1 | // SPDX-License-Identifier: Apache-2.0 |
2 | // ---------------------------------------------------------------------------- |
3 | // Copyright 2011-2023 Arm Limited |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
6 | // use this file except in compliance with the License. You may obtain a copy |
7 | // of the License at: |
8 | // |
9 | // http://www.apache.org/licenses/LICENSE-2.0 |
10 | // |
11 | // Unless required by applicable law or agreed to in writing, software |
12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
14 | // License for the specific language governing permissions and limitations |
15 | // under the License. |
16 | // ---------------------------------------------------------------------------- |
17 | |
18 | /** |
19 | * @brief Functions for converting between symbolic and physical encodings. |
20 | */ |
21 | |
22 | #include "astcenc_internal.h" |
23 | |
24 | #include <cassert> |
25 | |
26 | /** |
27 | * @brief Reverse bits in a byte. |
28 | * |
29 | * @param p The value to reverse. |
30 | * |
31 | * @return The reversed result. |
32 | */ |
33 | static inline int bitrev8(int p) |
34 | { |
35 | p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F); |
36 | p = ((p & 0x33) << 2) | ((p >> 2) & 0x33); |
37 | p = ((p & 0x55) << 1) | ((p >> 1) & 0x55); |
38 | return p; |
39 | } |
40 | |
41 | |
42 | /** |
43 | * @brief Read up to 8 bits at an arbitrary bit offset. |
44 | * |
45 | * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may |
46 | * span two separate bytes in memory. |
47 | * |
48 | * @param bitcount The number of bits to read. |
49 | * @param bitoffset The bit offset to read from, between 0 and 7. |
50 | * @param[in,out] ptr The data pointer to read from. |
51 | * |
52 | * @return The read value. |
53 | */ |
54 | static inline int read_bits( |
55 | int bitcount, |
56 | int bitoffset, |
57 | const uint8_t* ptr |
58 | ) { |
59 | int mask = (1 << bitcount) - 1; |
60 | ptr += bitoffset >> 3; |
61 | bitoffset &= 7; |
62 | int value = ptr[0] | (ptr[1] << 8); |
63 | value >>= bitoffset; |
64 | value &= mask; |
65 | return value; |
66 | } |
67 | |
68 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
69 | |
70 | /** |
71 | * @brief Write up to 8 bits at an arbitrary bit offset. |
72 | * |
73 | * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so |
74 | * may span two separate bytes in memory. |
75 | * |
76 | * @param value The value to write. |
77 | * @param bitcount The number of bits to write, starting from LSB. |
78 | * @param bitoffset The bit offset to store at, between 0 and 7. |
79 | * @param[in,out] ptr The data pointer to write to. |
80 | */ |
81 | static inline void write_bits( |
82 | int value, |
83 | int bitcount, |
84 | int bitoffset, |
85 | uint8_t* ptr |
86 | ) { |
87 | int mask = (1 << bitcount) - 1; |
88 | value &= mask; |
89 | ptr += bitoffset >> 3; |
90 | bitoffset &= 7; |
91 | value <<= bitoffset; |
92 | mask <<= bitoffset; |
93 | mask = ~mask; |
94 | |
95 | ptr[0] &= mask; |
96 | ptr[0] |= value; |
97 | ptr[1] &= mask >> 8; |
98 | ptr[1] |= value >> 8; |
99 | } |
100 | |
101 | /* See header for documentation. */ |
102 | void symbolic_to_physical( |
103 | const block_size_descriptor& bsd, |
104 | const symbolic_compressed_block& scb, |
105 | physical_compressed_block& pcb |
106 | ) { |
107 | assert(scb.block_type != SYM_BTYPE_ERROR); |
108 | |
109 | // Constant color block using UNORM16 colors |
110 | if (scb.block_type == SYM_BTYPE_CONST_U16) |
111 | { |
112 | // There is currently no attempt to coalesce larger void-extents |
113 | static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
114 | for (unsigned int i = 0; i < 8; i++) |
115 | { |
116 | pcb.data[i] = cbytes[i]; |
117 | } |
118 | |
119 | for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) |
120 | { |
121 | pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; |
122 | pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; |
123 | } |
124 | |
125 | return; |
126 | } |
127 | |
128 | // Constant color block using FP16 colors |
129 | if (scb.block_type == SYM_BTYPE_CONST_F16) |
130 | { |
131 | // There is currently no attempt to coalesce larger void-extents |
132 | static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
133 | for (unsigned int i = 0; i < 8; i++) |
134 | { |
135 | pcb.data[i] = cbytes[i]; |
136 | } |
137 | |
138 | for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) |
139 | { |
140 | pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; |
141 | pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; |
142 | } |
143 | |
144 | return; |
145 | } |
146 | |
147 | unsigned int partition_count = scb.partition_count; |
148 | |
149 | // Compress the weights. |
150 | // They are encoded as an ordinary integer-sequence, then bit-reversed |
151 | uint8_t weightbuf[16] { 0 }; |
152 | |
153 | const auto& bm = bsd.get_block_mode(scb.block_mode); |
154 | const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
155 | int weight_count = di.weight_count; |
156 | quant_method weight_quant_method = bm.get_weight_quant_mode(); |
157 | float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method)); |
158 | int is_dual_plane = bm.is_dual_plane; |
159 | |
160 | const auto& qat = quant_and_xfer_tables[weight_quant_method]; |
161 | |
162 | int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; |
163 | |
164 | int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); |
165 | |
166 | uint8_t weights[64]; |
167 | if (is_dual_plane) |
168 | { |
169 | for (int i = 0; i < weight_count; i++) |
170 | { |
171 | float uqw = static_cast<float>(scb.weights[i]); |
172 | float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
173 | int qwi = static_cast<int>(qw + 0.5f); |
174 | weights[2 * i] = qat.scramble_map[qwi]; |
175 | |
176 | uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]); |
177 | qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
178 | qwi = static_cast<int>(qw + 0.5f); |
179 | weights[2 * i + 1] = qat.scramble_map[qwi]; |
180 | } |
181 | } |
182 | else |
183 | { |
184 | for (int i = 0; i < weight_count; i++) |
185 | { |
186 | float uqw = static_cast<float>(scb.weights[i]); |
187 | float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
188 | int qwi = static_cast<int>(qw + 0.5f); |
189 | weights[i] = qat.scramble_map[qwi]; |
190 | } |
191 | } |
192 | |
193 | encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0); |
194 | |
195 | for (int i = 0; i < 16; i++) |
196 | { |
197 | pcb.data[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i])); |
198 | } |
199 | |
200 | write_bits(scb.block_mode, 11, 0, pcb.data); |
201 | write_bits(partition_count - 1, 2, 11, pcb.data); |
202 | |
203 | int below_weights_pos = 128 - bits_for_weights; |
204 | |
205 | // Encode partition index and color endpoint types for blocks with 2+ partitions |
206 | if (partition_count > 1) |
207 | { |
208 | write_bits(scb.partition_index, 6, 13, pcb.data); |
209 | write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb.data); |
210 | |
211 | if (scb.color_formats_matched) |
212 | { |
213 | write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb.data); |
214 | } |
215 | else |
216 | { |
217 | // Check endpoint types for each partition to determine the lowest class present |
218 | int low_class = 4; |
219 | |
220 | for (unsigned int i = 0; i < partition_count; i++) |
221 | { |
222 | int class_of_format = scb.color_formats[i] >> 2; |
223 | low_class = astc::min(class_of_format, low_class); |
224 | } |
225 | |
226 | if (low_class == 3) |
227 | { |
228 | low_class = 2; |
229 | } |
230 | |
231 | int encoded_type = low_class + 1; |
232 | int bitpos = 2; |
233 | |
234 | for (unsigned int i = 0; i < partition_count; i++) |
235 | { |
236 | int classbit_of_format = (scb.color_formats[i] >> 2) - low_class; |
237 | encoded_type |= classbit_of_format << bitpos; |
238 | bitpos++; |
239 | } |
240 | |
241 | for (unsigned int i = 0; i < partition_count; i++) |
242 | { |
243 | int lowbits_of_format = scb.color_formats[i] & 3; |
244 | encoded_type |= lowbits_of_format << bitpos; |
245 | bitpos += 2; |
246 | } |
247 | |
248 | int encoded_type_lowpart = encoded_type & 0x3F; |
249 | int encoded_type_highpart = encoded_type >> 6; |
250 | int encoded_type_highpart_size = (3 * partition_count) - 4; |
251 | int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size; |
252 | write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb.data); |
253 | write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data); |
254 | below_weights_pos -= encoded_type_highpart_size; |
255 | } |
256 | } |
257 | else |
258 | { |
259 | write_bits(scb.color_formats[0], 4, 13, pcb.data); |
260 | } |
261 | |
262 | // In dual-plane mode, encode the color component of the second plane of weights |
263 | if (is_dual_plane) |
264 | { |
265 | write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb.data); |
266 | } |
267 | |
268 | // Encode the color components |
269 | uint8_t values_to_encode[32]; |
270 | int valuecount_to_encode = 0; |
271 | |
272 | const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6]; |
273 | for (unsigned int i = 0; i < scb.partition_count; i++) |
274 | { |
275 | int vals = 2 * (scb.color_formats[i] >> 2) + 2; |
276 | assert(vals <= 8); |
277 | for (int j = 0; j < vals; j++) |
278 | { |
279 | values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]]; |
280 | } |
281 | valuecount_to_encode += vals; |
282 | } |
283 | |
284 | encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb.data, |
285 | scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS); |
286 | } |
287 | |
288 | #endif |
289 | |
290 | /* See header for documentation. */ |
291 | void physical_to_symbolic( |
292 | const block_size_descriptor& bsd, |
293 | const physical_compressed_block& pcb, |
294 | symbolic_compressed_block& scb |
295 | ) { |
296 | uint8_t bswapped[16]; |
297 | |
298 | scb.block_type = SYM_BTYPE_NONCONST; |
299 | |
300 | // Extract header fields |
301 | int block_mode = read_bits(11, 0, pcb.data); |
302 | if ((block_mode & 0x1FF) == 0x1FC) |
303 | { |
304 | // Constant color block |
305 | |
306 | // Check what format the data has |
307 | if (block_mode & 0x200) |
308 | { |
309 | scb.block_type = SYM_BTYPE_CONST_F16; |
310 | } |
311 | else |
312 | { |
313 | scb.block_type = SYM_BTYPE_CONST_U16; |
314 | } |
315 | |
316 | scb.partition_count = 0; |
317 | for (int i = 0; i < 4; i++) |
318 | { |
319 | scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8); |
320 | } |
321 | |
322 | // Additionally, check that the void-extent |
323 | if (bsd.zdim == 1) |
324 | { |
325 | // 2D void-extent |
326 | int rsvbits = read_bits(2, 10, pcb.data); |
327 | if (rsvbits != 3) |
328 | { |
329 | scb.block_type = SYM_BTYPE_ERROR; |
330 | return; |
331 | } |
332 | |
333 | int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8); |
334 | int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8); |
335 | int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8); |
336 | int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8); |
337 | |
338 | int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF; |
339 | |
340 | if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones) |
341 | { |
342 | scb.block_type = SYM_BTYPE_ERROR; |
343 | return; |
344 | } |
345 | } |
346 | else |
347 | { |
348 | // 3D void-extent |
349 | int vx_low_s = read_bits(9, 10, pcb.data); |
350 | int vx_high_s = read_bits(9, 19, pcb.data); |
351 | int vx_low_t = read_bits(9, 28, pcb.data); |
352 | int vx_high_t = read_bits(9, 37, pcb.data); |
353 | int vx_low_p = read_bits(9, 46, pcb.data); |
354 | int vx_high_p = read_bits(9, 55, pcb.data); |
355 | |
356 | int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF; |
357 | |
358 | if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones) |
359 | { |
360 | scb.block_type = SYM_BTYPE_ERROR; |
361 | return; |
362 | } |
363 | } |
364 | |
365 | return; |
366 | } |
367 | |
368 | unsigned int packed_index = bsd.block_mode_packed_index[block_mode]; |
369 | if (packed_index == BLOCK_BAD_BLOCK_MODE) |
370 | { |
371 | scb.block_type = SYM_BTYPE_ERROR; |
372 | return; |
373 | } |
374 | |
375 | const auto& bm = bsd.get_block_mode(block_mode); |
376 | const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
377 | |
378 | int weight_count = di.weight_count; |
379 | promise(weight_count > 0); |
380 | |
381 | quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode); |
382 | int is_dual_plane = bm.is_dual_plane; |
383 | |
384 | int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; |
385 | |
386 | int partition_count = read_bits(2, 11, pcb.data) + 1; |
387 | promise(partition_count > 0); |
388 | |
389 | scb.block_mode = static_cast<uint16_t>(block_mode); |
390 | scb.partition_count = static_cast<uint8_t>(partition_count); |
391 | |
392 | for (int i = 0; i < 16; i++) |
393 | { |
394 | bswapped[i] = static_cast<uint8_t>(bitrev8(pcb.data[15 - i])); |
395 | } |
396 | |
397 | int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); |
398 | |
399 | int below_weights_pos = 128 - bits_for_weights; |
400 | |
401 | uint8_t indices[64]; |
402 | const auto& qat = quant_and_xfer_tables[weight_quant_method]; |
403 | |
404 | decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0); |
405 | |
406 | if (is_dual_plane) |
407 | { |
408 | for (int i = 0; i < weight_count; i++) |
409 | { |
410 | scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]]; |
411 | scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]]; |
412 | } |
413 | } |
414 | else |
415 | { |
416 | for (int i = 0; i < weight_count; i++) |
417 | { |
418 | scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]]; |
419 | } |
420 | } |
421 | |
422 | if (is_dual_plane && partition_count == 4) |
423 | { |
424 | scb.block_type = SYM_BTYPE_ERROR; |
425 | return; |
426 | } |
427 | |
428 | scb.color_formats_matched = 0; |
429 | |
430 | // Determine the format of each endpoint pair |
431 | int color_formats[BLOCK_MAX_PARTITIONS]; |
432 | int encoded_type_highpart_size = 0; |
433 | if (partition_count == 1) |
434 | { |
435 | color_formats[0] = read_bits(4, 13, pcb.data); |
436 | scb.partition_index = 0; |
437 | } |
438 | else |
439 | { |
440 | encoded_type_highpart_size = (3 * partition_count) - 4; |
441 | below_weights_pos -= encoded_type_highpart_size; |
442 | int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6); |
443 | int baseclass = encoded_type & 0x3; |
444 | if (baseclass == 0) |
445 | { |
446 | for (int i = 0; i < partition_count; i++) |
447 | { |
448 | color_formats[i] = (encoded_type >> 2) & 0xF; |
449 | } |
450 | |
451 | below_weights_pos += encoded_type_highpart_size; |
452 | scb.color_formats_matched = 1; |
453 | encoded_type_highpart_size = 0; |
454 | } |
455 | else |
456 | { |
457 | int bitpos = 2; |
458 | baseclass--; |
459 | |
460 | for (int i = 0; i < partition_count; i++) |
461 | { |
462 | color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2; |
463 | bitpos++; |
464 | } |
465 | |
466 | for (int i = 0; i < partition_count; i++) |
467 | { |
468 | color_formats[i] |= (encoded_type >> bitpos) & 3; |
469 | bitpos += 2; |
470 | } |
471 | } |
472 | scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb.data) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb.data) << 6)); |
473 | } |
474 | |
475 | for (int i = 0; i < partition_count; i++) |
476 | { |
477 | scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]); |
478 | } |
479 | |
480 | // Determine number of color endpoint integers |
481 | int color_integer_count = 0; |
482 | for (int i = 0; i < partition_count; i++) |
483 | { |
484 | int endpoint_class = color_formats[i] >> 2; |
485 | color_integer_count += (endpoint_class + 1) * 2; |
486 | } |
487 | |
488 | if (color_integer_count > 18) |
489 | { |
490 | scb.block_type = SYM_BTYPE_ERROR; |
491 | return; |
492 | } |
493 | |
494 | // Determine the color endpoint format to use |
495 | static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS }; |
496 | int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size; |
497 | if (is_dual_plane) |
498 | { |
499 | color_bits -= 2; |
500 | } |
501 | |
502 | if (color_bits < 0) |
503 | { |
504 | color_bits = 0; |
505 | } |
506 | |
507 | int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits]; |
508 | if (color_quant_level < QUANT_6) |
509 | { |
510 | scb.block_type = SYM_BTYPE_ERROR; |
511 | return; |
512 | } |
513 | |
514 | // Unpack the integer color values and assign to endpoints |
515 | scb.quant_mode = static_cast<quant_method>(color_quant_level); |
516 | |
517 | uint8_t values_to_decode[32]; |
518 | decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb.data, |
519 | values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS)); |
520 | |
521 | int valuecount_to_decode = 0; |
522 | const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6]; |
523 | for (int i = 0; i < partition_count; i++) |
524 | { |
525 | int vals = 2 * (color_formats[i] >> 2) + 2; |
526 | for (int j = 0; j < vals; j++) |
527 | { |
528 | scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]]; |
529 | } |
530 | valuecount_to_decode += vals; |
531 | } |
532 | |
533 | // Fetch component for second-plane in the case of dual plane of weights. |
534 | scb.plane2_component = -1; |
535 | if (is_dual_plane) |
536 | { |
537 | scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb.data)); |
538 | } |
539 | } |
540 | |