| 1 | // basisu_resampler.cpp |
| 2 | // Copyright (C) 2019 Binomial LLC. All Rights Reserved. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | // you may not use this file except in compliance with the License. |
| 6 | // You may obtain a copy of the License at |
| 7 | // |
| 8 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | // |
| 10 | // Unless required by applicable law or agreed to in writing, software |
| 11 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | // See the License for the specific language governing permissions and |
| 14 | // limitations under the License. |
| 15 | #include "basisu_resampler.h" |
| 16 | #include "basisu_resampler_filters.h" |
| 17 | |
| 18 | #define RESAMPLER_DEBUG 0 |
| 19 | |
| 20 | namespace basisu |
| 21 | { |
| 22 | static inline int resampler_range_check(int v, int h) |
| 23 | { |
| 24 | BASISU_NOTE_UNUSED(h); |
| 25 | assert((v >= 0) && (v < h)); |
| 26 | return v; |
| 27 | } |
| 28 | |
| 29 | // Float to int cast with truncation. |
| 30 | static inline int cast_to_int(Resample_Real i) |
| 31 | { |
| 32 | return (int)i; |
| 33 | } |
| 34 | |
| 35 | // Ensure that the contributing source sample is within bounds. If not, reflect, clamp, or wrap. |
| 36 | int Resampler::reflect(const int j, const int src_x, const Boundary_Op boundary_op) |
| 37 | { |
| 38 | int n; |
| 39 | |
| 40 | if (j < 0) |
| 41 | { |
| 42 | if (boundary_op == BOUNDARY_REFLECT) |
| 43 | { |
| 44 | n = -j; |
| 45 | |
| 46 | if (n >= src_x) |
| 47 | n = src_x - 1; |
| 48 | } |
| 49 | else if (boundary_op == BOUNDARY_WRAP) |
| 50 | n = posmod(j, src_x); |
| 51 | else |
| 52 | n = 0; |
| 53 | } |
| 54 | else if (j >= src_x) |
| 55 | { |
| 56 | if (boundary_op == BOUNDARY_REFLECT) |
| 57 | { |
| 58 | n = (src_x - j) + (src_x - 1); |
| 59 | |
| 60 | if (n < 0) |
| 61 | n = 0; |
| 62 | } |
| 63 | else if (boundary_op == BOUNDARY_WRAP) |
| 64 | n = posmod(j, src_x); |
| 65 | else |
| 66 | n = src_x - 1; |
| 67 | } |
| 68 | else |
| 69 | n = j; |
| 70 | |
| 71 | return n; |
| 72 | } |
| 73 | |
| 74 | // The make_clist() method generates, for all destination samples, |
| 75 | // the list of all source samples with non-zero weighted contributions. |
| 76 | Resampler::Contrib_List * Resampler::make_clist( |
| 77 | int src_x, int dst_x, Boundary_Op boundary_op, |
| 78 | Resample_Real(*Pfilter)(Resample_Real), |
| 79 | Resample_Real filter_support, |
| 80 | Resample_Real filter_scale, |
| 81 | Resample_Real src_ofs) |
| 82 | { |
| 83 | struct Contrib_Bounds |
| 84 | { |
| 85 | // The center of the range in DISCRETE coordinates (pixel center = 0.0f). |
| 86 | Resample_Real center; |
| 87 | int left, right; |
| 88 | }; |
| 89 | |
| 90 | int i, j, k, n, left, right; |
| 91 | Resample_Real total_weight; |
| 92 | Resample_Real xscale, center, half_width, weight; |
| 93 | Contrib_List* Pcontrib; |
| 94 | Contrib* Pcpool; |
| 95 | Contrib* Pcpool_next; |
| 96 | Contrib_Bounds* Pcontrib_bounds; |
| 97 | |
| 98 | if ((Pcontrib = (Contrib_List*)calloc(dst_x, sizeof(Contrib_List))) == NULL) |
| 99 | return NULL; |
| 100 | |
| 101 | Pcontrib_bounds = (Contrib_Bounds*)calloc(dst_x, sizeof(Contrib_Bounds)); |
| 102 | if (!Pcontrib_bounds) |
| 103 | { |
| 104 | free(Pcontrib); |
| 105 | return (NULL); |
| 106 | } |
| 107 | |
| 108 | const Resample_Real oo_filter_scale = 1.0f / filter_scale; |
| 109 | |
| 110 | const Resample_Real NUDGE = 0.5f; |
| 111 | xscale = dst_x / (Resample_Real)src_x; |
| 112 | |
| 113 | if (xscale < 1.0f) |
| 114 | { |
| 115 | int total; |
| 116 | (void)total; |
| 117 | |
| 118 | // Handle case when there are fewer destination samples than source samples (downsampling/minification). |
| 119 | |
| 120 | // stretched half width of filter |
| 121 | half_width = (filter_support / xscale) * filter_scale; |
| 122 | |
| 123 | // Find the range of source sample(s) that will contribute to each destination sample. |
| 124 | |
| 125 | for (i = 0, n = 0; i < dst_x; i++) |
| 126 | { |
| 127 | // Convert from discrete to continuous coordinates, scale, then convert back to discrete. |
| 128 | center = ((Resample_Real)i + NUDGE) / xscale; |
| 129 | center -= NUDGE; |
| 130 | center += src_ofs; |
| 131 | |
| 132 | left = cast_to_int((Resample_Real)floor(center - half_width)); |
| 133 | right = cast_to_int((Resample_Real)ceil(center + half_width)); |
| 134 | |
| 135 | Pcontrib_bounds[i].center = center; |
| 136 | Pcontrib_bounds[i].left = left; |
| 137 | Pcontrib_bounds[i].right = right; |
| 138 | |
| 139 | n += (right - left + 1); |
| 140 | } |
| 141 | |
| 142 | // Allocate memory for contributors. |
| 143 | |
| 144 | if ((n == 0) || ((Pcpool = (Contrib*)calloc(n, sizeof(Contrib))) == NULL)) |
| 145 | { |
| 146 | free(Pcontrib); |
| 147 | free(Pcontrib_bounds); |
| 148 | return NULL; |
| 149 | } |
| 150 | total = n; |
| 151 | |
| 152 | Pcpool_next = Pcpool; |
| 153 | |
| 154 | // Create the list of source samples which contribute to each destination sample. |
| 155 | |
| 156 | for (i = 0; i < dst_x; i++) |
| 157 | { |
| 158 | int max_k = -1; |
| 159 | Resample_Real max_w = -1e+20f; |
| 160 | |
| 161 | center = Pcontrib_bounds[i].center; |
| 162 | left = Pcontrib_bounds[i].left; |
| 163 | right = Pcontrib_bounds[i].right; |
| 164 | |
| 165 | Pcontrib[i].n = 0; |
| 166 | Pcontrib[i].p = Pcpool_next; |
| 167 | Pcpool_next += (right - left + 1); |
| 168 | assert((Pcpool_next - Pcpool) <= total); |
| 169 | |
| 170 | total_weight = 0; |
| 171 | |
| 172 | for (j = left; j <= right; j++) |
| 173 | total_weight += (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale); |
| 174 | const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight); |
| 175 | |
| 176 | total_weight = 0; |
| 177 | |
| 178 | #if RESAMPLER_DEBUG |
| 179 | printf("%i: " , i); |
| 180 | #endif |
| 181 | |
| 182 | for (j = left; j <= right; j++) |
| 183 | { |
| 184 | weight = (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale) * norm; |
| 185 | if (weight == 0.0f) |
| 186 | continue; |
| 187 | |
| 188 | n = reflect(j, src_x, boundary_op); |
| 189 | |
| 190 | #if RESAMPLER_DEBUG |
| 191 | printf("%i(%f), " , n, weight); |
| 192 | #endif |
| 193 | |
| 194 | // Increment the number of source samples which contribute to the current destination sample. |
| 195 | |
| 196 | k = Pcontrib[i].n++; |
| 197 | |
| 198 | Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */ |
| 199 | Pcontrib[i].p[k].weight = weight; /* store src sample weight */ |
| 200 | |
| 201 | total_weight += weight; /* total weight of all contributors */ |
| 202 | |
| 203 | if (weight > max_w) |
| 204 | { |
| 205 | max_w = weight; |
| 206 | max_k = k; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | #if RESAMPLER_DEBUG |
| 211 | printf("\n\n" ); |
| 212 | #endif |
| 213 | |
| 214 | //assert(Pcontrib[i].n); |
| 215 | //assert(max_k != -1); |
| 216 | if ((max_k == -1) || (Pcontrib[i].n == 0)) |
| 217 | { |
| 218 | free(Pcpool); |
| 219 | free(Pcontrib); |
| 220 | free(Pcontrib_bounds); |
| 221 | return NULL; |
| 222 | } |
| 223 | |
| 224 | if (total_weight != 1.0f) |
| 225 | Pcontrib[i].p[max_k].weight += 1.0f - total_weight; |
| 226 | } |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | // Handle case when there are more destination samples than source samples (upsampling). |
| 231 | |
| 232 | half_width = filter_support * filter_scale; |
| 233 | |
| 234 | // Find the source sample(s) that contribute to each destination sample. |
| 235 | |
| 236 | for (i = 0, n = 0; i < dst_x; i++) |
| 237 | { |
| 238 | // Convert from discrete to continuous coordinates, scale, then convert back to discrete. |
| 239 | center = ((Resample_Real)i + NUDGE) / xscale; |
| 240 | center -= NUDGE; |
| 241 | center += src_ofs; |
| 242 | |
| 243 | left = cast_to_int((Resample_Real)floor(center - half_width)); |
| 244 | right = cast_to_int((Resample_Real)ceil(center + half_width)); |
| 245 | |
| 246 | Pcontrib_bounds[i].center = center; |
| 247 | Pcontrib_bounds[i].left = left; |
| 248 | Pcontrib_bounds[i].right = right; |
| 249 | |
| 250 | n += (right - left + 1); |
| 251 | } |
| 252 | |
| 253 | /* Allocate memory for contributors. */ |
| 254 | |
| 255 | int total = n; |
| 256 | if ((total == 0) || ((Pcpool = (Contrib*)calloc(total, sizeof(Contrib))) == NULL)) |
| 257 | { |
| 258 | free(Pcontrib); |
| 259 | free(Pcontrib_bounds); |
| 260 | return NULL; |
| 261 | } |
| 262 | |
| 263 | Pcpool_next = Pcpool; |
| 264 | |
| 265 | // Create the list of source samples which contribute to each destination sample. |
| 266 | |
| 267 | for (i = 0; i < dst_x; i++) |
| 268 | { |
| 269 | int max_k = -1; |
| 270 | Resample_Real max_w = -1e+20f; |
| 271 | |
| 272 | center = Pcontrib_bounds[i].center; |
| 273 | left = Pcontrib_bounds[i].left; |
| 274 | right = Pcontrib_bounds[i].right; |
| 275 | |
| 276 | Pcontrib[i].n = 0; |
| 277 | Pcontrib[i].p = Pcpool_next; |
| 278 | Pcpool_next += (right - left + 1); |
| 279 | assert((Pcpool_next - Pcpool) <= total); |
| 280 | |
| 281 | total_weight = 0; |
| 282 | for (j = left; j <= right; j++) |
| 283 | total_weight += (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale); |
| 284 | |
| 285 | const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight); |
| 286 | |
| 287 | total_weight = 0; |
| 288 | |
| 289 | #if RESAMPLER_DEBUG |
| 290 | printf("%i: " , i); |
| 291 | #endif |
| 292 | |
| 293 | for (j = left; j <= right; j++) |
| 294 | { |
| 295 | weight = (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale) * norm; |
| 296 | if (weight == 0.0f) |
| 297 | continue; |
| 298 | |
| 299 | n = reflect(j, src_x, boundary_op); |
| 300 | |
| 301 | #if RESAMPLER_DEBUG |
| 302 | printf("%i(%f), " , n, weight); |
| 303 | #endif |
| 304 | |
| 305 | // Increment the number of source samples which contribute to the current destination sample. |
| 306 | |
| 307 | k = Pcontrib[i].n++; |
| 308 | |
| 309 | Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */ |
| 310 | Pcontrib[i].p[k].weight = weight; /* store src sample weight */ |
| 311 | |
| 312 | total_weight += weight; /* total weight of all contributors */ |
| 313 | |
| 314 | if (weight > max_w) |
| 315 | { |
| 316 | max_w = weight; |
| 317 | max_k = k; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | #if RESAMPLER_DEBUG |
| 322 | printf("\n\n" ); |
| 323 | #endif |
| 324 | |
| 325 | //assert(Pcontrib[i].n); |
| 326 | //assert(max_k != -1); |
| 327 | |
| 328 | if ((max_k == -1) || (Pcontrib[i].n == 0)) |
| 329 | { |
| 330 | free(Pcpool); |
| 331 | free(Pcontrib); |
| 332 | free(Pcontrib_bounds); |
| 333 | return NULL; |
| 334 | } |
| 335 | |
| 336 | if (total_weight != 1.0f) |
| 337 | Pcontrib[i].p[max_k].weight += 1.0f - total_weight; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | #if RESAMPLER_DEBUG |
| 342 | printf("*******\n" ); |
| 343 | #endif |
| 344 | |
| 345 | free(Pcontrib_bounds); |
| 346 | |
| 347 | return Pcontrib; |
| 348 | } |
| 349 | |
| 350 | void Resampler::resample_x(Sample * Pdst, const Sample * Psrc) |
| 351 | { |
| 352 | assert(Pdst); |
| 353 | assert(Psrc); |
| 354 | |
| 355 | int i, j; |
| 356 | Sample total; |
| 357 | Contrib_List* Pclist = m_Pclist_x; |
| 358 | Contrib* p; |
| 359 | |
| 360 | for (i = m_resample_dst_x; i > 0; i--, Pclist++) |
| 361 | { |
| 362 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 363 | total_ops += Pclist->n; |
| 364 | #endif |
| 365 | |
| 366 | for (j = Pclist->n, p = Pclist->p, total = 0; j > 0; j--, p++) |
| 367 | total += Psrc[p->pixel] * p->weight; |
| 368 | |
| 369 | *Pdst++ = total; |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | void Resampler::scale_y_mov(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x) |
| 374 | { |
| 375 | int i; |
| 376 | |
| 377 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 378 | total_ops += dst_x; |
| 379 | #endif |
| 380 | |
| 381 | // Not += because temp buf wasn't cleared. |
| 382 | for (i = dst_x; i > 0; i--) |
| 383 | * Ptmp++ = *Psrc++ * weight; |
| 384 | } |
| 385 | |
| 386 | void Resampler::scale_y_add(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x) |
| 387 | { |
| 388 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 389 | total_ops += dst_x; |
| 390 | #endif |
| 391 | |
| 392 | for (int i = dst_x; i > 0; i--) |
| 393 | (*Ptmp++) += *Psrc++ * weight; |
| 394 | } |
| 395 | |
| 396 | void Resampler::clamp(Sample * Pdst, int n) |
| 397 | { |
| 398 | while (n > 0) |
| 399 | { |
| 400 | Sample x = *Pdst; |
| 401 | *Pdst++ = clamp_sample(x); |
| 402 | n--; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | void Resampler::resample_y(Sample * Pdst) |
| 407 | { |
| 408 | int i, j; |
| 409 | Sample* Psrc; |
| 410 | Contrib_List* Pclist = &m_Pclist_y[m_cur_dst_y]; |
| 411 | |
| 412 | Sample* Ptmp = m_delay_x_resample ? m_Ptmp_buf : Pdst; |
| 413 | assert(Ptmp); |
| 414 | |
| 415 | /* Process each contributor. */ |
| 416 | |
| 417 | for (i = 0; i < Pclist->n; i++) |
| 418 | { |
| 419 | // locate the contributor's location in the scan buffer -- the contributor must always be found! |
| 420 | for (j = 0; j < MAX_SCAN_BUF_SIZE; j++) |
| 421 | if (m_Pscan_buf->scan_buf_y[j] == Pclist->p[i].pixel) |
| 422 | break; |
| 423 | |
| 424 | assert(j < MAX_SCAN_BUF_SIZE); |
| 425 | |
| 426 | Psrc = m_Pscan_buf->scan_buf_l[j]; |
| 427 | |
| 428 | if (!i) |
| 429 | scale_y_mov(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x); |
| 430 | else |
| 431 | scale_y_add(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x); |
| 432 | |
| 433 | /* If this source line doesn't contribute to any |
| 434 | * more destination lines then mark the scanline buffer slot |
| 435 | * which holds this source line as free. |
| 436 | * (The max. number of slots used depends on the Y |
| 437 | * axis sampling factor and the scaled filter width.) |
| 438 | */ |
| 439 | |
| 440 | if (--m_Psrc_y_count[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] == 0) |
| 441 | { |
| 442 | m_Psrc_y_flag[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] = false; |
| 443 | m_Pscan_buf->scan_buf_y[j] = -1; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | /* Now generate the destination line */ |
| 448 | |
| 449 | if (m_delay_x_resample) // Was X resampling delayed until after Y resampling? |
| 450 | { |
| 451 | assert(Pdst != Ptmp); |
| 452 | resample_x(Pdst, Ptmp); |
| 453 | } |
| 454 | else |
| 455 | { |
| 456 | assert(Pdst == Ptmp); |
| 457 | } |
| 458 | |
| 459 | if (m_lo < m_hi) |
| 460 | clamp(Pdst, m_resample_dst_x); |
| 461 | } |
| 462 | |
| 463 | bool Resampler::put_line(const Sample * Psrc) |
| 464 | { |
| 465 | int i; |
| 466 | |
| 467 | if (m_cur_src_y >= m_resample_src_y) |
| 468 | return false; |
| 469 | |
| 470 | /* Does this source line contribute |
| 471 | * to any destination line? if not, |
| 472 | * exit now. |
| 473 | */ |
| 474 | |
| 475 | if (!m_Psrc_y_count[resampler_range_check(m_cur_src_y, m_resample_src_y)]) |
| 476 | { |
| 477 | m_cur_src_y++; |
| 478 | return true; |
| 479 | } |
| 480 | |
| 481 | /* Find an empty slot in the scanline buffer. (FIXME: Perf. is terrible here with extreme scaling ratios.) */ |
| 482 | |
| 483 | for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) |
| 484 | if (m_Pscan_buf->scan_buf_y[i] == -1) |
| 485 | break; |
| 486 | |
| 487 | /* If the buffer is full, exit with an error. */ |
| 488 | |
| 489 | if (i == MAX_SCAN_BUF_SIZE) |
| 490 | { |
| 491 | m_status = STATUS_SCAN_BUFFER_FULL; |
| 492 | return false; |
| 493 | } |
| 494 | |
| 495 | m_Psrc_y_flag[resampler_range_check(m_cur_src_y, m_resample_src_y)] = true; |
| 496 | m_Pscan_buf->scan_buf_y[i] = m_cur_src_y; |
| 497 | |
| 498 | /* Does this slot have any memory allocated to it? */ |
| 499 | |
| 500 | if (!m_Pscan_buf->scan_buf_l[i]) |
| 501 | { |
| 502 | if ((m_Pscan_buf->scan_buf_l[i] = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL) |
| 503 | { |
| 504 | m_status = STATUS_OUT_OF_MEMORY; |
| 505 | return false; |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | // Resampling on the X axis first? |
| 510 | if (m_delay_x_resample) |
| 511 | { |
| 512 | assert(m_intermediate_x == m_resample_src_x); |
| 513 | |
| 514 | // Y-X resampling order |
| 515 | memcpy(m_Pscan_buf->scan_buf_l[i], Psrc, m_intermediate_x * sizeof(Sample)); |
| 516 | } |
| 517 | else |
| 518 | { |
| 519 | assert(m_intermediate_x == m_resample_dst_x); |
| 520 | |
| 521 | // X-Y resampling order |
| 522 | resample_x(m_Pscan_buf->scan_buf_l[i], Psrc); |
| 523 | } |
| 524 | |
| 525 | m_cur_src_y++; |
| 526 | |
| 527 | return true; |
| 528 | } |
| 529 | |
| 530 | const Resampler::Sample* Resampler::get_line() |
| 531 | { |
| 532 | int i; |
| 533 | |
| 534 | /* If all the destination lines have been |
| 535 | * generated, then always return NULL. |
| 536 | */ |
| 537 | |
| 538 | if (m_cur_dst_y == m_resample_dst_y) |
| 539 | return NULL; |
| 540 | |
| 541 | /* Check to see if all the required |
| 542 | * contributors are present, if not, |
| 543 | * return NULL. |
| 544 | */ |
| 545 | |
| 546 | for (i = 0; i < m_Pclist_y[m_cur_dst_y].n; i++) |
| 547 | if (!m_Psrc_y_flag[resampler_range_check(m_Pclist_y[m_cur_dst_y].p[i].pixel, m_resample_src_y)]) |
| 548 | return NULL; |
| 549 | |
| 550 | resample_y(m_Pdst_buf); |
| 551 | |
| 552 | m_cur_dst_y++; |
| 553 | |
| 554 | return m_Pdst_buf; |
| 555 | } |
| 556 | |
| 557 | Resampler::~Resampler() |
| 558 | { |
| 559 | int i; |
| 560 | |
| 561 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 562 | printf("actual ops: %i\n" , total_ops); |
| 563 | #endif |
| 564 | |
| 565 | free(m_Pdst_buf); |
| 566 | m_Pdst_buf = NULL; |
| 567 | |
| 568 | if (m_Ptmp_buf) |
| 569 | { |
| 570 | free(m_Ptmp_buf); |
| 571 | m_Ptmp_buf = NULL; |
| 572 | } |
| 573 | |
| 574 | /* Don't deallocate a contibutor list |
| 575 | * if the user passed us one of their own. |
| 576 | */ |
| 577 | |
| 578 | if ((m_Pclist_x) && (!m_clist_x_forced)) |
| 579 | { |
| 580 | free(m_Pclist_x->p); |
| 581 | free(m_Pclist_x); |
| 582 | m_Pclist_x = NULL; |
| 583 | } |
| 584 | |
| 585 | if ((m_Pclist_y) && (!m_clist_y_forced)) |
| 586 | { |
| 587 | free(m_Pclist_y->p); |
| 588 | free(m_Pclist_y); |
| 589 | m_Pclist_y = NULL; |
| 590 | } |
| 591 | |
| 592 | free(m_Psrc_y_count); |
| 593 | m_Psrc_y_count = NULL; |
| 594 | |
| 595 | free(m_Psrc_y_flag); |
| 596 | m_Psrc_y_flag = NULL; |
| 597 | |
| 598 | if (m_Pscan_buf) |
| 599 | { |
| 600 | for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) |
| 601 | free(m_Pscan_buf->scan_buf_l[i]); |
| 602 | |
| 603 | free(m_Pscan_buf); |
| 604 | m_Pscan_buf = NULL; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | void Resampler::restart() |
| 609 | { |
| 610 | if (STATUS_OKAY != m_status) |
| 611 | return; |
| 612 | |
| 613 | m_cur_src_y = m_cur_dst_y = 0; |
| 614 | |
| 615 | int i, j; |
| 616 | for (i = 0; i < m_resample_src_y; i++) |
| 617 | { |
| 618 | m_Psrc_y_count[i] = 0; |
| 619 | m_Psrc_y_flag[i] = false; |
| 620 | } |
| 621 | |
| 622 | for (i = 0; i < m_resample_dst_y; i++) |
| 623 | { |
| 624 | for (j = 0; j < m_Pclist_y[i].n; j++) |
| 625 | m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++; |
| 626 | } |
| 627 | |
| 628 | for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) |
| 629 | { |
| 630 | m_Pscan_buf->scan_buf_y[i] = -1; |
| 631 | |
| 632 | free(m_Pscan_buf->scan_buf_l[i]); |
| 633 | m_Pscan_buf->scan_buf_l[i] = NULL; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | Resampler::Resampler(int src_x, int src_y, |
| 638 | int dst_x, int dst_y, |
| 639 | Boundary_Op boundary_op, |
| 640 | Resample_Real sample_low, Resample_Real sample_high, |
| 641 | const char* Pfilter_name, |
| 642 | Contrib_List * Pclist_x, |
| 643 | Contrib_List * Pclist_y, |
| 644 | Resample_Real filter_x_scale, |
| 645 | Resample_Real filter_y_scale, |
| 646 | Resample_Real src_x_ofs, |
| 647 | Resample_Real src_y_ofs) |
| 648 | { |
| 649 | int i, j; |
| 650 | Resample_Real support, (*func)(Resample_Real); |
| 651 | |
| 652 | assert(src_x > 0); |
| 653 | assert(src_y > 0); |
| 654 | assert(dst_x > 0); |
| 655 | assert(dst_y > 0); |
| 656 | |
| 657 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 658 | total_ops = 0; |
| 659 | #endif |
| 660 | |
| 661 | m_lo = sample_low; |
| 662 | m_hi = sample_high; |
| 663 | |
| 664 | m_delay_x_resample = false; |
| 665 | m_intermediate_x = 0; |
| 666 | m_Pdst_buf = NULL; |
| 667 | m_Ptmp_buf = NULL; |
| 668 | m_clist_x_forced = false; |
| 669 | m_Pclist_x = NULL; |
| 670 | m_clist_y_forced = false; |
| 671 | m_Pclist_y = NULL; |
| 672 | m_Psrc_y_count = NULL; |
| 673 | m_Psrc_y_flag = NULL; |
| 674 | m_Pscan_buf = NULL; |
| 675 | m_status = STATUS_OKAY; |
| 676 | |
| 677 | m_resample_src_x = src_x; |
| 678 | m_resample_src_y = src_y; |
| 679 | m_resample_dst_x = dst_x; |
| 680 | m_resample_dst_y = dst_y; |
| 681 | |
| 682 | m_boundary_op = boundary_op; |
| 683 | |
| 684 | if ((m_Pdst_buf = (Sample*)malloc(m_resample_dst_x * sizeof(Sample))) == NULL) |
| 685 | { |
| 686 | m_status = STATUS_OUT_OF_MEMORY; |
| 687 | return; |
| 688 | } |
| 689 | |
| 690 | // Find the specified filter. |
| 691 | |
| 692 | if (Pfilter_name == NULL) |
| 693 | Pfilter_name = BASISU_RESAMPLER_DEFAULT_FILTER; |
| 694 | |
| 695 | for (i = 0; i < g_num_resample_filters; i++) |
| 696 | if (strcmp(Pfilter_name, g_resample_filters[i].name) == 0) |
| 697 | break; |
| 698 | |
| 699 | if (i == g_num_resample_filters) |
| 700 | { |
| 701 | m_status = STATUS_BAD_FILTER_NAME; |
| 702 | return; |
| 703 | } |
| 704 | |
| 705 | func = g_resample_filters[i].func; |
| 706 | support = g_resample_filters[i].support; |
| 707 | |
| 708 | /* Create contributor lists, unless the user supplied custom lists. */ |
| 709 | |
| 710 | if (!Pclist_x) |
| 711 | { |
| 712 | m_Pclist_x = make_clist(m_resample_src_x, m_resample_dst_x, m_boundary_op, func, support, filter_x_scale, src_x_ofs); |
| 713 | if (!m_Pclist_x) |
| 714 | { |
| 715 | m_status = STATUS_OUT_OF_MEMORY; |
| 716 | return; |
| 717 | } |
| 718 | } |
| 719 | else |
| 720 | { |
| 721 | m_Pclist_x = Pclist_x; |
| 722 | m_clist_x_forced = true; |
| 723 | } |
| 724 | |
| 725 | if (!Pclist_y) |
| 726 | { |
| 727 | m_Pclist_y = make_clist(m_resample_src_y, m_resample_dst_y, m_boundary_op, func, support, filter_y_scale, src_y_ofs); |
| 728 | if (!m_Pclist_y) |
| 729 | { |
| 730 | m_status = STATUS_OUT_OF_MEMORY; |
| 731 | return; |
| 732 | } |
| 733 | } |
| 734 | else |
| 735 | { |
| 736 | m_Pclist_y = Pclist_y; |
| 737 | m_clist_y_forced = true; |
| 738 | } |
| 739 | |
| 740 | if ((m_Psrc_y_count = (int*)calloc(m_resample_src_y, sizeof(int))) == NULL) |
| 741 | { |
| 742 | m_status = STATUS_OUT_OF_MEMORY; |
| 743 | return; |
| 744 | } |
| 745 | |
| 746 | if ((m_Psrc_y_flag = (unsigned char*)calloc(m_resample_src_y, sizeof(unsigned char))) == NULL) |
| 747 | { |
| 748 | m_status = STATUS_OUT_OF_MEMORY; |
| 749 | return; |
| 750 | } |
| 751 | |
| 752 | // Count how many times each source line contributes to a destination line. |
| 753 | |
| 754 | for (i = 0; i < m_resample_dst_y; i++) |
| 755 | for (j = 0; j < m_Pclist_y[i].n; j++) |
| 756 | m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++; |
| 757 | |
| 758 | if ((m_Pscan_buf = (Scan_Buf*)malloc(sizeof(Scan_Buf))) == NULL) |
| 759 | { |
| 760 | m_status = STATUS_OUT_OF_MEMORY; |
| 761 | return; |
| 762 | } |
| 763 | |
| 764 | for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) |
| 765 | { |
| 766 | m_Pscan_buf->scan_buf_y[i] = -1; |
| 767 | m_Pscan_buf->scan_buf_l[i] = NULL; |
| 768 | } |
| 769 | |
| 770 | m_cur_src_y = m_cur_dst_y = 0; |
| 771 | { |
| 772 | // Determine which axis to resample first by comparing the number of multiplies required |
| 773 | // for each possibility. |
| 774 | int x_ops = count_ops(m_Pclist_x, m_resample_dst_x); |
| 775 | int y_ops = count_ops(m_Pclist_y, m_resample_dst_y); |
| 776 | |
| 777 | // Hack 10/2000: Weight Y axis ops a little more than X axis ops. |
| 778 | // (Y axis ops use more cache resources.) |
| 779 | int xy_ops = x_ops * m_resample_src_y + |
| 780 | (4 * y_ops * m_resample_dst_x) / 3; |
| 781 | |
| 782 | int yx_ops = (4 * y_ops * m_resample_src_x) / 3 + |
| 783 | x_ops * m_resample_dst_y; |
| 784 | |
| 785 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 786 | printf("src: %i %i\n" , m_resample_src_x, m_resample_src_y); |
| 787 | printf("dst: %i %i\n" , m_resample_dst_x, m_resample_dst_y); |
| 788 | printf("x_ops: %i\n" , x_ops); |
| 789 | printf("y_ops: %i\n" , y_ops); |
| 790 | printf("xy_ops: %i\n" , xy_ops); |
| 791 | printf("yx_ops: %i\n" , yx_ops); |
| 792 | #endif |
| 793 | |
| 794 | // Now check which resample order is better. In case of a tie, choose the order |
| 795 | // which buffers the least amount of data. |
| 796 | if ((xy_ops > yx_ops) || |
| 797 | ((xy_ops == yx_ops) && (m_resample_src_x < m_resample_dst_x))) |
| 798 | { |
| 799 | m_delay_x_resample = true; |
| 800 | m_intermediate_x = m_resample_src_x; |
| 801 | } |
| 802 | else |
| 803 | { |
| 804 | m_delay_x_resample = false; |
| 805 | m_intermediate_x = m_resample_dst_x; |
| 806 | } |
| 807 | #if BASISU_RESAMPLER_DEBUG_OPS |
| 808 | printf("delaying: %i\n" , m_delay_x_resample); |
| 809 | #endif |
| 810 | } |
| 811 | |
| 812 | if (m_delay_x_resample) |
| 813 | { |
| 814 | if ((m_Ptmp_buf = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL) |
| 815 | { |
| 816 | m_status = STATUS_OUT_OF_MEMORY; |
| 817 | return; |
| 818 | } |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | void Resampler::get_clists(Contrib_List * *ptr_clist_x, Contrib_List * *ptr_clist_y) |
| 823 | { |
| 824 | if (ptr_clist_x) |
| 825 | * ptr_clist_x = m_Pclist_x; |
| 826 | |
| 827 | if (ptr_clist_y) |
| 828 | * ptr_clist_y = m_Pclist_y; |
| 829 | } |
| 830 | |
| 831 | int Resampler::get_filter_num() |
| 832 | { |
| 833 | return g_num_resample_filters; |
| 834 | } |
| 835 | |
| 836 | const char* Resampler::get_filter_name(int filter_num) |
| 837 | { |
| 838 | if ((filter_num < 0) || (filter_num >= g_num_resample_filters)) |
| 839 | return NULL; |
| 840 | else |
| 841 | return g_resample_filters[filter_num].name; |
| 842 | } |
| 843 | |
| 844 | } // namespace basisu |
| 845 | |