINK entry. To find the entry, create |
| 284 | a table to map kernel index entries to our index numbers. |
| 285 | Since we get at first all RTM_NEWLINK entries, it can never happen |
| 286 | that a RTM_NEWADDR index is not known to this map. */ |
| 287 | static int |
| 288 | map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max) |
| 289 | { |
| 290 | int i; |
| 291 | |
| 292 | for (i = 0; i < max; i++) |
| 293 | { |
| 294 | if (map[i] == -1) |
| 295 | { |
| 296 | map[i] = index; |
| 297 | if (i > 0) |
| 298 | ifas[i - 1].ifa.ifa_next = &ifas[i].ifa; |
| 299 | return i; |
| 300 | } |
| 301 | else if (map[i] == index) |
| 302 | return i; |
| 303 | } |
| 304 | |
| 305 | /* This means interfaces changed between the reading of the |
| 306 | RTM_GETLINK and RTM_GETADDR information. We have to repeat |
| 307 | everything. */ |
| 308 | return -1; |
| 309 | } |
| 310 | |
| 311 | |
| 312 | /* Create a linked list of `struct ifaddrs' structures, one for each |
| 313 | network interface on the host machine. If successful, store the |
| 314 | list in *IFAP and return 0. On errors, return -1 and set `errno'. */ |
| 315 | static int |
| 316 | getifaddrs_internal (struct ifaddrs **ifap) |
| 317 | { |
| 318 | struct netlink_handle nh = { 0, 0, 0, NULL, NULL }; |
| 319 | struct netlink_res *nlp; |
| 320 | struct ifaddrs_storage *ifas; |
| 321 | unsigned int i, newlink, newaddr, newaddr_idx; |
| 322 | int *map_newlink_data; |
| 323 | size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */ |
| 324 | char *ifa_data_ptr; /* Pointer to the unused part of memory for |
| 325 | ifa_data. */ |
| 326 | int result = 0; |
| 327 | |
| 328 | *ifap = NULL; |
| 329 | |
| 330 | if (__netlink_open (&nh) < 0) |
| 331 | return -1; |
| 332 | |
| 333 | /* Tell the kernel that we wish to get a list of all |
| 334 | active interfaces, collect all data for every interface. */ |
| 335 | if (__netlink_request (&nh, RTM_GETLINK) < 0) |
| 336 | { |
| 337 | result = -1; |
| 338 | goto exit_free; |
| 339 | } |
| 340 | |
| 341 | /* Now ask the kernel for all addresses which are assigned |
| 342 | to an interface and collect all data for every interface. |
| 343 | Since we store the addresses after the interfaces in the |
| 344 | list, we will later always find the interface before the |
| 345 | corresponding addresses. */ |
| 346 | ++nh.seq; |
| 347 | if (__netlink_request (&nh, RTM_GETADDR) < 0) |
| 348 | { |
| 349 | result = -1; |
| 350 | goto exit_free; |
| 351 | } |
| 352 | |
| 353 | /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate |
| 354 | enough memory. */ |
| 355 | newlink = newaddr = 0; |
| 356 | for (nlp = nh.nlm_list; nlp; nlp = nlp->next) |
| 357 | { |
| 358 | struct nlmsghdr *nlh; |
| 359 | size_t size = nlp->size; |
| 360 | |
| 361 | if (nlp->nlh == NULL) |
| 362 | continue; |
| 363 | |
| 364 | /* Walk through all entries we got from the kernel and look, which |
| 365 | message type they contain. */ |
| 366 | for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size)) |
| 367 | { |
| 368 | /* Check if the message is what we want. */ |
| 369 | if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq) |
| 370 | continue; |
| 371 | |
| 372 | /* If the dump got interrupted, we can't rely on the results |
| 373 | so try again. */ |
| 374 | if (nlh->nlmsg_flags & NLM_F_DUMP_INTR) |
| 375 | { |
| 376 | result = -EAGAIN; |
| 377 | goto exit_free; |
| 378 | } |
| 379 | |
| 380 | if (nlh->nlmsg_type == NLMSG_DONE) |
| 381 | break; /* ok */ |
| 382 | |
| 383 | if (nlh->nlmsg_type == RTM_NEWLINK) |
| 384 | { |
| 385 | /* A RTM_NEWLINK message can have IFLA_STATS data. We need to |
| 386 | know the size before creating the list to allocate enough |
| 387 | memory. */ |
| 388 | struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh); |
| 389 | struct rtattr *rta = IFLA_RTA (ifim); |
| 390 | size_t rtasize = IFLA_PAYLOAD (nlh); |
| 391 | |
| 392 | while (RTA_OK (rta, rtasize)) |
| 393 | { |
| 394 | size_t rta_payload = RTA_PAYLOAD (rta); |
| 395 | |
| 396 | if (rta->rta_type == IFLA_STATS) |
| 397 | { |
| 398 | ifa_data_size += rta_payload; |
| 399 | break; |
| 400 | } |
| 401 | else |
| 402 | rta = RTA_NEXT (rta, rtasize); |
| 403 | } |
| 404 | ++newlink; |
| 405 | } |
| 406 | else if (nlh->nlmsg_type == RTM_NEWADDR) |
| 407 | ++newaddr; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | /* Return if no interface is up. */ |
| 412 | if ((newlink + newaddr) == 0) |
| 413 | goto exit_free; |
| 414 | |
| 415 | /* Allocate memory for all entries we have and initialize next |
| 416 | pointer. */ |
| 417 | ifas = (struct ifaddrs_storage *) calloc (1, |
| 418 | (newlink + newaddr) |
| 419 | * sizeof (struct ifaddrs_storage) |
| 420 | + ifa_data_size); |
| 421 | if (ifas == NULL) |
| 422 | { |
| 423 | result = -1; |
| 424 | goto exit_free; |
| 425 | } |
| 426 | |
| 427 | /* Table for mapping kernel index to entry in our list. */ |
| 428 | map_newlink_data = alloca (newlink * sizeof (int)); |
| 429 | memset (map_newlink_data, '\xff', newlink * sizeof (int)); |
| 430 | |
| 431 | ifa_data_ptr = (char *) &ifas[newlink + newaddr]; |
| 432 | newaddr_idx = 0; /* Counter for newaddr index. */ |
| 433 | |
| 434 | /* Walk through the list of data we got from the kernel. */ |
| 435 | for (nlp = nh.nlm_list; nlp; nlp = nlp->next) |
| 436 | { |
| 437 | struct nlmsghdr *nlh; |
| 438 | size_t size = nlp->size; |
| 439 | |
| 440 | if (nlp->nlh == NULL) |
| 441 | continue; |
| 442 | |
| 443 | /* Walk through one message and look at the type: If it is our |
| 444 | message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach |
| 445 | the end or we find the end marker (in this case we ignore the |
| 446 | following data. */ |
| 447 | for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size)) |
| 448 | { |
| 449 | int ifa_index = 0; |
| 450 | |
| 451 | /* Check if the message is the one we want */ |
| 452 | if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq) |
| 453 | continue; |
| 454 | |
| 455 | if (nlh->nlmsg_type == NLMSG_DONE) |
| 456 | break; /* ok */ |
| 457 | |
| 458 | if (nlh->nlmsg_type == RTM_NEWLINK) |
| 459 | { |
| 460 | /* We found a new interface. Now extract everything from the |
| 461 | interface data we got and need. */ |
| 462 | struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh); |
| 463 | struct rtattr *rta = IFLA_RTA (ifim); |
| 464 | size_t rtasize = IFLA_PAYLOAD (nlh); |
| 465 | |
| 466 | /* Interfaces are stored in the first "newlink" entries |
| 467 | of our list, starting in the order as we got from the |
| 468 | kernel. */ |
| 469 | ifa_index = map_newlink (ifim->ifi_index - 1, ifas, |
| 470 | map_newlink_data, newlink); |
| 471 | if (__glibc_unlikely (ifa_index == -1)) |
| 472 | { |
| 473 | try_again: |
| 474 | result = -EAGAIN; |
| 475 | free (ifas); |
| 476 | goto exit_free; |
| 477 | } |
| 478 | ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags; |
| 479 | |
| 480 | while (RTA_OK (rta, rtasize)) |
| 481 | { |
| 482 | char *rta_data = RTA_DATA (rta); |
| 483 | size_t rta_payload = RTA_PAYLOAD (rta); |
| 484 | |
| 485 | switch (rta->rta_type) |
| 486 | { |
| 487 | case IFLA_ADDRESS: |
| 488 | if (rta_payload <= sizeof (ifas[ifa_index].addr)) |
| 489 | { |
| 490 | ifas[ifa_index].addr.sl.sll_family = AF_PACKET; |
| 491 | memcpy (ifas[ifa_index].addr.sl.sll_addr, |
| 492 | (char *) rta_data, rta_payload); |
| 493 | ifas[ifa_index].addr.sl.sll_halen = rta_payload; |
| 494 | ifas[ifa_index].addr.sl.sll_ifindex |
| 495 | = ifim->ifi_index; |
| 496 | ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type; |
| 497 | |
| 498 | ifas[ifa_index].ifa.ifa_addr |
| 499 | = &ifas[ifa_index].addr.sa; |
| 500 | } |
| 501 | break; |
| 502 | |
| 503 | case IFLA_BROADCAST: |
| 504 | if (rta_payload <= sizeof (ifas[ifa_index].broadaddr)) |
| 505 | { |
| 506 | ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET; |
| 507 | memcpy (ifas[ifa_index].broadaddr.sl.sll_addr, |
| 508 | (char *) rta_data, rta_payload); |
| 509 | ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload; |
| 510 | ifas[ifa_index].broadaddr.sl.sll_ifindex |
| 511 | = ifim->ifi_index; |
| 512 | ifas[ifa_index].broadaddr.sl.sll_hatype |
| 513 | = ifim->ifi_type; |
| 514 | |
| 515 | ifas[ifa_index].ifa.ifa_broadaddr |
| 516 | = &ifas[ifa_index].broadaddr.sa; |
| 517 | } |
| 518 | break; |
| 519 | |
| 520 | case IFLA_IFNAME: /* Name of Interface */ |
| 521 | if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name)) |
| 522 | { |
| 523 | ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name; |
| 524 | *(char *) __mempcpy (ifas[ifa_index].name, rta_data, |
| 525 | rta_payload) = '\0'; |
| 526 | } |
| 527 | break; |
| 528 | |
| 529 | case IFLA_STATS: /* Statistics of Interface */ |
| 530 | ifas[ifa_index].ifa.ifa_data = ifa_data_ptr; |
| 531 | ifa_data_ptr += rta_payload; |
| 532 | memcpy (ifas[ifa_index].ifa.ifa_data, rta_data, |
| 533 | rta_payload); |
| 534 | break; |
| 535 | |
| 536 | case IFLA_UNSPEC: |
| 537 | break; |
| 538 | case IFLA_MTU: |
| 539 | break; |
| 540 | case IFLA_LINK: |
| 541 | break; |
| 542 | case IFLA_QDISC: |
| 543 | break; |
| 544 | default: |
| 545 | break; |
| 546 | } |
| 547 | |
| 548 | rta = RTA_NEXT (rta, rtasize); |
| 549 | } |
| 550 | } |
| 551 | else if (nlh->nlmsg_type == RTM_NEWADDR) |
| 552 | { |
| 553 | struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh); |
| 554 | struct rtattr *rta = IFA_RTA (ifam); |
| 555 | size_t rtasize = IFA_PAYLOAD (nlh); |
| 556 | |
| 557 | /* New Addresses are stored in the order we got them from |
| 558 | the kernel after the interfaces. Theoretically it is possible |
| 559 | that we have holes in the interface part of the list, |
| 560 | but we always have already the interface for this address. */ |
| 561 | ifa_index = newlink + newaddr_idx; |
| 562 | int idx = map_newlink (ifam->ifa_index - 1, ifas, |
| 563 | map_newlink_data, newlink); |
| 564 | if (__glibc_unlikely (idx == -1)) |
| 565 | goto try_again; |
| 566 | ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags; |
| 567 | if (ifa_index > 0) |
| 568 | ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa; |
| 569 | ++newaddr_idx; |
| 570 | |
| 571 | while (RTA_OK (rta, rtasize)) |
| 572 | { |
| 573 | char *rta_data = RTA_DATA (rta); |
| 574 | size_t rta_payload = RTA_PAYLOAD (rta); |
| 575 | |
| 576 | switch (rta->rta_type) |
| 577 | { |
| 578 | case IFA_ADDRESS: |
| 579 | { |
| 580 | struct sockaddr *sa; |
| 581 | |
| 582 | if (ifas[ifa_index].ifa.ifa_addr != NULL) |
| 583 | { |
| 584 | /* In a point-to-poing network IFA_ADDRESS |
| 585 | contains the destination address, local |
| 586 | address is supplied in IFA_LOCAL attribute. |
| 587 | destination address and broadcast address |
| 588 | are stored in an union, so it doesn't matter |
| 589 | which name we use. */ |
| 590 | ifas[ifa_index].ifa.ifa_broadaddr |
| 591 | = &ifas[ifa_index].broadaddr.sa; |
| 592 | sa = &ifas[ifa_index].broadaddr.sa; |
| 593 | } |
| 594 | else |
| 595 | { |
| 596 | ifas[ifa_index].ifa.ifa_addr |
| 597 | = &ifas[ifa_index].addr.sa; |
| 598 | sa = &ifas[ifa_index].addr.sa; |
| 599 | } |
| 600 | |
| 601 | sa->sa_family = ifam->ifa_family; |
| 602 | |
| 603 | switch (ifam->ifa_family) |
| 604 | { |
| 605 | case AF_INET: |
| 606 | /* Size must match that of an address for IPv4. */ |
| 607 | if (rta_payload == 4) |
| 608 | memcpy (&((struct sockaddr_in *) sa)->sin_addr, |
| 609 | rta_data, rta_payload); |
| 610 | break; |
| 611 | |
| 612 | case AF_INET6: |
| 613 | /* Size must match that of an address for IPv6. */ |
| 614 | if (rta_payload == 16) |
| 615 | { |
| 616 | memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr, |
| 617 | rta_data, rta_payload); |
| 618 | if (IN6_IS_ADDR_LINKLOCAL (rta_data) |
| 619 | || IN6_IS_ADDR_MC_LINKLOCAL (rta_data)) |
| 620 | ((struct sockaddr_in6 *) sa)->sin6_scope_id |
| 621 | = ifam->ifa_index; |
| 622 | } |
| 623 | break; |
| 624 | |
| 625 | default: |
| 626 | if (rta_payload <= sizeof (ifas[ifa_index].addr)) |
| 627 | memcpy (sa->sa_data, rta_data, rta_payload); |
| 628 | break; |
| 629 | } |
| 630 | } |
| 631 | break; |
| 632 | |
| 633 | case IFA_LOCAL: |
| 634 | if (ifas[ifa_index].ifa.ifa_addr != NULL) |
| 635 | { |
| 636 | /* If ifa_addr is set and we get IFA_LOCAL, |
| 637 | assume we have a point-to-point network. |
| 638 | Move address to correct field. */ |
| 639 | ifas[ifa_index].broadaddr = ifas[ifa_index].addr; |
| 640 | ifas[ifa_index].ifa.ifa_broadaddr |
| 641 | = &ifas[ifa_index].broadaddr.sa; |
| 642 | memset (&ifas[ifa_index].addr, '\0', |
| 643 | sizeof (ifas[ifa_index].addr)); |
| 644 | } |
| 645 | |
| 646 | ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa; |
| 647 | ifas[ifa_index].ifa.ifa_addr->sa_family |
| 648 | = ifam->ifa_family; |
| 649 | |
| 650 | switch (ifam->ifa_family) |
| 651 | { |
| 652 | case AF_INET: |
| 653 | /* Size must match that of an address for IPv4. */ |
| 654 | if (rta_payload == 4) |
| 655 | memcpy (&ifas[ifa_index].addr.s4.sin_addr, |
| 656 | rta_data, rta_payload); |
| 657 | break; |
| 658 | |
| 659 | case AF_INET6: |
| 660 | /* Size must match that of an address for IPv6. */ |
| 661 | if (rta_payload == 16) |
| 662 | { |
| 663 | memcpy (&ifas[ifa_index].addr.s6.sin6_addr, |
| 664 | rta_data, rta_payload); |
| 665 | if (IN6_IS_ADDR_LINKLOCAL (rta_data) |
| 666 | || IN6_IS_ADDR_MC_LINKLOCAL (rta_data)) |
| 667 | ifas[ifa_index].addr.s6.sin6_scope_id = |
| 668 | ifam->ifa_index; |
| 669 | } |
| 670 | break; |
| 671 | |
| 672 | default: |
| 673 | if (rta_payload <= sizeof (ifas[ifa_index].addr)) |
| 674 | memcpy (ifas[ifa_index].addr.sa.sa_data, |
| 675 | rta_data, rta_payload); |
| 676 | break; |
| 677 | } |
| 678 | break; |
| 679 | |
| 680 | case IFA_BROADCAST: |
| 681 | /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */ |
| 682 | if (ifas[ifa_index].ifa.ifa_broadaddr != NULL) |
| 683 | memset (&ifas[ifa_index].broadaddr, '\0', |
| 684 | sizeof (ifas[ifa_index].broadaddr)); |
| 685 | |
| 686 | ifas[ifa_index].ifa.ifa_broadaddr |
| 687 | = &ifas[ifa_index].broadaddr.sa; |
| 688 | ifas[ifa_index].ifa.ifa_broadaddr->sa_family |
| 689 | = ifam->ifa_family; |
| 690 | |
| 691 | switch (ifam->ifa_family) |
| 692 | { |
| 693 | case AF_INET: |
| 694 | /* Size must match that of an address for IPv4. */ |
| 695 | if (rta_payload == 4) |
| 696 | memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr, |
| 697 | rta_data, rta_payload); |
| 698 | break; |
| 699 | |
| 700 | case AF_INET6: |
| 701 | /* Size must match that of an address for IPv6. */ |
| 702 | if (rta_payload == 16) |
| 703 | { |
| 704 | memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr, |
| 705 | rta_data, rta_payload); |
| 706 | if (IN6_IS_ADDR_LINKLOCAL (rta_data) |
| 707 | || IN6_IS_ADDR_MC_LINKLOCAL (rta_data)) |
| 708 | ifas[ifa_index].broadaddr.s6.sin6_scope_id |
| 709 | = ifam->ifa_index; |
| 710 | } |
| 711 | break; |
| 712 | |
| 713 | default: |
| 714 | if (rta_payload <= sizeof (ifas[ifa_index].addr)) |
| 715 | memcpy (&ifas[ifa_index].broadaddr.sa.sa_data, |
| 716 | rta_data, rta_payload); |
| 717 | break; |
| 718 | } |
| 719 | break; |
| 720 | |
| 721 | case IFA_LABEL: |
| 722 | if (rta_payload + 1 <= sizeof (ifas[ifa_index].name)) |
| 723 | { |
| 724 | ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name; |
| 725 | *(char *) __mempcpy (ifas[ifa_index].name, rta_data, |
| 726 | rta_payload) = '\0'; |
| 727 | } |
| 728 | else |
| 729 | abort (); |
| 730 | break; |
| 731 | |
| 732 | case IFA_UNSPEC: |
| 733 | break; |
| 734 | case IFA_CACHEINFO: |
| 735 | break; |
| 736 | default: |
| 737 | break; |
| 738 | } |
| 739 | |
| 740 | rta = RTA_NEXT (rta, rtasize); |
| 741 | } |
| 742 | |
| 743 | /* If we didn't get the interface name with the |
| 744 | address, use the name from the interface entry. */ |
| 745 | if (ifas[ifa_index].ifa.ifa_name == NULL) |
| 746 | { |
| 747 | int idx = map_newlink (ifam->ifa_index - 1, ifas, |
| 748 | map_newlink_data, newlink); |
| 749 | if (__glibc_unlikely (idx == -1)) |
| 750 | goto try_again; |
| 751 | ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name; |
| 752 | } |
| 753 | |
| 754 | /* Calculate the netmask. */ |
| 755 | if (ifas[ifa_index].ifa.ifa_addr |
| 756 | && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC |
| 757 | && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET) |
| 758 | { |
| 759 | uint32_t max_prefixlen = 0; |
| 760 | char *cp = NULL; |
| 761 | |
| 762 | ifas[ifa_index].ifa.ifa_netmask |
| 763 | = &ifas[ifa_index].netmask.sa; |
| 764 | |
| 765 | switch (ifas[ifa_index].ifa.ifa_addr->sa_family) |
| 766 | { |
| 767 | case AF_INET: |
| 768 | cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr; |
| 769 | max_prefixlen = 32; |
| 770 | break; |
| 771 | |
| 772 | case AF_INET6: |
| 773 | cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr; |
| 774 | max_prefixlen = 128; |
| 775 | break; |
| 776 | } |
| 777 | |
| 778 | ifas[ifa_index].ifa.ifa_netmask->sa_family |
| 779 | = ifas[ifa_index].ifa.ifa_addr->sa_family; |
| 780 | |
| 781 | if (cp != NULL) |
| 782 | { |
| 783 | unsigned int preflen; |
| 784 | |
| 785 | if (ifam->ifa_prefixlen > max_prefixlen) |
| 786 | preflen = max_prefixlen; |
| 787 | else |
| 788 | preflen = ifam->ifa_prefixlen; |
| 789 | |
| 790 | for (i = 0; i < preflen / 8; i++) |
| 791 | *cp++ = 0xff; |
| 792 | if (preflen % 8) |
| 793 | *cp = 0xff << (8 - preflen % 8); |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size); |
| 801 | |
| 802 | if (newaddr_idx > 0) |
| 803 | { |
| 804 | for (i = 0; i < newlink; ++i) |
| 805 | if (map_newlink_data[i] == -1) |
| 806 | { |
| 807 | /* We have fewer links then we anticipated. Adjust the |
| 808 | forward pointer to the first address entry. */ |
| 809 | ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa; |
| 810 | } |
| 811 | |
| 812 | if (i == 0 && newlink > 0) |
| 813 | /* No valid link, but we allocated memory. We have to |
| 814 | populate the first entry. */ |
| 815 | memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage)); |
| 816 | } |
| 817 | |
| 818 | *ifap = &ifas[0].ifa; |
| 819 | |
| 820 | exit_free: |
| 821 | __netlink_free_handle (&nh); |
| 822 | __netlink_close (&nh); |
| 823 | |
| 824 | return result; |
| 825 | } |
| 826 | |
| 827 | |
| 828 | /* Create a linked list of `struct ifaddrs' structures, one for each |
| 829 | network interface on the host machine. If successful, store the |
| 830 | list in *IFAP and return 0. On errors, return -1 and set `errno'. */ |
| 831 | int |
| 832 | __getifaddrs (struct ifaddrs **ifap) |
| 833 | { |
| 834 | int res; |
| 835 | |
| 836 | do |
| 837 | res = getifaddrs_internal (ifap); |
| 838 | while (res == -EAGAIN); |
| 839 | |
| 840 | return res; |
| 841 | } |
| 842 | weak_alias (__getifaddrs, getifaddrs) |
| 843 | libc_hidden_def (__getifaddrs) |
| 844 | libc_hidden_weak (getifaddrs) |
| 845 | |
| 846 | |
| 847 | void |
| 848 | __freeifaddrs (struct ifaddrs *ifa) |
| 849 | { |
| 850 | free (ifa); |
| 851 | } |
| 852 | weak_alias (__freeifaddrs, freeifaddrs) |
| 853 | libc_hidden_def (__freeifaddrs) |
| 854 | libc_hidden_weak (freeifaddrs) |
| 855 | |