| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2023 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | /** |
| 19 | * @brief Functions for converting between symbolic and physical encodings. |
| 20 | */ |
| 21 | |
| 22 | #include "astcenc_internal.h" |
| 23 | |
| 24 | #include <cassert> |
| 25 | |
| 26 | /** |
| 27 | * @brief Reverse bits in a byte. |
| 28 | * |
| 29 | * @param p The value to reverse. |
| 30 | * |
| 31 | * @return The reversed result. |
| 32 | */ |
| 33 | static inline int bitrev8(int p) |
| 34 | { |
| 35 | p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F); |
| 36 | p = ((p & 0x33) << 2) | ((p >> 2) & 0x33); |
| 37 | p = ((p & 0x55) << 1) | ((p >> 1) & 0x55); |
| 38 | return p; |
| 39 | } |
| 40 | |
| 41 | |
| 42 | /** |
| 43 | * @brief Read up to 8 bits at an arbitrary bit offset. |
| 44 | * |
| 45 | * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may |
| 46 | * span two separate bytes in memory. |
| 47 | * |
| 48 | * @param bitcount The number of bits to read. |
| 49 | * @param bitoffset The bit offset to read from, between 0 and 7. |
| 50 | * @param[in,out] ptr The data pointer to read from. |
| 51 | * |
| 52 | * @return The read value. |
| 53 | */ |
| 54 | static inline int read_bits( |
| 55 | int bitcount, |
| 56 | int bitoffset, |
| 57 | const uint8_t* ptr |
| 58 | ) { |
| 59 | int mask = (1 << bitcount) - 1; |
| 60 | ptr += bitoffset >> 3; |
| 61 | bitoffset &= 7; |
| 62 | int value = ptr[0] | (ptr[1] << 8); |
| 63 | value >>= bitoffset; |
| 64 | value &= mask; |
| 65 | return value; |
| 66 | } |
| 67 | |
| 68 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| 69 | |
| 70 | /** |
| 71 | * @brief Write up to 8 bits at an arbitrary bit offset. |
| 72 | * |
| 73 | * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so |
| 74 | * may span two separate bytes in memory. |
| 75 | * |
| 76 | * @param value The value to write. |
| 77 | * @param bitcount The number of bits to write, starting from LSB. |
| 78 | * @param bitoffset The bit offset to store at, between 0 and 7. |
| 79 | * @param[in,out] ptr The data pointer to write to. |
| 80 | */ |
| 81 | static inline void write_bits( |
| 82 | int value, |
| 83 | int bitcount, |
| 84 | int bitoffset, |
| 85 | uint8_t* ptr |
| 86 | ) { |
| 87 | int mask = (1 << bitcount) - 1; |
| 88 | value &= mask; |
| 89 | ptr += bitoffset >> 3; |
| 90 | bitoffset &= 7; |
| 91 | value <<= bitoffset; |
| 92 | mask <<= bitoffset; |
| 93 | mask = ~mask; |
| 94 | |
| 95 | ptr[0] &= mask; |
| 96 | ptr[0] |= value; |
| 97 | ptr[1] &= mask >> 8; |
| 98 | ptr[1] |= value >> 8; |
| 99 | } |
| 100 | |
| 101 | /* See header for documentation. */ |
| 102 | void symbolic_to_physical( |
| 103 | const block_size_descriptor& bsd, |
| 104 | const symbolic_compressed_block& scb, |
| 105 | physical_compressed_block& pcb |
| 106 | ) { |
| 107 | assert(scb.block_type != SYM_BTYPE_ERROR); |
| 108 | |
| 109 | // Constant color block using UNORM16 colors |
| 110 | if (scb.block_type == SYM_BTYPE_CONST_U16) |
| 111 | { |
| 112 | // There is currently no attempt to coalesce larger void-extents |
| 113 | static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| 114 | for (unsigned int i = 0; i < 8; i++) |
| 115 | { |
| 116 | pcb.data[i] = cbytes[i]; |
| 117 | } |
| 118 | |
| 119 | for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) |
| 120 | { |
| 121 | pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; |
| 122 | pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; |
| 123 | } |
| 124 | |
| 125 | return; |
| 126 | } |
| 127 | |
| 128 | // Constant color block using FP16 colors |
| 129 | if (scb.block_type == SYM_BTYPE_CONST_F16) |
| 130 | { |
| 131 | // There is currently no attempt to coalesce larger void-extents |
| 132 | static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| 133 | for (unsigned int i = 0; i < 8; i++) |
| 134 | { |
| 135 | pcb.data[i] = cbytes[i]; |
| 136 | } |
| 137 | |
| 138 | for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) |
| 139 | { |
| 140 | pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; |
| 141 | pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; |
| 142 | } |
| 143 | |
| 144 | return; |
| 145 | } |
| 146 | |
| 147 | unsigned int partition_count = scb.partition_count; |
| 148 | |
| 149 | // Compress the weights. |
| 150 | // They are encoded as an ordinary integer-sequence, then bit-reversed |
| 151 | uint8_t weightbuf[16] { 0 }; |
| 152 | |
| 153 | const auto& bm = bsd.get_block_mode(scb.block_mode); |
| 154 | const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
| 155 | int weight_count = di.weight_count; |
| 156 | quant_method weight_quant_method = bm.get_weight_quant_mode(); |
| 157 | float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method)); |
| 158 | int is_dual_plane = bm.is_dual_plane; |
| 159 | |
| 160 | const auto& qat = quant_and_xfer_tables[weight_quant_method]; |
| 161 | |
| 162 | int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; |
| 163 | |
| 164 | int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); |
| 165 | |
| 166 | uint8_t weights[64]; |
| 167 | if (is_dual_plane) |
| 168 | { |
| 169 | for (int i = 0; i < weight_count; i++) |
| 170 | { |
| 171 | float uqw = static_cast<float>(scb.weights[i]); |
| 172 | float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
| 173 | int qwi = static_cast<int>(qw + 0.5f); |
| 174 | weights[2 * i] = qat.scramble_map[qwi]; |
| 175 | |
| 176 | uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]); |
| 177 | qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
| 178 | qwi = static_cast<int>(qw + 0.5f); |
| 179 | weights[2 * i + 1] = qat.scramble_map[qwi]; |
| 180 | } |
| 181 | } |
| 182 | else |
| 183 | { |
| 184 | for (int i = 0; i < weight_count; i++) |
| 185 | { |
| 186 | float uqw = static_cast<float>(scb.weights[i]); |
| 187 | float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
| 188 | int qwi = static_cast<int>(qw + 0.5f); |
| 189 | weights[i] = qat.scramble_map[qwi]; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0); |
| 194 | |
| 195 | for (int i = 0; i < 16; i++) |
| 196 | { |
| 197 | pcb.data[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i])); |
| 198 | } |
| 199 | |
| 200 | write_bits(scb.block_mode, 11, 0, pcb.data); |
| 201 | write_bits(partition_count - 1, 2, 11, pcb.data); |
| 202 | |
| 203 | int below_weights_pos = 128 - bits_for_weights; |
| 204 | |
| 205 | // Encode partition index and color endpoint types for blocks with 2+ partitions |
| 206 | if (partition_count > 1) |
| 207 | { |
| 208 | write_bits(scb.partition_index, 6, 13, pcb.data); |
| 209 | write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb.data); |
| 210 | |
| 211 | if (scb.color_formats_matched) |
| 212 | { |
| 213 | write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb.data); |
| 214 | } |
| 215 | else |
| 216 | { |
| 217 | // Check endpoint types for each partition to determine the lowest class present |
| 218 | int low_class = 4; |
| 219 | |
| 220 | for (unsigned int i = 0; i < partition_count; i++) |
| 221 | { |
| 222 | int class_of_format = scb.color_formats[i] >> 2; |
| 223 | low_class = astc::min(class_of_format, low_class); |
| 224 | } |
| 225 | |
| 226 | if (low_class == 3) |
| 227 | { |
| 228 | low_class = 2; |
| 229 | } |
| 230 | |
| 231 | int encoded_type = low_class + 1; |
| 232 | int bitpos = 2; |
| 233 | |
| 234 | for (unsigned int i = 0; i < partition_count; i++) |
| 235 | { |
| 236 | int classbit_of_format = (scb.color_formats[i] >> 2) - low_class; |
| 237 | encoded_type |= classbit_of_format << bitpos; |
| 238 | bitpos++; |
| 239 | } |
| 240 | |
| 241 | for (unsigned int i = 0; i < partition_count; i++) |
| 242 | { |
| 243 | int lowbits_of_format = scb.color_formats[i] & 3; |
| 244 | encoded_type |= lowbits_of_format << bitpos; |
| 245 | bitpos += 2; |
| 246 | } |
| 247 | |
| 248 | int encoded_type_lowpart = encoded_type & 0x3F; |
| 249 | int encoded_type_highpart = encoded_type >> 6; |
| 250 | int encoded_type_highpart_size = (3 * partition_count) - 4; |
| 251 | int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size; |
| 252 | write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb.data); |
| 253 | write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data); |
| 254 | below_weights_pos -= encoded_type_highpart_size; |
| 255 | } |
| 256 | } |
| 257 | else |
| 258 | { |
| 259 | write_bits(scb.color_formats[0], 4, 13, pcb.data); |
| 260 | } |
| 261 | |
| 262 | // In dual-plane mode, encode the color component of the second plane of weights |
| 263 | if (is_dual_plane) |
| 264 | { |
| 265 | write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb.data); |
| 266 | } |
| 267 | |
| 268 | // Encode the color components |
| 269 | uint8_t values_to_encode[32]; |
| 270 | int valuecount_to_encode = 0; |
| 271 | |
| 272 | const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6]; |
| 273 | for (unsigned int i = 0; i < scb.partition_count; i++) |
| 274 | { |
| 275 | int vals = 2 * (scb.color_formats[i] >> 2) + 2; |
| 276 | assert(vals <= 8); |
| 277 | for (int j = 0; j < vals; j++) |
| 278 | { |
| 279 | values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]]; |
| 280 | } |
| 281 | valuecount_to_encode += vals; |
| 282 | } |
| 283 | |
| 284 | encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb.data, |
| 285 | scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS); |
| 286 | } |
| 287 | |
| 288 | #endif |
| 289 | |
| 290 | /* See header for documentation. */ |
| 291 | void physical_to_symbolic( |
| 292 | const block_size_descriptor& bsd, |
| 293 | const physical_compressed_block& pcb, |
| 294 | symbolic_compressed_block& scb |
| 295 | ) { |
| 296 | uint8_t bswapped[16]; |
| 297 | |
| 298 | scb.block_type = SYM_BTYPE_NONCONST; |
| 299 | |
| 300 | // Extract header fields |
| 301 | int block_mode = read_bits(11, 0, pcb.data); |
| 302 | if ((block_mode & 0x1FF) == 0x1FC) |
| 303 | { |
| 304 | // Constant color block |
| 305 | |
| 306 | // Check what format the data has |
| 307 | if (block_mode & 0x200) |
| 308 | { |
| 309 | scb.block_type = SYM_BTYPE_CONST_F16; |
| 310 | } |
| 311 | else |
| 312 | { |
| 313 | scb.block_type = SYM_BTYPE_CONST_U16; |
| 314 | } |
| 315 | |
| 316 | scb.partition_count = 0; |
| 317 | for (int i = 0; i < 4; i++) |
| 318 | { |
| 319 | scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8); |
| 320 | } |
| 321 | |
| 322 | // Additionally, check that the void-extent |
| 323 | if (bsd.zdim == 1) |
| 324 | { |
| 325 | // 2D void-extent |
| 326 | int rsvbits = read_bits(2, 10, pcb.data); |
| 327 | if (rsvbits != 3) |
| 328 | { |
| 329 | scb.block_type = SYM_BTYPE_ERROR; |
| 330 | return; |
| 331 | } |
| 332 | |
| 333 | int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8); |
| 334 | int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8); |
| 335 | int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8); |
| 336 | int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8); |
| 337 | |
| 338 | int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF; |
| 339 | |
| 340 | if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones) |
| 341 | { |
| 342 | scb.block_type = SYM_BTYPE_ERROR; |
| 343 | return; |
| 344 | } |
| 345 | } |
| 346 | else |
| 347 | { |
| 348 | // 3D void-extent |
| 349 | int vx_low_s = read_bits(9, 10, pcb.data); |
| 350 | int vx_high_s = read_bits(9, 19, pcb.data); |
| 351 | int vx_low_t = read_bits(9, 28, pcb.data); |
| 352 | int vx_high_t = read_bits(9, 37, pcb.data); |
| 353 | int vx_low_p = read_bits(9, 46, pcb.data); |
| 354 | int vx_high_p = read_bits(9, 55, pcb.data); |
| 355 | |
| 356 | int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF; |
| 357 | |
| 358 | if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones) |
| 359 | { |
| 360 | scb.block_type = SYM_BTYPE_ERROR; |
| 361 | return; |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | return; |
| 366 | } |
| 367 | |
| 368 | unsigned int packed_index = bsd.block_mode_packed_index[block_mode]; |
| 369 | if (packed_index == BLOCK_BAD_BLOCK_MODE) |
| 370 | { |
| 371 | scb.block_type = SYM_BTYPE_ERROR; |
| 372 | return; |
| 373 | } |
| 374 | |
| 375 | const auto& bm = bsd.get_block_mode(block_mode); |
| 376 | const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
| 377 | |
| 378 | int weight_count = di.weight_count; |
| 379 | promise(weight_count > 0); |
| 380 | |
| 381 | quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode); |
| 382 | int is_dual_plane = bm.is_dual_plane; |
| 383 | |
| 384 | int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; |
| 385 | |
| 386 | int partition_count = read_bits(2, 11, pcb.data) + 1; |
| 387 | promise(partition_count > 0); |
| 388 | |
| 389 | scb.block_mode = static_cast<uint16_t>(block_mode); |
| 390 | scb.partition_count = static_cast<uint8_t>(partition_count); |
| 391 | |
| 392 | for (int i = 0; i < 16; i++) |
| 393 | { |
| 394 | bswapped[i] = static_cast<uint8_t>(bitrev8(pcb.data[15 - i])); |
| 395 | } |
| 396 | |
| 397 | int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); |
| 398 | |
| 399 | int below_weights_pos = 128 - bits_for_weights; |
| 400 | |
| 401 | uint8_t indices[64]; |
| 402 | const auto& qat = quant_and_xfer_tables[weight_quant_method]; |
| 403 | |
| 404 | decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0); |
| 405 | |
| 406 | if (is_dual_plane) |
| 407 | { |
| 408 | for (int i = 0; i < weight_count; i++) |
| 409 | { |
| 410 | scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]]; |
| 411 | scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]]; |
| 412 | } |
| 413 | } |
| 414 | else |
| 415 | { |
| 416 | for (int i = 0; i < weight_count; i++) |
| 417 | { |
| 418 | scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]]; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | if (is_dual_plane && partition_count == 4) |
| 423 | { |
| 424 | scb.block_type = SYM_BTYPE_ERROR; |
| 425 | return; |
| 426 | } |
| 427 | |
| 428 | scb.color_formats_matched = 0; |
| 429 | |
| 430 | // Determine the format of each endpoint pair |
| 431 | int color_formats[BLOCK_MAX_PARTITIONS]; |
| 432 | int encoded_type_highpart_size = 0; |
| 433 | if (partition_count == 1) |
| 434 | { |
| 435 | color_formats[0] = read_bits(4, 13, pcb.data); |
| 436 | scb.partition_index = 0; |
| 437 | } |
| 438 | else |
| 439 | { |
| 440 | encoded_type_highpart_size = (3 * partition_count) - 4; |
| 441 | below_weights_pos -= encoded_type_highpart_size; |
| 442 | int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6); |
| 443 | int baseclass = encoded_type & 0x3; |
| 444 | if (baseclass == 0) |
| 445 | { |
| 446 | for (int i = 0; i < partition_count; i++) |
| 447 | { |
| 448 | color_formats[i] = (encoded_type >> 2) & 0xF; |
| 449 | } |
| 450 | |
| 451 | below_weights_pos += encoded_type_highpart_size; |
| 452 | scb.color_formats_matched = 1; |
| 453 | encoded_type_highpart_size = 0; |
| 454 | } |
| 455 | else |
| 456 | { |
| 457 | int bitpos = 2; |
| 458 | baseclass--; |
| 459 | |
| 460 | for (int i = 0; i < partition_count; i++) |
| 461 | { |
| 462 | color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2; |
| 463 | bitpos++; |
| 464 | } |
| 465 | |
| 466 | for (int i = 0; i < partition_count; i++) |
| 467 | { |
| 468 | color_formats[i] |= (encoded_type >> bitpos) & 3; |
| 469 | bitpos += 2; |
| 470 | } |
| 471 | } |
| 472 | scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb.data) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb.data) << 6)); |
| 473 | } |
| 474 | |
| 475 | for (int i = 0; i < partition_count; i++) |
| 476 | { |
| 477 | scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]); |
| 478 | } |
| 479 | |
| 480 | // Determine number of color endpoint integers |
| 481 | int color_integer_count = 0; |
| 482 | for (int i = 0; i < partition_count; i++) |
| 483 | { |
| 484 | int endpoint_class = color_formats[i] >> 2; |
| 485 | color_integer_count += (endpoint_class + 1) * 2; |
| 486 | } |
| 487 | |
| 488 | if (color_integer_count > 18) |
| 489 | { |
| 490 | scb.block_type = SYM_BTYPE_ERROR; |
| 491 | return; |
| 492 | } |
| 493 | |
| 494 | // Determine the color endpoint format to use |
| 495 | static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS }; |
| 496 | int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size; |
| 497 | if (is_dual_plane) |
| 498 | { |
| 499 | color_bits -= 2; |
| 500 | } |
| 501 | |
| 502 | if (color_bits < 0) |
| 503 | { |
| 504 | color_bits = 0; |
| 505 | } |
| 506 | |
| 507 | int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits]; |
| 508 | if (color_quant_level < QUANT_6) |
| 509 | { |
| 510 | scb.block_type = SYM_BTYPE_ERROR; |
| 511 | return; |
| 512 | } |
| 513 | |
| 514 | // Unpack the integer color values and assign to endpoints |
| 515 | scb.quant_mode = static_cast<quant_method>(color_quant_level); |
| 516 | |
| 517 | uint8_t values_to_decode[32]; |
| 518 | decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb.data, |
| 519 | values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS)); |
| 520 | |
| 521 | int valuecount_to_decode = 0; |
| 522 | const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6]; |
| 523 | for (int i = 0; i < partition_count; i++) |
| 524 | { |
| 525 | int vals = 2 * (color_formats[i] >> 2) + 2; |
| 526 | for (int j = 0; j < vals; j++) |
| 527 | { |
| 528 | scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]]; |
| 529 | } |
| 530 | valuecount_to_decode += vals; |
| 531 | } |
| 532 | |
| 533 | // Fetch component for second-plane in the case of dual plane of weights. |
| 534 | scb.plane2_component = -1; |
| 535 | if (is_dual_plane) |
| 536 | { |
| 537 | scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb.data)); |
| 538 | } |
| 539 | } |
| 540 | |