| 1 | // jpgd.cpp - C++ class for JPEG decompression. Written by Richard Geldreich <richgel99@gmail.com> between 1994-2020. |
| 2 | // Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2. |
| 3 | // Supports box and linear chroma upsampling. |
| 4 | // |
| 5 | // Released under two licenses. You are free to choose which license you want: |
| 6 | // License 1: |
| 7 | // Public Domain |
| 8 | // |
| 9 | // License 2: |
| 10 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 11 | // you may not use this file except in compliance with the License. |
| 12 | // You may obtain a copy of the License at |
| 13 | // |
| 14 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 15 | // |
| 16 | // Unless required by applicable law or agreed to in writing, software |
| 17 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 18 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 19 | // See the License for the specific language governing permissions and |
| 20 | // limitations under the License. |
| 21 | // |
| 22 | // Alex Evans: Linear memory allocator (taken from jpge.h). |
| 23 | // v1.04, May. 19, 2012: Code tweaks to fix VS2008 static code analysis warnings |
| 24 | // v2.00, March 20, 2020: Fuzzed with zzuf and afl. Fixed several issues, converted most assert()'s to run-time checks. Added chroma upsampling. Removed freq. domain upsampling. gcc/clang warnings. |
| 25 | // |
| 26 | |
| 27 | #include "jpgd.h" |
| 28 | #include <string.h> |
| 29 | #include <algorithm> |
| 30 | #include <assert.h> |
| 31 | |
| 32 | #ifdef _MSC_VER |
| 33 | #pragma warning (disable : 4611) // warning C4611: interaction between '_setjmp' and C++ object destruction is non-portable |
| 34 | #endif |
| 35 | |
| 36 | #define JPGD_TRUE (1) |
| 37 | #define JPGD_FALSE (0) |
| 38 | |
| 39 | #define JPGD_MAX(a,b) (((a)>(b)) ? (a) : (b)) |
| 40 | #define JPGD_MIN(a,b) (((a)<(b)) ? (a) : (b)) |
| 41 | |
| 42 | namespace jpgd { |
| 43 | |
| 44 | static inline void* jpgd_malloc(size_t nSize) { return malloc(nSize); } |
| 45 | static inline void jpgd_free(void* p) { free(p); } |
| 46 | |
| 47 | // DCT coefficients are stored in this sequence. |
| 48 | static int g_ZAG[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; |
| 49 | |
| 50 | enum JPEG_MARKER |
| 51 | { |
| 52 | M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8, |
| 53 | M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC, |
| 54 | M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7, |
| 55 | M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF, |
| 56 | M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0 |
| 57 | }; |
| 58 | |
| 59 | enum JPEG_SUBSAMPLING { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 }; |
| 60 | |
| 61 | #define CONST_BITS 13 |
| 62 | #define PASS1_BITS 2 |
| 63 | #define SCALEDONE ((int32)1) |
| 64 | |
| 65 | #define FIX_0_298631336 ((int32)2446) /* FIX(0.298631336) */ |
| 66 | #define FIX_0_390180644 ((int32)3196) /* FIX(0.390180644) */ |
| 67 | #define FIX_0_541196100 ((int32)4433) /* FIX(0.541196100) */ |
| 68 | #define FIX_0_765366865 ((int32)6270) /* FIX(0.765366865) */ |
| 69 | #define FIX_0_899976223 ((int32)7373) /* FIX(0.899976223) */ |
| 70 | #define FIX_1_175875602 ((int32)9633) /* FIX(1.175875602) */ |
| 71 | #define FIX_1_501321110 ((int32)12299) /* FIX(1.501321110) */ |
| 72 | #define FIX_1_847759065 ((int32)15137) /* FIX(1.847759065) */ |
| 73 | #define FIX_1_961570560 ((int32)16069) /* FIX(1.961570560) */ |
| 74 | #define FIX_2_053119869 ((int32)16819) /* FIX(2.053119869) */ |
| 75 | #define FIX_2_562915447 ((int32)20995) /* FIX(2.562915447) */ |
| 76 | #define FIX_3_072711026 ((int32)25172) /* FIX(3.072711026) */ |
| 77 | |
| 78 | #define DESCALE(x,n) (((x) + (SCALEDONE << ((n)-1))) >> (n)) |
| 79 | #define DESCALE_ZEROSHIFT(x,n) (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n)) |
| 80 | |
| 81 | #define MULTIPLY(var, cnst) ((var) * (cnst)) |
| 82 | |
| 83 | #define CLAMP(i) ((static_cast<uint>(i) > 255) ? (((~i) >> 31) & 0xFF) : (i)) |
| 84 | |
| 85 | static inline int left_shifti(int val, uint32_t bits) |
| 86 | { |
| 87 | return static_cast<int>(static_cast<uint32_t>(val) << bits); |
| 88 | } |
| 89 | |
| 90 | // Compiler creates a fast path 1D IDCT for X non-zero columns |
| 91 | template <int NONZERO_COLS> |
| 92 | struct Row |
| 93 | { |
| 94 | static void idct(int* pTemp, const jpgd_block_t* pSrc) |
| 95 | { |
| 96 | // ACCESS_COL() will be optimized at compile time to either an array access, or 0. Good compilers will then optimize out muls against 0. |
| 97 | #define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0) |
| 98 | |
| 99 | const int z2 = ACCESS_COL(2), z3 = ACCESS_COL(6); |
| 100 | |
| 101 | const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
| 102 | const int tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); |
| 103 | const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); |
| 104 | |
| 105 | const int tmp0 = left_shifti(ACCESS_COL(0) + ACCESS_COL(4), CONST_BITS); |
| 106 | const int tmp1 = left_shifti(ACCESS_COL(0) - ACCESS_COL(4), CONST_BITS); |
| 107 | |
| 108 | const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; |
| 109 | |
| 110 | const int atmp0 = ACCESS_COL(7), atmp1 = ACCESS_COL(5), atmp2 = ACCESS_COL(3), atmp3 = ACCESS_COL(1); |
| 111 | |
| 112 | const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; |
| 113 | const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); |
| 114 | |
| 115 | const int az1 = MULTIPLY(bz1, -FIX_0_899976223); |
| 116 | const int az2 = MULTIPLY(bz2, -FIX_2_562915447); |
| 117 | const int az3 = MULTIPLY(bz3, -FIX_1_961570560) + bz5; |
| 118 | const int az4 = MULTIPLY(bz4, -FIX_0_390180644) + bz5; |
| 119 | |
| 120 | const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; |
| 121 | const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; |
| 122 | const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; |
| 123 | const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; |
| 124 | |
| 125 | pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS - PASS1_BITS); |
| 126 | pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS - PASS1_BITS); |
| 127 | pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS - PASS1_BITS); |
| 128 | pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS - PASS1_BITS); |
| 129 | pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS - PASS1_BITS); |
| 130 | pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS - PASS1_BITS); |
| 131 | pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS - PASS1_BITS); |
| 132 | pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS - PASS1_BITS); |
| 133 | } |
| 134 | }; |
| 135 | |
| 136 | template <> |
| 137 | struct Row<0> |
| 138 | { |
| 139 | static void idct(int* pTemp, const jpgd_block_t* pSrc) |
| 140 | { |
| 141 | (void)pTemp; |
| 142 | (void)pSrc; |
| 143 | } |
| 144 | }; |
| 145 | |
| 146 | template <> |
| 147 | struct Row<1> |
| 148 | { |
| 149 | static void idct(int* pTemp, const jpgd_block_t* pSrc) |
| 150 | { |
| 151 | const int dcval = left_shifti(pSrc[0], PASS1_BITS); |
| 152 | |
| 153 | pTemp[0] = dcval; |
| 154 | pTemp[1] = dcval; |
| 155 | pTemp[2] = dcval; |
| 156 | pTemp[3] = dcval; |
| 157 | pTemp[4] = dcval; |
| 158 | pTemp[5] = dcval; |
| 159 | pTemp[6] = dcval; |
| 160 | pTemp[7] = dcval; |
| 161 | } |
| 162 | }; |
| 163 | |
| 164 | // Compiler creates a fast path 1D IDCT for X non-zero rows |
| 165 | template <int NONZERO_ROWS> |
| 166 | struct Col |
| 167 | { |
| 168 | static void idct(uint8* pDst_ptr, const int* pTemp) |
| 169 | { |
| 170 | // ACCESS_ROW() will be optimized at compile time to either an array access, or 0. |
| 171 | #define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0) |
| 172 | |
| 173 | const int z2 = ACCESS_ROW(2); |
| 174 | const int z3 = ACCESS_ROW(6); |
| 175 | |
| 176 | const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
| 177 | const int tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); |
| 178 | const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); |
| 179 | |
| 180 | const int tmp0 = left_shifti(ACCESS_ROW(0) + ACCESS_ROW(4), CONST_BITS); |
| 181 | const int tmp1 = left_shifti(ACCESS_ROW(0) - ACCESS_ROW(4), CONST_BITS); |
| 182 | |
| 183 | const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; |
| 184 | |
| 185 | const int atmp0 = ACCESS_ROW(7), atmp1 = ACCESS_ROW(5), atmp2 = ACCESS_ROW(3), atmp3 = ACCESS_ROW(1); |
| 186 | |
| 187 | const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; |
| 188 | const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); |
| 189 | |
| 190 | const int az1 = MULTIPLY(bz1, -FIX_0_899976223); |
| 191 | const int az2 = MULTIPLY(bz2, -FIX_2_562915447); |
| 192 | const int az3 = MULTIPLY(bz3, -FIX_1_961570560) + bz5; |
| 193 | const int az4 = MULTIPLY(bz4, -FIX_0_390180644) + bz5; |
| 194 | |
| 195 | const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; |
| 196 | const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; |
| 197 | const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; |
| 198 | const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; |
| 199 | |
| 200 | int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS + PASS1_BITS + 3); |
| 201 | pDst_ptr[8 * 0] = (uint8)CLAMP(i); |
| 202 | |
| 203 | i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS + PASS1_BITS + 3); |
| 204 | pDst_ptr[8 * 7] = (uint8)CLAMP(i); |
| 205 | |
| 206 | i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS + PASS1_BITS + 3); |
| 207 | pDst_ptr[8 * 1] = (uint8)CLAMP(i); |
| 208 | |
| 209 | i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS + PASS1_BITS + 3); |
| 210 | pDst_ptr[8 * 6] = (uint8)CLAMP(i); |
| 211 | |
| 212 | i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS + PASS1_BITS + 3); |
| 213 | pDst_ptr[8 * 2] = (uint8)CLAMP(i); |
| 214 | |
| 215 | i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS + PASS1_BITS + 3); |
| 216 | pDst_ptr[8 * 5] = (uint8)CLAMP(i); |
| 217 | |
| 218 | i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS + PASS1_BITS + 3); |
| 219 | pDst_ptr[8 * 3] = (uint8)CLAMP(i); |
| 220 | |
| 221 | i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS + PASS1_BITS + 3); |
| 222 | pDst_ptr[8 * 4] = (uint8)CLAMP(i); |
| 223 | } |
| 224 | }; |
| 225 | |
| 226 | template <> |
| 227 | struct Col<1> |
| 228 | { |
| 229 | static void idct(uint8* pDst_ptr, const int* pTemp) |
| 230 | { |
| 231 | int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS + 3); |
| 232 | const uint8 dcval_clamped = (uint8)CLAMP(dcval); |
| 233 | pDst_ptr[0 * 8] = dcval_clamped; |
| 234 | pDst_ptr[1 * 8] = dcval_clamped; |
| 235 | pDst_ptr[2 * 8] = dcval_clamped; |
| 236 | pDst_ptr[3 * 8] = dcval_clamped; |
| 237 | pDst_ptr[4 * 8] = dcval_clamped; |
| 238 | pDst_ptr[5 * 8] = dcval_clamped; |
| 239 | pDst_ptr[6 * 8] = dcval_clamped; |
| 240 | pDst_ptr[7 * 8] = dcval_clamped; |
| 241 | } |
| 242 | }; |
| 243 | |
| 244 | static const uint8 s_idct_row_table[] = |
| 245 | { |
| 246 | 1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0, |
| 247 | 4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0, |
| 248 | 6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0, |
| 249 | 6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0, |
| 250 | 8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2, |
| 251 | 8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2, |
| 252 | 8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4, |
| 253 | 8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8, |
| 254 | }; |
| 255 | |
| 256 | static const uint8 s_idct_col_table[] = |
| 257 | { |
| 258 | 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 259 | 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 |
| 260 | }; |
| 261 | |
| 262 | // Scalar "fast pathing" IDCT. |
| 263 | static void idct(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr, int block_max_zag) |
| 264 | { |
| 265 | assert(block_max_zag >= 1); |
| 266 | assert(block_max_zag <= 64); |
| 267 | |
| 268 | if (block_max_zag <= 1) |
| 269 | { |
| 270 | int k = ((pSrc_ptr[0] + 4) >> 3) + 128; |
| 271 | k = CLAMP(k); |
| 272 | k = k | (k << 8); |
| 273 | k = k | (k << 16); |
| 274 | |
| 275 | for (int i = 8; i > 0; i--) |
| 276 | { |
| 277 | *(int*)&pDst_ptr[0] = k; |
| 278 | *(int*)&pDst_ptr[4] = k; |
| 279 | pDst_ptr += 8; |
| 280 | } |
| 281 | return; |
| 282 | } |
| 283 | |
| 284 | int temp[64]; |
| 285 | |
| 286 | const jpgd_block_t* pSrc = pSrc_ptr; |
| 287 | int* pTemp = temp; |
| 288 | |
| 289 | const uint8* pRow_tab = &s_idct_row_table[(block_max_zag - 1) * 8]; |
| 290 | int i; |
| 291 | for (i = 8; i > 0; i--, pRow_tab++) |
| 292 | { |
| 293 | switch (*pRow_tab) |
| 294 | { |
| 295 | case 0: Row<0>::idct(pTemp, pSrc); break; |
| 296 | case 1: Row<1>::idct(pTemp, pSrc); break; |
| 297 | case 2: Row<2>::idct(pTemp, pSrc); break; |
| 298 | case 3: Row<3>::idct(pTemp, pSrc); break; |
| 299 | case 4: Row<4>::idct(pTemp, pSrc); break; |
| 300 | case 5: Row<5>::idct(pTemp, pSrc); break; |
| 301 | case 6: Row<6>::idct(pTemp, pSrc); break; |
| 302 | case 7: Row<7>::idct(pTemp, pSrc); break; |
| 303 | case 8: Row<8>::idct(pTemp, pSrc); break; |
| 304 | } |
| 305 | |
| 306 | pSrc += 8; |
| 307 | pTemp += 8; |
| 308 | } |
| 309 | |
| 310 | pTemp = temp; |
| 311 | |
| 312 | const int nonzero_rows = s_idct_col_table[block_max_zag - 1]; |
| 313 | for (i = 8; i > 0; i--) |
| 314 | { |
| 315 | switch (nonzero_rows) |
| 316 | { |
| 317 | case 1: Col<1>::idct(pDst_ptr, pTemp); break; |
| 318 | case 2: Col<2>::idct(pDst_ptr, pTemp); break; |
| 319 | case 3: Col<3>::idct(pDst_ptr, pTemp); break; |
| 320 | case 4: Col<4>::idct(pDst_ptr, pTemp); break; |
| 321 | case 5: Col<5>::idct(pDst_ptr, pTemp); break; |
| 322 | case 6: Col<6>::idct(pDst_ptr, pTemp); break; |
| 323 | case 7: Col<7>::idct(pDst_ptr, pTemp); break; |
| 324 | case 8: Col<8>::idct(pDst_ptr, pTemp); break; |
| 325 | } |
| 326 | |
| 327 | pTemp++; |
| 328 | pDst_ptr++; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | // Retrieve one character from the input stream. |
| 333 | inline uint jpeg_decoder::get_char() |
| 334 | { |
| 335 | // Any bytes remaining in buffer? |
| 336 | if (!m_in_buf_left) |
| 337 | { |
| 338 | // Try to get more bytes. |
| 339 | prep_in_buffer(); |
| 340 | // Still nothing to get? |
| 341 | if (!m_in_buf_left) |
| 342 | { |
| 343 | // Pad the end of the stream with 0xFF 0xD9 (EOI marker) |
| 344 | int t = m_tem_flag; |
| 345 | m_tem_flag ^= 1; |
| 346 | if (t) |
| 347 | return 0xD9; |
| 348 | else |
| 349 | return 0xFF; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | uint c = *m_pIn_buf_ofs++; |
| 354 | m_in_buf_left--; |
| 355 | |
| 356 | return c; |
| 357 | } |
| 358 | |
| 359 | // Same as previous method, except can indicate if the character is a pad character or not. |
| 360 | inline uint jpeg_decoder::get_char(bool* pPadding_flag) |
| 361 | { |
| 362 | if (!m_in_buf_left) |
| 363 | { |
| 364 | prep_in_buffer(); |
| 365 | if (!m_in_buf_left) |
| 366 | { |
| 367 | *pPadding_flag = true; |
| 368 | int t = m_tem_flag; |
| 369 | m_tem_flag ^= 1; |
| 370 | if (t) |
| 371 | return 0xD9; |
| 372 | else |
| 373 | return 0xFF; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | *pPadding_flag = false; |
| 378 | |
| 379 | uint c = *m_pIn_buf_ofs++; |
| 380 | m_in_buf_left--; |
| 381 | |
| 382 | return c; |
| 383 | } |
| 384 | |
| 385 | // Inserts a previously retrieved character back into the input buffer. |
| 386 | inline void jpeg_decoder::stuff_char(uint8 q) |
| 387 | { |
| 388 | // This could write before the input buffer, but we've placed another array there. |
| 389 | *(--m_pIn_buf_ofs) = q; |
| 390 | m_in_buf_left++; |
| 391 | } |
| 392 | |
| 393 | // Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered. |
| 394 | inline uint8 jpeg_decoder::get_octet() |
| 395 | { |
| 396 | bool padding_flag; |
| 397 | int c = get_char(&padding_flag); |
| 398 | |
| 399 | if (c == 0xFF) |
| 400 | { |
| 401 | if (padding_flag) |
| 402 | return 0xFF; |
| 403 | |
| 404 | c = get_char(&padding_flag); |
| 405 | if (padding_flag) |
| 406 | { |
| 407 | stuff_char(0xFF); |
| 408 | return 0xFF; |
| 409 | } |
| 410 | |
| 411 | if (c == 0x00) |
| 412 | return 0xFF; |
| 413 | else |
| 414 | { |
| 415 | stuff_char(static_cast<uint8>(c)); |
| 416 | stuff_char(0xFF); |
| 417 | return 0xFF; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | return static_cast<uint8>(c); |
| 422 | } |
| 423 | |
| 424 | // Retrieves a variable number of bits from the input stream. Does not recognize markers. |
| 425 | inline uint jpeg_decoder::get_bits(int num_bits) |
| 426 | { |
| 427 | if (!num_bits) |
| 428 | return 0; |
| 429 | |
| 430 | uint i = m_bit_buf >> (32 - num_bits); |
| 431 | |
| 432 | if ((m_bits_left -= num_bits) <= 0) |
| 433 | { |
| 434 | m_bit_buf <<= (num_bits += m_bits_left); |
| 435 | |
| 436 | uint c1 = get_char(); |
| 437 | uint c2 = get_char(); |
| 438 | m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2; |
| 439 | |
| 440 | m_bit_buf <<= -m_bits_left; |
| 441 | |
| 442 | m_bits_left += 16; |
| 443 | |
| 444 | assert(m_bits_left >= 0); |
| 445 | } |
| 446 | else |
| 447 | m_bit_buf <<= num_bits; |
| 448 | |
| 449 | return i; |
| 450 | } |
| 451 | |
| 452 | // Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered. |
| 453 | inline uint jpeg_decoder::get_bits_no_markers(int num_bits) |
| 454 | { |
| 455 | if (!num_bits) |
| 456 | return 0; |
| 457 | |
| 458 | assert(num_bits <= 16); |
| 459 | |
| 460 | uint i = m_bit_buf >> (32 - num_bits); |
| 461 | |
| 462 | if ((m_bits_left -= num_bits) <= 0) |
| 463 | { |
| 464 | m_bit_buf <<= (num_bits += m_bits_left); |
| 465 | |
| 466 | if ((m_in_buf_left < 2) || (m_pIn_buf_ofs[0] == 0xFF) || (m_pIn_buf_ofs[1] == 0xFF)) |
| 467 | { |
| 468 | uint c1 = get_octet(); |
| 469 | uint c2 = get_octet(); |
| 470 | m_bit_buf |= (c1 << 8) | c2; |
| 471 | } |
| 472 | else |
| 473 | { |
| 474 | m_bit_buf |= ((uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1]; |
| 475 | m_in_buf_left -= 2; |
| 476 | m_pIn_buf_ofs += 2; |
| 477 | } |
| 478 | |
| 479 | m_bit_buf <<= -m_bits_left; |
| 480 | |
| 481 | m_bits_left += 16; |
| 482 | |
| 483 | assert(m_bits_left >= 0); |
| 484 | } |
| 485 | else |
| 486 | m_bit_buf <<= num_bits; |
| 487 | |
| 488 | return i; |
| 489 | } |
| 490 | |
| 491 | // Decodes a Huffman encoded symbol. |
| 492 | inline int jpeg_decoder::huff_decode(huff_tables* pH) |
| 493 | { |
| 494 | if (!pH) |
| 495 | stop_decoding(JPGD_DECODE_ERROR); |
| 496 | |
| 497 | int symbol; |
| 498 | // Check first 8-bits: do we have a complete symbol? |
| 499 | if ((symbol = pH->look_up[m_bit_buf >> 24]) < 0) |
| 500 | { |
| 501 | // Decode more bits, use a tree traversal to find symbol. |
| 502 | int ofs = 23; |
| 503 | do |
| 504 | { |
| 505 | unsigned int idx = -(int)(symbol + ((m_bit_buf >> ofs) & 1)); |
| 506 | |
| 507 | // This should never happen, but to be safe I'm turning these asserts into a run-time check. |
| 508 | if ((idx >= JPGD_HUFF_TREE_MAX_LENGTH) || (ofs < 0)) |
| 509 | stop_decoding(JPGD_DECODE_ERROR); |
| 510 | |
| 511 | symbol = pH->tree[idx]; |
| 512 | ofs--; |
| 513 | } while (symbol < 0); |
| 514 | |
| 515 | get_bits_no_markers(8 + (23 - ofs)); |
| 516 | } |
| 517 | else |
| 518 | { |
| 519 | assert(symbol < JPGD_HUFF_CODE_SIZE_MAX_LENGTH); |
| 520 | get_bits_no_markers(pH->code_size[symbol]); |
| 521 | } |
| 522 | |
| 523 | return symbol; |
| 524 | } |
| 525 | |
| 526 | // Decodes a Huffman encoded symbol. |
| 527 | inline int jpeg_decoder::huff_decode(huff_tables* pH, int& ) |
| 528 | { |
| 529 | int symbol; |
| 530 | |
| 531 | if (!pH) |
| 532 | stop_decoding(JPGD_DECODE_ERROR); |
| 533 | |
| 534 | // Check first 8-bits: do we have a complete symbol? |
| 535 | if ((symbol = pH->look_up2[m_bit_buf >> 24]) < 0) |
| 536 | { |
| 537 | // Use a tree traversal to find symbol. |
| 538 | int ofs = 23; |
| 539 | do |
| 540 | { |
| 541 | unsigned int idx = -(int)(symbol + ((m_bit_buf >> ofs) & 1)); |
| 542 | |
| 543 | // This should never happen, but to be safe I'm turning these asserts into a run-time check. |
| 544 | if ((idx >= JPGD_HUFF_TREE_MAX_LENGTH) || (ofs < 0)) |
| 545 | stop_decoding(JPGD_DECODE_ERROR); |
| 546 | |
| 547 | symbol = pH->tree[idx]; |
| 548 | ofs--; |
| 549 | } while (symbol < 0); |
| 550 | |
| 551 | get_bits_no_markers(8 + (23 - ofs)); |
| 552 | |
| 553 | extra_bits = get_bits_no_markers(symbol & 0xF); |
| 554 | } |
| 555 | else |
| 556 | { |
| 557 | if (symbol & 0x8000) |
| 558 | { |
| 559 | //get_bits_no_markers((symbol >> 8) & 31); |
| 560 | assert(((symbol >> 8) & 31) <= 15); |
| 561 | get_bits_no_markers((symbol >> 8) & 15); |
| 562 | extra_bits = symbol >> 16; |
| 563 | } |
| 564 | else |
| 565 | { |
| 566 | int code_size = (symbol >> 8) & 31; |
| 567 | int = symbol & 0xF; |
| 568 | int bits = code_size + num_extra_bits; |
| 569 | |
| 570 | if (bits <= 16) |
| 571 | extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1); |
| 572 | else |
| 573 | { |
| 574 | get_bits_no_markers(code_size); |
| 575 | extra_bits = get_bits_no_markers(num_extra_bits); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | symbol &= 0xFF; |
| 580 | } |
| 581 | |
| 582 | return symbol; |
| 583 | } |
| 584 | |
| 585 | // Tables and macro used to fully decode the DPCM differences. |
| 586 | static const int s_extend_test[16] = { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
| 587 | static const int s_extend_offset[16] = { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 }; |
| 588 | //static const int s_extend_mask[] = { 0, (1 << 0), (1 << 1), (1 << 2), (1 << 3), (1 << 4), (1 << 5), (1 << 6), (1 << 7), (1 << 8), (1 << 9), (1 << 10), (1 << 11), (1 << 12), (1 << 13), (1 << 14), (1 << 15), (1 << 16) }; |
| 589 | |
| 590 | #define JPGD_HUFF_EXTEND(x, s) (((x) < s_extend_test[s & 15]) ? ((x) + s_extend_offset[s & 15]) : (x)) |
| 591 | |
| 592 | // Unconditionally frees all allocated m_blocks. |
| 593 | void jpeg_decoder::free_all_blocks() |
| 594 | { |
| 595 | m_pStream = nullptr; |
| 596 | for (mem_block* b = m_pMem_blocks; b; ) |
| 597 | { |
| 598 | mem_block* n = b->m_pNext; |
| 599 | jpgd_free(b); |
| 600 | b = n; |
| 601 | } |
| 602 | m_pMem_blocks = nullptr; |
| 603 | } |
| 604 | |
| 605 | // This method handles all errors. It will never return. |
| 606 | // It could easily be changed to use C++ exceptions. |
| 607 | JPGD_NORETURN void jpeg_decoder::stop_decoding(jpgd_status status) |
| 608 | { |
| 609 | m_error_code = status; |
| 610 | free_all_blocks(); |
| 611 | longjmp(m_jmp_state, status); |
| 612 | } |
| 613 | |
| 614 | void* jpeg_decoder::alloc(size_t nSize, bool zero) |
| 615 | { |
| 616 | nSize = (JPGD_MAX(nSize, 1) + 3) & ~3; |
| 617 | char* rv = nullptr; |
| 618 | for (mem_block* b = m_pMem_blocks; b; b = b->m_pNext) |
| 619 | { |
| 620 | if ((b->m_used_count + nSize) <= b->m_size) |
| 621 | { |
| 622 | rv = b->m_data + b->m_used_count; |
| 623 | b->m_used_count += nSize; |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | if (!rv) |
| 628 | { |
| 629 | int capacity = JPGD_MAX(32768 - 256, ((int)nSize + 2047) & ~2047); |
| 630 | mem_block* b = (mem_block*)jpgd_malloc(sizeof(mem_block) + capacity); |
| 631 | if (!b) |
| 632 | { |
| 633 | stop_decoding(JPGD_NOTENOUGHMEM); |
| 634 | } |
| 635 | |
| 636 | b->m_pNext = m_pMem_blocks; |
| 637 | m_pMem_blocks = b; |
| 638 | b->m_used_count = nSize; |
| 639 | b->m_size = capacity; |
| 640 | rv = b->m_data; |
| 641 | } |
| 642 | if (zero) memset(rv, 0, nSize); |
| 643 | return rv; |
| 644 | } |
| 645 | |
| 646 | void jpeg_decoder::word_clear(void* p, uint16 c, uint n) |
| 647 | { |
| 648 | uint8* pD = (uint8*)p; |
| 649 | const uint8 l = c & 0xFF, h = (c >> 8) & 0xFF; |
| 650 | while (n) |
| 651 | { |
| 652 | pD[0] = l; |
| 653 | pD[1] = h; |
| 654 | pD += 2; |
| 655 | n--; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | // Refill the input buffer. |
| 660 | // This method will sit in a loop until (A) the buffer is full or (B) |
| 661 | // the stream's read() method reports and end of file condition. |
| 662 | void jpeg_decoder::prep_in_buffer() |
| 663 | { |
| 664 | m_in_buf_left = 0; |
| 665 | m_pIn_buf_ofs = m_in_buf; |
| 666 | |
| 667 | if (m_eof_flag) |
| 668 | return; |
| 669 | |
| 670 | do |
| 671 | { |
| 672 | int bytes_read = m_pStream->read(m_in_buf + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag); |
| 673 | if (bytes_read == -1) |
| 674 | stop_decoding(JPGD_STREAM_READ); |
| 675 | |
| 676 | m_in_buf_left += bytes_read; |
| 677 | } while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag)); |
| 678 | |
| 679 | m_total_bytes_read += m_in_buf_left; |
| 680 | |
| 681 | // Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid). |
| 682 | // (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.) |
| 683 | word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64); |
| 684 | } |
| 685 | |
| 686 | // Read a Huffman code table. |
| 687 | void jpeg_decoder::read_dht_marker() |
| 688 | { |
| 689 | int i, index, count; |
| 690 | uint8 huff_num[17]; |
| 691 | uint8 huff_val[256]; |
| 692 | |
| 693 | uint num_left = get_bits(16); |
| 694 | |
| 695 | if (num_left < 2) |
| 696 | stop_decoding(JPGD_BAD_DHT_MARKER); |
| 697 | |
| 698 | num_left -= 2; |
| 699 | |
| 700 | while (num_left) |
| 701 | { |
| 702 | index = get_bits(8); |
| 703 | |
| 704 | huff_num[0] = 0; |
| 705 | |
| 706 | count = 0; |
| 707 | |
| 708 | for (i = 1; i <= 16; i++) |
| 709 | { |
| 710 | huff_num[i] = static_cast<uint8>(get_bits(8)); |
| 711 | count += huff_num[i]; |
| 712 | } |
| 713 | |
| 714 | if (count > 255) |
| 715 | stop_decoding(JPGD_BAD_DHT_COUNTS); |
| 716 | |
| 717 | bool symbol_present[256]; |
| 718 | memset(symbol_present, 0, sizeof(symbol_present)); |
| 719 | |
| 720 | for (i = 0; i < count; i++) |
| 721 | { |
| 722 | const int s = get_bits(8); |
| 723 | |
| 724 | // Check for obviously bogus tables. |
| 725 | if (symbol_present[s]) |
| 726 | stop_decoding(JPGD_BAD_DHT_COUNTS); |
| 727 | |
| 728 | huff_val[i] = static_cast<uint8_t>(s); |
| 729 | symbol_present[s] = true; |
| 730 | } |
| 731 | |
| 732 | i = 1 + 16 + count; |
| 733 | |
| 734 | if (num_left < (uint)i) |
| 735 | stop_decoding(JPGD_BAD_DHT_MARKER); |
| 736 | |
| 737 | num_left -= i; |
| 738 | |
| 739 | if ((index & 0x10) > 0x10) |
| 740 | stop_decoding(JPGD_BAD_DHT_INDEX); |
| 741 | |
| 742 | index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1); |
| 743 | |
| 744 | if (index >= JPGD_MAX_HUFF_TABLES) |
| 745 | stop_decoding(JPGD_BAD_DHT_INDEX); |
| 746 | |
| 747 | if (!m_huff_num[index]) |
| 748 | m_huff_num[index] = (uint8*)alloc(17); |
| 749 | |
| 750 | if (!m_huff_val[index]) |
| 751 | m_huff_val[index] = (uint8*)alloc(256); |
| 752 | |
| 753 | m_huff_ac[index] = (index & 0x10) != 0; |
| 754 | memcpy(m_huff_num[index], huff_num, 17); |
| 755 | memcpy(m_huff_val[index], huff_val, 256); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | // Read a quantization table. |
| 760 | void jpeg_decoder::read_dqt_marker() |
| 761 | { |
| 762 | int n, i, prec; |
| 763 | uint num_left; |
| 764 | uint temp; |
| 765 | |
| 766 | num_left = get_bits(16); |
| 767 | |
| 768 | if (num_left < 2) |
| 769 | stop_decoding(JPGD_BAD_DQT_MARKER); |
| 770 | |
| 771 | num_left -= 2; |
| 772 | |
| 773 | while (num_left) |
| 774 | { |
| 775 | n = get_bits(8); |
| 776 | prec = n >> 4; |
| 777 | n &= 0x0F; |
| 778 | |
| 779 | if (n >= JPGD_MAX_QUANT_TABLES) |
| 780 | stop_decoding(JPGD_BAD_DQT_TABLE); |
| 781 | |
| 782 | if (!m_quant[n]) |
| 783 | m_quant[n] = (jpgd_quant_t*)alloc(64 * sizeof(jpgd_quant_t)); |
| 784 | |
| 785 | // read quantization entries, in zag order |
| 786 | for (i = 0; i < 64; i++) |
| 787 | { |
| 788 | temp = get_bits(8); |
| 789 | |
| 790 | if (prec) |
| 791 | temp = (temp << 8) + get_bits(8); |
| 792 | |
| 793 | m_quant[n][i] = static_cast<jpgd_quant_t>(temp); |
| 794 | } |
| 795 | |
| 796 | i = 64 + 1; |
| 797 | |
| 798 | if (prec) |
| 799 | i += 64; |
| 800 | |
| 801 | if (num_left < (uint)i) |
| 802 | stop_decoding(JPGD_BAD_DQT_LENGTH); |
| 803 | |
| 804 | num_left -= i; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | // Read the start of frame (SOF) marker. |
| 809 | void jpeg_decoder::read_sof_marker() |
| 810 | { |
| 811 | int i; |
| 812 | uint num_left; |
| 813 | |
| 814 | num_left = get_bits(16); |
| 815 | |
| 816 | /* precision: sorry, only 8-bit precision is supported */ |
| 817 | if (get_bits(8) != 8) |
| 818 | stop_decoding(JPGD_BAD_PRECISION); |
| 819 | |
| 820 | m_image_y_size = get_bits(16); |
| 821 | |
| 822 | if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT)) |
| 823 | stop_decoding(JPGD_BAD_HEIGHT); |
| 824 | |
| 825 | m_image_x_size = get_bits(16); |
| 826 | |
| 827 | if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH)) |
| 828 | stop_decoding(JPGD_BAD_WIDTH); |
| 829 | |
| 830 | m_comps_in_frame = get_bits(8); |
| 831 | |
| 832 | if (m_comps_in_frame > JPGD_MAX_COMPONENTS) |
| 833 | stop_decoding(JPGD_TOO_MANY_COMPONENTS); |
| 834 | |
| 835 | if (num_left != (uint)(m_comps_in_frame * 3 + 8)) |
| 836 | stop_decoding(JPGD_BAD_SOF_LENGTH); |
| 837 | |
| 838 | for (i = 0; i < m_comps_in_frame; i++) |
| 839 | { |
| 840 | m_comp_ident[i] = get_bits(8); |
| 841 | m_comp_h_samp[i] = get_bits(4); |
| 842 | m_comp_v_samp[i] = get_bits(4); |
| 843 | |
| 844 | if (!m_comp_h_samp[i] || !m_comp_v_samp[i] || (m_comp_h_samp[i] > 2) || (m_comp_v_samp[i] > 2)) |
| 845 | stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); |
| 846 | |
| 847 | m_comp_quant[i] = get_bits(8); |
| 848 | if (m_comp_quant[i] >= JPGD_MAX_QUANT_TABLES) |
| 849 | stop_decoding(JPGD_DECODE_ERROR); |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | // Used to skip unrecognized markers. |
| 854 | void jpeg_decoder::skip_variable_marker() |
| 855 | { |
| 856 | uint num_left; |
| 857 | |
| 858 | num_left = get_bits(16); |
| 859 | |
| 860 | if (num_left < 2) |
| 861 | stop_decoding(JPGD_BAD_VARIABLE_MARKER); |
| 862 | |
| 863 | num_left -= 2; |
| 864 | |
| 865 | while (num_left) |
| 866 | { |
| 867 | get_bits(8); |
| 868 | num_left--; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | // Read a define restart interval (DRI) marker. |
| 873 | void jpeg_decoder::read_dri_marker() |
| 874 | { |
| 875 | if (get_bits(16) != 4) |
| 876 | stop_decoding(JPGD_BAD_DRI_LENGTH); |
| 877 | |
| 878 | m_restart_interval = get_bits(16); |
| 879 | } |
| 880 | |
| 881 | // Read a start of scan (SOS) marker. |
| 882 | void jpeg_decoder::read_sos_marker() |
| 883 | { |
| 884 | uint num_left; |
| 885 | int i, ci, n, c, cc; |
| 886 | |
| 887 | num_left = get_bits(16); |
| 888 | |
| 889 | n = get_bits(8); |
| 890 | |
| 891 | m_comps_in_scan = n; |
| 892 | |
| 893 | num_left -= 3; |
| 894 | |
| 895 | if ((num_left != (uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN)) |
| 896 | stop_decoding(JPGD_BAD_SOS_LENGTH); |
| 897 | |
| 898 | for (i = 0; i < n; i++) |
| 899 | { |
| 900 | cc = get_bits(8); |
| 901 | c = get_bits(8); |
| 902 | num_left -= 2; |
| 903 | |
| 904 | for (ci = 0; ci < m_comps_in_frame; ci++) |
| 905 | if (cc == m_comp_ident[ci]) |
| 906 | break; |
| 907 | |
| 908 | if (ci >= m_comps_in_frame) |
| 909 | stop_decoding(JPGD_BAD_SOS_COMP_ID); |
| 910 | |
| 911 | if (ci >= JPGD_MAX_COMPONENTS) |
| 912 | stop_decoding(JPGD_DECODE_ERROR); |
| 913 | |
| 914 | m_comp_list[i] = ci; |
| 915 | |
| 916 | m_comp_dc_tab[ci] = (c >> 4) & 15; |
| 917 | m_comp_ac_tab[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1); |
| 918 | |
| 919 | if (m_comp_dc_tab[ci] >= JPGD_MAX_HUFF_TABLES) |
| 920 | stop_decoding(JPGD_DECODE_ERROR); |
| 921 | |
| 922 | if (m_comp_ac_tab[ci] >= JPGD_MAX_HUFF_TABLES) |
| 923 | stop_decoding(JPGD_DECODE_ERROR); |
| 924 | } |
| 925 | |
| 926 | m_spectral_start = get_bits(8); |
| 927 | m_spectral_end = get_bits(8); |
| 928 | m_successive_high = get_bits(4); |
| 929 | m_successive_low = get_bits(4); |
| 930 | |
| 931 | if (!m_progressive_flag) |
| 932 | { |
| 933 | m_spectral_start = 0; |
| 934 | m_spectral_end = 63; |
| 935 | } |
| 936 | |
| 937 | num_left -= 3; |
| 938 | |
| 939 | /* read past whatever is num_left */ |
| 940 | while (num_left) |
| 941 | { |
| 942 | get_bits(8); |
| 943 | num_left--; |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | // Finds the next marker. |
| 948 | int jpeg_decoder::next_marker() |
| 949 | { |
| 950 | uint c, bytes; |
| 951 | |
| 952 | bytes = 0; |
| 953 | |
| 954 | do |
| 955 | { |
| 956 | do |
| 957 | { |
| 958 | bytes++; |
| 959 | c = get_bits(8); |
| 960 | } while (c != 0xFF); |
| 961 | |
| 962 | do |
| 963 | { |
| 964 | c = get_bits(8); |
| 965 | } while (c == 0xFF); |
| 966 | |
| 967 | } while (c == 0); |
| 968 | |
| 969 | // If bytes > 0 here, there where extra bytes before the marker (not good). |
| 970 | |
| 971 | return c; |
| 972 | } |
| 973 | |
| 974 | // Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is |
| 975 | // encountered. |
| 976 | int jpeg_decoder::process_markers() |
| 977 | { |
| 978 | int c; |
| 979 | |
| 980 | for (; ; ) |
| 981 | { |
| 982 | c = next_marker(); |
| 983 | |
| 984 | switch (c) |
| 985 | { |
| 986 | case M_SOF0: |
| 987 | case M_SOF1: |
| 988 | case M_SOF2: |
| 989 | case M_SOF3: |
| 990 | case M_SOF5: |
| 991 | case M_SOF6: |
| 992 | case M_SOF7: |
| 993 | // case M_JPG: |
| 994 | case M_SOF9: |
| 995 | case M_SOF10: |
| 996 | case M_SOF11: |
| 997 | case M_SOF13: |
| 998 | case M_SOF14: |
| 999 | case M_SOF15: |
| 1000 | case M_SOI: |
| 1001 | case M_EOI: |
| 1002 | case M_SOS: |
| 1003 | { |
| 1004 | return c; |
| 1005 | } |
| 1006 | case M_DHT: |
| 1007 | { |
| 1008 | read_dht_marker(); |
| 1009 | break; |
| 1010 | } |
| 1011 | // No arithmitic support - dumb patents! |
| 1012 | case M_DAC: |
| 1013 | { |
| 1014 | stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); |
| 1015 | break; |
| 1016 | } |
| 1017 | case M_DQT: |
| 1018 | { |
| 1019 | read_dqt_marker(); |
| 1020 | break; |
| 1021 | } |
| 1022 | case M_DRI: |
| 1023 | { |
| 1024 | read_dri_marker(); |
| 1025 | break; |
| 1026 | } |
| 1027 | //case M_APP0: /* no need to read the JFIF marker */ |
| 1028 | case M_JPG: |
| 1029 | case M_RST0: /* no parameters */ |
| 1030 | case M_RST1: |
| 1031 | case M_RST2: |
| 1032 | case M_RST3: |
| 1033 | case M_RST4: |
| 1034 | case M_RST5: |
| 1035 | case M_RST6: |
| 1036 | case M_RST7: |
| 1037 | case M_TEM: |
| 1038 | { |
| 1039 | stop_decoding(JPGD_UNEXPECTED_MARKER); |
| 1040 | break; |
| 1041 | } |
| 1042 | default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */ |
| 1043 | { |
| 1044 | skip_variable_marker(); |
| 1045 | break; |
| 1046 | } |
| 1047 | } |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | // Finds the start of image (SOI) marker. |
| 1052 | void jpeg_decoder::locate_soi_marker() |
| 1053 | { |
| 1054 | uint lastchar, thischar; |
| 1055 | uint bytesleft; |
| 1056 | |
| 1057 | lastchar = get_bits(8); |
| 1058 | |
| 1059 | thischar = get_bits(8); |
| 1060 | |
| 1061 | /* ok if it's a normal JPEG file without a special header */ |
| 1062 | |
| 1063 | if ((lastchar == 0xFF) && (thischar == M_SOI)) |
| 1064 | return; |
| 1065 | |
| 1066 | bytesleft = 4096; |
| 1067 | |
| 1068 | for (; ; ) |
| 1069 | { |
| 1070 | if (--bytesleft == 0) |
| 1071 | stop_decoding(JPGD_NOT_JPEG); |
| 1072 | |
| 1073 | lastchar = thischar; |
| 1074 | |
| 1075 | thischar = get_bits(8); |
| 1076 | |
| 1077 | if (lastchar == 0xFF) |
| 1078 | { |
| 1079 | if (thischar == M_SOI) |
| 1080 | break; |
| 1081 | else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end |
| 1082 | stop_decoding(JPGD_NOT_JPEG); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | // Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad. |
| 1087 | thischar = (m_bit_buf >> 24) & 0xFF; |
| 1088 | |
| 1089 | if (thischar != 0xFF) |
| 1090 | stop_decoding(JPGD_NOT_JPEG); |
| 1091 | } |
| 1092 | |
| 1093 | // Find a start of frame (SOF) marker. |
| 1094 | void jpeg_decoder::locate_sof_marker() |
| 1095 | { |
| 1096 | locate_soi_marker(); |
| 1097 | |
| 1098 | int c = process_markers(); |
| 1099 | |
| 1100 | switch (c) |
| 1101 | { |
| 1102 | case M_SOF2: |
| 1103 | { |
| 1104 | m_progressive_flag = JPGD_TRUE; |
| 1105 | read_sof_marker(); |
| 1106 | break; |
| 1107 | } |
| 1108 | case M_SOF0: /* baseline DCT */ |
| 1109 | case M_SOF1: /* extended sequential DCT */ |
| 1110 | { |
| 1111 | read_sof_marker(); |
| 1112 | break; |
| 1113 | } |
| 1114 | case M_SOF9: /* Arithmitic coding */ |
| 1115 | { |
| 1116 | stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); |
| 1117 | break; |
| 1118 | } |
| 1119 | default: |
| 1120 | { |
| 1121 | stop_decoding(JPGD_UNSUPPORTED_MARKER); |
| 1122 | break; |
| 1123 | } |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | // Find a start of scan (SOS) marker. |
| 1128 | int jpeg_decoder::locate_sos_marker() |
| 1129 | { |
| 1130 | int c; |
| 1131 | |
| 1132 | c = process_markers(); |
| 1133 | |
| 1134 | if (c == M_EOI) |
| 1135 | return JPGD_FALSE; |
| 1136 | else if (c != M_SOS) |
| 1137 | stop_decoding(JPGD_UNEXPECTED_MARKER); |
| 1138 | |
| 1139 | read_sos_marker(); |
| 1140 | |
| 1141 | return JPGD_TRUE; |
| 1142 | } |
| 1143 | |
| 1144 | // Reset everything to default/uninitialized state. |
| 1145 | void jpeg_decoder::init(jpeg_decoder_stream* pStream, uint32_t flags) |
| 1146 | { |
| 1147 | m_flags = flags; |
| 1148 | m_pMem_blocks = nullptr; |
| 1149 | m_error_code = JPGD_SUCCESS; |
| 1150 | m_ready_flag = false; |
| 1151 | m_image_x_size = m_image_y_size = 0; |
| 1152 | m_pStream = pStream; |
| 1153 | m_progressive_flag = JPGD_FALSE; |
| 1154 | |
| 1155 | memset(m_huff_ac, 0, sizeof(m_huff_ac)); |
| 1156 | memset(m_huff_num, 0, sizeof(m_huff_num)); |
| 1157 | memset(m_huff_val, 0, sizeof(m_huff_val)); |
| 1158 | memset(m_quant, 0, sizeof(m_quant)); |
| 1159 | |
| 1160 | m_scan_type = 0; |
| 1161 | m_comps_in_frame = 0; |
| 1162 | |
| 1163 | memset(m_comp_h_samp, 0, sizeof(m_comp_h_samp)); |
| 1164 | memset(m_comp_v_samp, 0, sizeof(m_comp_v_samp)); |
| 1165 | memset(m_comp_quant, 0, sizeof(m_comp_quant)); |
| 1166 | memset(m_comp_ident, 0, sizeof(m_comp_ident)); |
| 1167 | memset(m_comp_h_blocks, 0, sizeof(m_comp_h_blocks)); |
| 1168 | memset(m_comp_v_blocks, 0, sizeof(m_comp_v_blocks)); |
| 1169 | |
| 1170 | m_comps_in_scan = 0; |
| 1171 | memset(m_comp_list, 0, sizeof(m_comp_list)); |
| 1172 | memset(m_comp_dc_tab, 0, sizeof(m_comp_dc_tab)); |
| 1173 | memset(m_comp_ac_tab, 0, sizeof(m_comp_ac_tab)); |
| 1174 | |
| 1175 | m_spectral_start = 0; |
| 1176 | m_spectral_end = 0; |
| 1177 | m_successive_low = 0; |
| 1178 | m_successive_high = 0; |
| 1179 | m_max_mcu_x_size = 0; |
| 1180 | m_max_mcu_y_size = 0; |
| 1181 | m_blocks_per_mcu = 0; |
| 1182 | m_max_blocks_per_row = 0; |
| 1183 | m_mcus_per_row = 0; |
| 1184 | m_mcus_per_col = 0; |
| 1185 | |
| 1186 | memset(m_mcu_org, 0, sizeof(m_mcu_org)); |
| 1187 | |
| 1188 | m_total_lines_left = 0; |
| 1189 | m_mcu_lines_left = 0; |
| 1190 | m_num_buffered_scanlines = 0; |
| 1191 | m_real_dest_bytes_per_scan_line = 0; |
| 1192 | m_dest_bytes_per_scan_line = 0; |
| 1193 | m_dest_bytes_per_pixel = 0; |
| 1194 | |
| 1195 | memset(m_pHuff_tabs, 0, sizeof(m_pHuff_tabs)); |
| 1196 | |
| 1197 | memset(m_dc_coeffs, 0, sizeof(m_dc_coeffs)); |
| 1198 | memset(m_ac_coeffs, 0, sizeof(m_ac_coeffs)); |
| 1199 | memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); |
| 1200 | |
| 1201 | m_eob_run = 0; |
| 1202 | |
| 1203 | m_pIn_buf_ofs = m_in_buf; |
| 1204 | m_in_buf_left = 0; |
| 1205 | m_eof_flag = false; |
| 1206 | m_tem_flag = 0; |
| 1207 | |
| 1208 | memset(m_in_buf_pad_start, 0, sizeof(m_in_buf_pad_start)); |
| 1209 | memset(m_in_buf, 0, sizeof(m_in_buf)); |
| 1210 | memset(m_in_buf_pad_end, 0, sizeof(m_in_buf_pad_end)); |
| 1211 | |
| 1212 | m_restart_interval = 0; |
| 1213 | m_restarts_left = 0; |
| 1214 | m_next_restart_num = 0; |
| 1215 | |
| 1216 | m_max_mcus_per_row = 0; |
| 1217 | m_max_blocks_per_mcu = 0; |
| 1218 | m_max_mcus_per_col = 0; |
| 1219 | |
| 1220 | memset(m_last_dc_val, 0, sizeof(m_last_dc_val)); |
| 1221 | m_pMCU_coefficients = nullptr; |
| 1222 | m_pSample_buf = nullptr; |
| 1223 | m_pSample_buf_prev = nullptr; |
| 1224 | m_sample_buf_prev_valid = false; |
| 1225 | |
| 1226 | m_total_bytes_read = 0; |
| 1227 | |
| 1228 | m_pScan_line_0 = nullptr; |
| 1229 | m_pScan_line_1 = nullptr; |
| 1230 | |
| 1231 | // Ready the input buffer. |
| 1232 | prep_in_buffer(); |
| 1233 | |
| 1234 | // Prime the bit buffer. |
| 1235 | m_bits_left = 16; |
| 1236 | m_bit_buf = 0; |
| 1237 | |
| 1238 | get_bits(16); |
| 1239 | get_bits(16); |
| 1240 | |
| 1241 | for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++) |
| 1242 | m_mcu_block_max_zag[i] = 64; |
| 1243 | } |
| 1244 | |
| 1245 | #define SCALEBITS 16 |
| 1246 | #define ONE_HALF ((int) 1 << (SCALEBITS-1)) |
| 1247 | #define FIX(x) ((int) ((x) * (1L<<SCALEBITS) + 0.5f)) |
| 1248 | |
| 1249 | // Create a few tables that allow us to quickly convert YCbCr to RGB. |
| 1250 | void jpeg_decoder::create_look_ups() |
| 1251 | { |
| 1252 | for (int i = 0; i <= 255; i++) |
| 1253 | { |
| 1254 | int k = i - 128; |
| 1255 | m_crr[i] = (FIX(1.40200f) * k + ONE_HALF) >> SCALEBITS; |
| 1256 | m_cbb[i] = (FIX(1.77200f) * k + ONE_HALF) >> SCALEBITS; |
| 1257 | m_crg[i] = (-FIX(0.71414f)) * k; |
| 1258 | m_cbg[i] = (-FIX(0.34414f)) * k + ONE_HALF; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | // This method throws back into the stream any bytes that where read |
| 1263 | // into the bit buffer during initial marker scanning. |
| 1264 | void jpeg_decoder::fix_in_buffer() |
| 1265 | { |
| 1266 | // In case any 0xFF's where pulled into the buffer during marker scanning. |
| 1267 | assert((m_bits_left & 7) == 0); |
| 1268 | |
| 1269 | if (m_bits_left == 16) |
| 1270 | stuff_char((uint8)(m_bit_buf & 0xFF)); |
| 1271 | |
| 1272 | if (m_bits_left >= 8) |
| 1273 | stuff_char((uint8)((m_bit_buf >> 8) & 0xFF)); |
| 1274 | |
| 1275 | stuff_char((uint8)((m_bit_buf >> 16) & 0xFF)); |
| 1276 | stuff_char((uint8)((m_bit_buf >> 24) & 0xFF)); |
| 1277 | |
| 1278 | m_bits_left = 16; |
| 1279 | get_bits_no_markers(16); |
| 1280 | get_bits_no_markers(16); |
| 1281 | } |
| 1282 | |
| 1283 | void jpeg_decoder::transform_mcu(int mcu_row) |
| 1284 | { |
| 1285 | jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; |
| 1286 | if (mcu_row * m_blocks_per_mcu >= m_max_blocks_per_row) |
| 1287 | stop_decoding(JPGD_DECODE_ERROR); |
| 1288 | |
| 1289 | uint8* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64; |
| 1290 | |
| 1291 | for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) |
| 1292 | { |
| 1293 | idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); |
| 1294 | pSrc_ptr += 64; |
| 1295 | pDst_ptr += 64; |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | // Loads and dequantizes the next row of (already decoded) coefficients. |
| 1300 | // Progressive images only. |
| 1301 | void jpeg_decoder::load_next_row() |
| 1302 | { |
| 1303 | int i; |
| 1304 | jpgd_block_t* p; |
| 1305 | jpgd_quant_t* q; |
| 1306 | int mcu_row, mcu_block, row_block = 0; |
| 1307 | int component_num, component_id; |
| 1308 | int block_x_mcu[JPGD_MAX_COMPONENTS]; |
| 1309 | |
| 1310 | memset(block_x_mcu, 0, JPGD_MAX_COMPONENTS * sizeof(int)); |
| 1311 | |
| 1312 | for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) |
| 1313 | { |
| 1314 | int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; |
| 1315 | |
| 1316 | for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) |
| 1317 | { |
| 1318 | component_id = m_mcu_org[mcu_block]; |
| 1319 | if (m_comp_quant[component_id] >= JPGD_MAX_QUANT_TABLES) |
| 1320 | stop_decoding(JPGD_DECODE_ERROR); |
| 1321 | |
| 1322 | q = m_quant[m_comp_quant[component_id]]; |
| 1323 | |
| 1324 | p = m_pMCU_coefficients + 64 * mcu_block; |
| 1325 | |
| 1326 | jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); |
| 1327 | jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); |
| 1328 | p[0] = pDC[0]; |
| 1329 | memcpy(&p[1], &pAC[1], 63 * sizeof(jpgd_block_t)); |
| 1330 | |
| 1331 | for (i = 63; i > 0; i--) |
| 1332 | if (p[g_ZAG[i]]) |
| 1333 | break; |
| 1334 | |
| 1335 | m_mcu_block_max_zag[mcu_block] = i + 1; |
| 1336 | |
| 1337 | for (; i >= 0; i--) |
| 1338 | if (p[g_ZAG[i]]) |
| 1339 | p[g_ZAG[i]] = static_cast<jpgd_block_t>(p[g_ZAG[i]] * q[i]); |
| 1340 | |
| 1341 | row_block++; |
| 1342 | |
| 1343 | if (m_comps_in_scan == 1) |
| 1344 | block_x_mcu[component_id]++; |
| 1345 | else |
| 1346 | { |
| 1347 | if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) |
| 1348 | { |
| 1349 | block_x_mcu_ofs = 0; |
| 1350 | |
| 1351 | if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) |
| 1352 | { |
| 1353 | block_y_mcu_ofs = 0; |
| 1354 | |
| 1355 | block_x_mcu[component_id] += m_comp_h_samp[component_id]; |
| 1356 | } |
| 1357 | } |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | transform_mcu(mcu_row); |
| 1362 | } |
| 1363 | |
| 1364 | if (m_comps_in_scan == 1) |
| 1365 | m_block_y_mcu[m_comp_list[0]]++; |
| 1366 | else |
| 1367 | { |
| 1368 | for (component_num = 0; component_num < m_comps_in_scan; component_num++) |
| 1369 | { |
| 1370 | component_id = m_comp_list[component_num]; |
| 1371 | |
| 1372 | m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; |
| 1373 | } |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | // Restart interval processing. |
| 1378 | void jpeg_decoder::process_restart() |
| 1379 | { |
| 1380 | int i; |
| 1381 | int c = 0; |
| 1382 | |
| 1383 | // Align to a byte boundry |
| 1384 | // FIXME: Is this really necessary? get_bits_no_markers() never reads in markers! |
| 1385 | //get_bits_no_markers(m_bits_left & 7); |
| 1386 | |
| 1387 | // Let's scan a little bit to find the marker, but not _too_ far. |
| 1388 | // 1536 is a "fudge factor" that determines how much to scan. |
| 1389 | for (i = 1536; i > 0; i--) |
| 1390 | if (get_char() == 0xFF) |
| 1391 | break; |
| 1392 | |
| 1393 | if (i == 0) |
| 1394 | stop_decoding(JPGD_BAD_RESTART_MARKER); |
| 1395 | |
| 1396 | for (; i > 0; i--) |
| 1397 | if ((c = get_char()) != 0xFF) |
| 1398 | break; |
| 1399 | |
| 1400 | if (i == 0) |
| 1401 | stop_decoding(JPGD_BAD_RESTART_MARKER); |
| 1402 | |
| 1403 | // Is it the expected marker? If not, something bad happened. |
| 1404 | if (c != (m_next_restart_num + M_RST0)) |
| 1405 | stop_decoding(JPGD_BAD_RESTART_MARKER); |
| 1406 | |
| 1407 | // Reset each component's DC prediction values. |
| 1408 | memset(&m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); |
| 1409 | |
| 1410 | m_eob_run = 0; |
| 1411 | |
| 1412 | m_restarts_left = m_restart_interval; |
| 1413 | |
| 1414 | m_next_restart_num = (m_next_restart_num + 1) & 7; |
| 1415 | |
| 1416 | // Get the bit buffer going again... |
| 1417 | |
| 1418 | m_bits_left = 16; |
| 1419 | get_bits_no_markers(16); |
| 1420 | get_bits_no_markers(16); |
| 1421 | } |
| 1422 | |
| 1423 | static inline int dequantize_ac(int c, int q) { c *= q; return c; } |
| 1424 | |
| 1425 | // Decodes and dequantizes the next row of coefficients. |
| 1426 | void jpeg_decoder::decode_next_row() |
| 1427 | { |
| 1428 | int row_block = 0; |
| 1429 | |
| 1430 | for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) |
| 1431 | { |
| 1432 | if ((m_restart_interval) && (m_restarts_left == 0)) |
| 1433 | process_restart(); |
| 1434 | |
| 1435 | jpgd_block_t* p = m_pMCU_coefficients; |
| 1436 | for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64) |
| 1437 | { |
| 1438 | int component_id = m_mcu_org[mcu_block]; |
| 1439 | if (m_comp_quant[component_id] >= JPGD_MAX_QUANT_TABLES) |
| 1440 | stop_decoding(JPGD_DECODE_ERROR); |
| 1441 | |
| 1442 | jpgd_quant_t* q = m_quant[m_comp_quant[component_id]]; |
| 1443 | |
| 1444 | int r, s; |
| 1445 | s = huff_decode(m_pHuff_tabs[m_comp_dc_tab[component_id]], r); |
| 1446 | if (s >= 16) |
| 1447 | stop_decoding(JPGD_DECODE_ERROR); |
| 1448 | |
| 1449 | s = JPGD_HUFF_EXTEND(r, s); |
| 1450 | |
| 1451 | m_last_dc_val[component_id] = (s += m_last_dc_val[component_id]); |
| 1452 | |
| 1453 | p[0] = static_cast<jpgd_block_t>(s * q[0]); |
| 1454 | |
| 1455 | int prev_num_set = m_mcu_block_max_zag[mcu_block]; |
| 1456 | |
| 1457 | huff_tables* pH = m_pHuff_tabs[m_comp_ac_tab[component_id]]; |
| 1458 | |
| 1459 | int k; |
| 1460 | for (k = 1; k < 64; k++) |
| 1461 | { |
| 1462 | int ; |
| 1463 | s = huff_decode(pH, extra_bits); |
| 1464 | |
| 1465 | r = s >> 4; |
| 1466 | s &= 15; |
| 1467 | |
| 1468 | if (s) |
| 1469 | { |
| 1470 | if (r) |
| 1471 | { |
| 1472 | if ((k + r) > 63) |
| 1473 | stop_decoding(JPGD_DECODE_ERROR); |
| 1474 | |
| 1475 | if (k < prev_num_set) |
| 1476 | { |
| 1477 | int n = JPGD_MIN(r, prev_num_set - k); |
| 1478 | int kt = k; |
| 1479 | while (n--) |
| 1480 | p[g_ZAG[kt++]] = 0; |
| 1481 | } |
| 1482 | |
| 1483 | k += r; |
| 1484 | } |
| 1485 | |
| 1486 | s = JPGD_HUFF_EXTEND(extra_bits, s); |
| 1487 | |
| 1488 | if (k >= 64) |
| 1489 | stop_decoding(JPGD_DECODE_ERROR); |
| 1490 | |
| 1491 | p[g_ZAG[k]] = static_cast<jpgd_block_t>(dequantize_ac(s, q[k])); //s * q[k]; |
| 1492 | } |
| 1493 | else |
| 1494 | { |
| 1495 | if (r == 15) |
| 1496 | { |
| 1497 | if ((k + 16) > 64) |
| 1498 | stop_decoding(JPGD_DECODE_ERROR); |
| 1499 | |
| 1500 | if (k < prev_num_set) |
| 1501 | { |
| 1502 | int n = JPGD_MIN(16, prev_num_set - k); |
| 1503 | int kt = k; |
| 1504 | while (n--) |
| 1505 | { |
| 1506 | if (kt > 63) |
| 1507 | stop_decoding(JPGD_DECODE_ERROR); |
| 1508 | p[g_ZAG[kt++]] = 0; |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | k += 16 - 1; // - 1 because the loop counter is k |
| 1513 | |
| 1514 | if (p[g_ZAG[k & 63]] != 0) |
| 1515 | stop_decoding(JPGD_DECODE_ERROR); |
| 1516 | } |
| 1517 | else |
| 1518 | break; |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | if (k < prev_num_set) |
| 1523 | { |
| 1524 | int kt = k; |
| 1525 | while (kt < prev_num_set) |
| 1526 | p[g_ZAG[kt++]] = 0; |
| 1527 | } |
| 1528 | |
| 1529 | m_mcu_block_max_zag[mcu_block] = k; |
| 1530 | |
| 1531 | row_block++; |
| 1532 | } |
| 1533 | |
| 1534 | transform_mcu(mcu_row); |
| 1535 | |
| 1536 | m_restarts_left--; |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | // YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB |
| 1541 | void jpeg_decoder::H1V1Convert() |
| 1542 | { |
| 1543 | int row = m_max_mcu_y_size - m_mcu_lines_left; |
| 1544 | uint8* d = m_pScan_line_0; |
| 1545 | uint8* s = m_pSample_buf + row * 8; |
| 1546 | |
| 1547 | for (int i = m_max_mcus_per_row; i > 0; i--) |
| 1548 | { |
| 1549 | for (int j = 0; j < 8; j++) |
| 1550 | { |
| 1551 | int y = s[j]; |
| 1552 | int cb = s[64 + j]; |
| 1553 | int cr = s[128 + j]; |
| 1554 | |
| 1555 | d[0] = clamp(y + m_crr[cr]); |
| 1556 | d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); |
| 1557 | d[2] = clamp(y + m_cbb[cb]); |
| 1558 | d[3] = 255; |
| 1559 | |
| 1560 | d += 4; |
| 1561 | } |
| 1562 | |
| 1563 | s += 64 * 3; |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | // YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB |
| 1568 | void jpeg_decoder::H2V1Convert() |
| 1569 | { |
| 1570 | int row = m_max_mcu_y_size - m_mcu_lines_left; |
| 1571 | uint8* d0 = m_pScan_line_0; |
| 1572 | uint8* y = m_pSample_buf + row * 8; |
| 1573 | uint8* c = m_pSample_buf + 2 * 64 + row * 8; |
| 1574 | |
| 1575 | for (int i = m_max_mcus_per_row; i > 0; i--) |
| 1576 | { |
| 1577 | for (int l = 0; l < 2; l++) |
| 1578 | { |
| 1579 | for (int j = 0; j < 4; j++) |
| 1580 | { |
| 1581 | int cb = c[0]; |
| 1582 | int cr = c[64]; |
| 1583 | |
| 1584 | int rc = m_crr[cr]; |
| 1585 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1586 | int bc = m_cbb[cb]; |
| 1587 | |
| 1588 | int yy = y[j << 1]; |
| 1589 | d0[0] = clamp(yy + rc); |
| 1590 | d0[1] = clamp(yy + gc); |
| 1591 | d0[2] = clamp(yy + bc); |
| 1592 | d0[3] = 255; |
| 1593 | |
| 1594 | yy = y[(j << 1) + 1]; |
| 1595 | d0[4] = clamp(yy + rc); |
| 1596 | d0[5] = clamp(yy + gc); |
| 1597 | d0[6] = clamp(yy + bc); |
| 1598 | d0[7] = 255; |
| 1599 | |
| 1600 | d0 += 8; |
| 1601 | |
| 1602 | c++; |
| 1603 | } |
| 1604 | y += 64; |
| 1605 | } |
| 1606 | |
| 1607 | y += 64 * 4 - 64 * 2; |
| 1608 | c += 64 * 4 - 8; |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | // YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB |
| 1613 | void jpeg_decoder::H2V1ConvertFiltered() |
| 1614 | { |
| 1615 | const uint BLOCKS_PER_MCU = 4; |
| 1616 | int row = m_max_mcu_y_size - m_mcu_lines_left; |
| 1617 | uint8* d0 = m_pScan_line_0; |
| 1618 | |
| 1619 | const int half_image_x_size = (m_image_x_size >> 1) - 1; |
| 1620 | const int row_x8 = row * 8; |
| 1621 | |
| 1622 | for (int x = 0; x < m_image_x_size; x++) |
| 1623 | { |
| 1624 | int y = m_pSample_buf[check_sample_buf_ofs((x >> 4) * BLOCKS_PER_MCU * 64 + ((x & 8) ? 64 : 0) + (x & 7) + row_x8)]; |
| 1625 | |
| 1626 | int c_x0 = (x - 1) >> 1; |
| 1627 | int c_x1 = JPGD_MIN(c_x0 + 1, half_image_x_size); |
| 1628 | c_x0 = JPGD_MAX(c_x0, 0); |
| 1629 | |
| 1630 | int a = (c_x0 >> 3) * BLOCKS_PER_MCU * 64 + (c_x0 & 7) + row_x8 + 128; |
| 1631 | int cb0 = m_pSample_buf[check_sample_buf_ofs(a)]; |
| 1632 | int cr0 = m_pSample_buf[check_sample_buf_ofs(a + 64)]; |
| 1633 | |
| 1634 | int b = (c_x1 >> 3) * BLOCKS_PER_MCU * 64 + (c_x1 & 7) + row_x8 + 128; |
| 1635 | int cb1 = m_pSample_buf[check_sample_buf_ofs(b)]; |
| 1636 | int cr1 = m_pSample_buf[check_sample_buf_ofs(b + 64)]; |
| 1637 | |
| 1638 | int w0 = (x & 1) ? 3 : 1; |
| 1639 | int w1 = (x & 1) ? 1 : 3; |
| 1640 | |
| 1641 | int cb = (cb0 * w0 + cb1 * w1 + 2) >> 2; |
| 1642 | int cr = (cr0 * w0 + cr1 * w1 + 2) >> 2; |
| 1643 | |
| 1644 | int rc = m_crr[cr]; |
| 1645 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1646 | int bc = m_cbb[cb]; |
| 1647 | |
| 1648 | d0[0] = clamp(y + rc); |
| 1649 | d0[1] = clamp(y + gc); |
| 1650 | d0[2] = clamp(y + bc); |
| 1651 | d0[3] = 255; |
| 1652 | |
| 1653 | d0 += 4; |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | // YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB |
| 1658 | void jpeg_decoder::H1V2Convert() |
| 1659 | { |
| 1660 | int row = m_max_mcu_y_size - m_mcu_lines_left; |
| 1661 | uint8* d0 = m_pScan_line_0; |
| 1662 | uint8* d1 = m_pScan_line_1; |
| 1663 | uint8* y; |
| 1664 | uint8* c; |
| 1665 | |
| 1666 | if (row < 8) |
| 1667 | y = m_pSample_buf + row * 8; |
| 1668 | else |
| 1669 | y = m_pSample_buf + 64 * 1 + (row & 7) * 8; |
| 1670 | |
| 1671 | c = m_pSample_buf + 64 * 2 + (row >> 1) * 8; |
| 1672 | |
| 1673 | for (int i = m_max_mcus_per_row; i > 0; i--) |
| 1674 | { |
| 1675 | for (int j = 0; j < 8; j++) |
| 1676 | { |
| 1677 | int cb = c[0 + j]; |
| 1678 | int cr = c[64 + j]; |
| 1679 | |
| 1680 | int rc = m_crr[cr]; |
| 1681 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1682 | int bc = m_cbb[cb]; |
| 1683 | |
| 1684 | int yy = y[j]; |
| 1685 | d0[0] = clamp(yy + rc); |
| 1686 | d0[1] = clamp(yy + gc); |
| 1687 | d0[2] = clamp(yy + bc); |
| 1688 | d0[3] = 255; |
| 1689 | |
| 1690 | yy = y[8 + j]; |
| 1691 | d1[0] = clamp(yy + rc); |
| 1692 | d1[1] = clamp(yy + gc); |
| 1693 | d1[2] = clamp(yy + bc); |
| 1694 | d1[3] = 255; |
| 1695 | |
| 1696 | d0 += 4; |
| 1697 | d1 += 4; |
| 1698 | } |
| 1699 | |
| 1700 | y += 64 * 4; |
| 1701 | c += 64 * 4; |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | // YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB |
| 1706 | void jpeg_decoder::H1V2ConvertFiltered() |
| 1707 | { |
| 1708 | const uint BLOCKS_PER_MCU = 4; |
| 1709 | int y = m_image_y_size - m_total_lines_left; |
| 1710 | int row = y & 15; |
| 1711 | |
| 1712 | const int half_image_y_size = (m_image_y_size >> 1) - 1; |
| 1713 | |
| 1714 | uint8* d0 = m_pScan_line_0; |
| 1715 | |
| 1716 | const int w0 = (row & 1) ? 3 : 1; |
| 1717 | const int w1 = (row & 1) ? 1 : 3; |
| 1718 | |
| 1719 | int c_y0 = (y - 1) >> 1; |
| 1720 | int c_y1 = JPGD_MIN(c_y0 + 1, half_image_y_size); |
| 1721 | |
| 1722 | const uint8_t* p_YSamples = m_pSample_buf; |
| 1723 | const uint8_t* p_C0Samples = m_pSample_buf; |
| 1724 | if ((c_y0 >= 0) && (((row & 15) == 0) || ((row & 15) == 15)) && (m_total_lines_left > 1)) |
| 1725 | { |
| 1726 | assert(y > 0); |
| 1727 | assert(m_sample_buf_prev_valid); |
| 1728 | |
| 1729 | if ((row & 15) == 15) |
| 1730 | p_YSamples = m_pSample_buf_prev; |
| 1731 | |
| 1732 | p_C0Samples = m_pSample_buf_prev; |
| 1733 | } |
| 1734 | |
| 1735 | const int y_sample_base_ofs = ((row & 8) ? 64 : 0) + (row & 7) * 8; |
| 1736 | const int y0_base = (c_y0 & 7) * 8 + 128; |
| 1737 | const int y1_base = (c_y1 & 7) * 8 + 128; |
| 1738 | |
| 1739 | for (int x = 0; x < m_image_x_size; x++) |
| 1740 | { |
| 1741 | const int base_ofs = (x >> 3) * BLOCKS_PER_MCU * 64 + (x & 7); |
| 1742 | |
| 1743 | int y_sample = p_YSamples[check_sample_buf_ofs(base_ofs + y_sample_base_ofs)]; |
| 1744 | |
| 1745 | int a = base_ofs + y0_base; |
| 1746 | int cb0_sample = p_C0Samples[check_sample_buf_ofs(a)]; |
| 1747 | int cr0_sample = p_C0Samples[check_sample_buf_ofs(a + 64)]; |
| 1748 | |
| 1749 | int b = base_ofs + y1_base; |
| 1750 | int cb1_sample = m_pSample_buf[check_sample_buf_ofs(b)]; |
| 1751 | int cr1_sample = m_pSample_buf[check_sample_buf_ofs(b + 64)]; |
| 1752 | |
| 1753 | int cb = (cb0_sample * w0 + cb1_sample * w1 + 2) >> 2; |
| 1754 | int cr = (cr0_sample * w0 + cr1_sample * w1 + 2) >> 2; |
| 1755 | |
| 1756 | int rc = m_crr[cr]; |
| 1757 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1758 | int bc = m_cbb[cb]; |
| 1759 | |
| 1760 | d0[0] = clamp(y_sample + rc); |
| 1761 | d0[1] = clamp(y_sample + gc); |
| 1762 | d0[2] = clamp(y_sample + bc); |
| 1763 | d0[3] = 255; |
| 1764 | |
| 1765 | d0 += 4; |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | // YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB |
| 1770 | void jpeg_decoder::H2V2Convert() |
| 1771 | { |
| 1772 | int row = m_max_mcu_y_size - m_mcu_lines_left; |
| 1773 | uint8* d0 = m_pScan_line_0; |
| 1774 | uint8* d1 = m_pScan_line_1; |
| 1775 | uint8* y; |
| 1776 | uint8* c; |
| 1777 | |
| 1778 | if (row < 8) |
| 1779 | y = m_pSample_buf + row * 8; |
| 1780 | else |
| 1781 | y = m_pSample_buf + 64 * 2 + (row & 7) * 8; |
| 1782 | |
| 1783 | c = m_pSample_buf + 64 * 4 + (row >> 1) * 8; |
| 1784 | |
| 1785 | for (int i = m_max_mcus_per_row; i > 0; i--) |
| 1786 | { |
| 1787 | for (int l = 0; l < 2; l++) |
| 1788 | { |
| 1789 | for (int j = 0; j < 8; j += 2) |
| 1790 | { |
| 1791 | int cb = c[0]; |
| 1792 | int cr = c[64]; |
| 1793 | |
| 1794 | int rc = m_crr[cr]; |
| 1795 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1796 | int bc = m_cbb[cb]; |
| 1797 | |
| 1798 | int yy = y[j]; |
| 1799 | d0[0] = clamp(yy + rc); |
| 1800 | d0[1] = clamp(yy + gc); |
| 1801 | d0[2] = clamp(yy + bc); |
| 1802 | d0[3] = 255; |
| 1803 | |
| 1804 | yy = y[j + 1]; |
| 1805 | d0[4] = clamp(yy + rc); |
| 1806 | d0[5] = clamp(yy + gc); |
| 1807 | d0[6] = clamp(yy + bc); |
| 1808 | d0[7] = 255; |
| 1809 | |
| 1810 | yy = y[j + 8]; |
| 1811 | d1[0] = clamp(yy + rc); |
| 1812 | d1[1] = clamp(yy + gc); |
| 1813 | d1[2] = clamp(yy + bc); |
| 1814 | d1[3] = 255; |
| 1815 | |
| 1816 | yy = y[j + 8 + 1]; |
| 1817 | d1[4] = clamp(yy + rc); |
| 1818 | d1[5] = clamp(yy + gc); |
| 1819 | d1[6] = clamp(yy + bc); |
| 1820 | d1[7] = 255; |
| 1821 | |
| 1822 | d0 += 8; |
| 1823 | d1 += 8; |
| 1824 | |
| 1825 | c++; |
| 1826 | } |
| 1827 | y += 64; |
| 1828 | } |
| 1829 | |
| 1830 | y += 64 * 6 - 64 * 2; |
| 1831 | c += 64 * 6 - 8; |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | uint32_t jpeg_decoder::H2V2ConvertFiltered() |
| 1836 | { |
| 1837 | const uint BLOCKS_PER_MCU = 6; |
| 1838 | int y = m_image_y_size - m_total_lines_left; |
| 1839 | int row = y & 15; |
| 1840 | |
| 1841 | const int half_image_y_size = (m_image_y_size >> 1) - 1; |
| 1842 | |
| 1843 | uint8* d0 = m_pScan_line_0; |
| 1844 | |
| 1845 | int c_y0 = (y - 1) >> 1; |
| 1846 | int c_y1 = JPGD_MIN(c_y0 + 1, half_image_y_size); |
| 1847 | |
| 1848 | const uint8_t* p_YSamples = m_pSample_buf; |
| 1849 | const uint8_t* p_C0Samples = m_pSample_buf; |
| 1850 | if ((c_y0 >= 0) && (((row & 15) == 0) || ((row & 15) == 15)) && (m_total_lines_left > 1)) |
| 1851 | { |
| 1852 | assert(y > 0); |
| 1853 | assert(m_sample_buf_prev_valid); |
| 1854 | |
| 1855 | if ((row & 15) == 15) |
| 1856 | p_YSamples = m_pSample_buf_prev; |
| 1857 | |
| 1858 | p_C0Samples = m_pSample_buf_prev; |
| 1859 | } |
| 1860 | |
| 1861 | const int y_sample_base_ofs = ((row & 8) ? 128 : 0) + (row & 7) * 8; |
| 1862 | const int y0_base = (c_y0 & 7) * 8 + 256; |
| 1863 | const int y1_base = (c_y1 & 7) * 8 + 256; |
| 1864 | |
| 1865 | const int half_image_x_size = (m_image_x_size >> 1) - 1; |
| 1866 | |
| 1867 | static const uint8_t s_muls[2][2][4] = |
| 1868 | { |
| 1869 | { { 1, 3, 3, 9 }, { 3, 9, 1, 3 }, }, |
| 1870 | { { 3, 1, 9, 3 }, { 9, 3, 3, 1 } } |
| 1871 | }; |
| 1872 | |
| 1873 | if (((row & 15) >= 1) && ((row & 15) <= 14)) |
| 1874 | { |
| 1875 | assert((row & 1) == 1); |
| 1876 | assert(((y + 1 - 1) >> 1) == c_y0); |
| 1877 | |
| 1878 | assert(p_YSamples == m_pSample_buf); |
| 1879 | assert(p_C0Samples == m_pSample_buf); |
| 1880 | |
| 1881 | uint8* d1 = m_pScan_line_1; |
| 1882 | const int y_sample_base_ofs1 = (((row + 1) & 8) ? 128 : 0) + ((row + 1) & 7) * 8; |
| 1883 | |
| 1884 | for (int x = 0; x < m_image_x_size; x++) |
| 1885 | { |
| 1886 | int k = (x >> 4) * BLOCKS_PER_MCU * 64 + ((x & 8) ? 64 : 0) + (x & 7); |
| 1887 | int y_sample0 = p_YSamples[check_sample_buf_ofs(k + y_sample_base_ofs)]; |
| 1888 | int y_sample1 = p_YSamples[check_sample_buf_ofs(k + y_sample_base_ofs1)]; |
| 1889 | |
| 1890 | int c_x0 = (x - 1) >> 1; |
| 1891 | int c_x1 = JPGD_MIN(c_x0 + 1, half_image_x_size); |
| 1892 | c_x0 = JPGD_MAX(c_x0, 0); |
| 1893 | |
| 1894 | int a = (c_x0 >> 3) * BLOCKS_PER_MCU * 64 + (c_x0 & 7); |
| 1895 | int cb00_sample = p_C0Samples[check_sample_buf_ofs(a + y0_base)]; |
| 1896 | int cr00_sample = p_C0Samples[check_sample_buf_ofs(a + y0_base + 64)]; |
| 1897 | |
| 1898 | int cb01_sample = m_pSample_buf[check_sample_buf_ofs(a + y1_base)]; |
| 1899 | int cr01_sample = m_pSample_buf[check_sample_buf_ofs(a + y1_base + 64)]; |
| 1900 | |
| 1901 | int b = (c_x1 >> 3) * BLOCKS_PER_MCU * 64 + (c_x1 & 7); |
| 1902 | int cb10_sample = p_C0Samples[check_sample_buf_ofs(b + y0_base)]; |
| 1903 | int cr10_sample = p_C0Samples[check_sample_buf_ofs(b + y0_base + 64)]; |
| 1904 | |
| 1905 | int cb11_sample = m_pSample_buf[check_sample_buf_ofs(b + y1_base)]; |
| 1906 | int cr11_sample = m_pSample_buf[check_sample_buf_ofs(b + y1_base + 64)]; |
| 1907 | |
| 1908 | { |
| 1909 | const uint8_t* pMuls = &s_muls[row & 1][x & 1][0]; |
| 1910 | int cb = (cb00_sample * pMuls[0] + cb01_sample * pMuls[1] + cb10_sample * pMuls[2] + cb11_sample * pMuls[3] + 8) >> 4; |
| 1911 | int cr = (cr00_sample * pMuls[0] + cr01_sample * pMuls[1] + cr10_sample * pMuls[2] + cr11_sample * pMuls[3] + 8) >> 4; |
| 1912 | |
| 1913 | int rc = m_crr[cr]; |
| 1914 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1915 | int bc = m_cbb[cb]; |
| 1916 | |
| 1917 | d0[0] = clamp(y_sample0 + rc); |
| 1918 | d0[1] = clamp(y_sample0 + gc); |
| 1919 | d0[2] = clamp(y_sample0 + bc); |
| 1920 | d0[3] = 255; |
| 1921 | |
| 1922 | d0 += 4; |
| 1923 | } |
| 1924 | |
| 1925 | { |
| 1926 | const uint8_t* pMuls = &s_muls[(row + 1) & 1][x & 1][0]; |
| 1927 | int cb = (cb00_sample * pMuls[0] + cb01_sample * pMuls[1] + cb10_sample * pMuls[2] + cb11_sample * pMuls[3] + 8) >> 4; |
| 1928 | int cr = (cr00_sample * pMuls[0] + cr01_sample * pMuls[1] + cr10_sample * pMuls[2] + cr11_sample * pMuls[3] + 8) >> 4; |
| 1929 | |
| 1930 | int rc = m_crr[cr]; |
| 1931 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1932 | int bc = m_cbb[cb]; |
| 1933 | |
| 1934 | d1[0] = clamp(y_sample1 + rc); |
| 1935 | d1[1] = clamp(y_sample1 + gc); |
| 1936 | d1[2] = clamp(y_sample1 + bc); |
| 1937 | d1[3] = 255; |
| 1938 | |
| 1939 | d1 += 4; |
| 1940 | } |
| 1941 | |
| 1942 | if (((x & 1) == 1) && (x < m_image_x_size - 1)) |
| 1943 | { |
| 1944 | const int nx = x + 1; |
| 1945 | assert(c_x0 == (nx - 1) >> 1); |
| 1946 | |
| 1947 | k = (nx >> 4) * BLOCKS_PER_MCU * 64 + ((nx & 8) ? 64 : 0) + (nx & 7); |
| 1948 | y_sample0 = p_YSamples[check_sample_buf_ofs(k + y_sample_base_ofs)]; |
| 1949 | y_sample1 = p_YSamples[check_sample_buf_ofs(k + y_sample_base_ofs1)]; |
| 1950 | |
| 1951 | { |
| 1952 | const uint8_t* pMuls = &s_muls[row & 1][nx & 1][0]; |
| 1953 | int cb = (cb00_sample * pMuls[0] + cb01_sample * pMuls[1] + cb10_sample * pMuls[2] + cb11_sample * pMuls[3] + 8) >> 4; |
| 1954 | int cr = (cr00_sample * pMuls[0] + cr01_sample * pMuls[1] + cr10_sample * pMuls[2] + cr11_sample * pMuls[3] + 8) >> 4; |
| 1955 | |
| 1956 | int rc = m_crr[cr]; |
| 1957 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1958 | int bc = m_cbb[cb]; |
| 1959 | |
| 1960 | d0[0] = clamp(y_sample0 + rc); |
| 1961 | d0[1] = clamp(y_sample0 + gc); |
| 1962 | d0[2] = clamp(y_sample0 + bc); |
| 1963 | d0[3] = 255; |
| 1964 | |
| 1965 | d0 += 4; |
| 1966 | } |
| 1967 | |
| 1968 | { |
| 1969 | const uint8_t* pMuls = &s_muls[(row + 1) & 1][nx & 1][0]; |
| 1970 | int cb = (cb00_sample * pMuls[0] + cb01_sample * pMuls[1] + cb10_sample * pMuls[2] + cb11_sample * pMuls[3] + 8) >> 4; |
| 1971 | int cr = (cr00_sample * pMuls[0] + cr01_sample * pMuls[1] + cr10_sample * pMuls[2] + cr11_sample * pMuls[3] + 8) >> 4; |
| 1972 | |
| 1973 | int rc = m_crr[cr]; |
| 1974 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 1975 | int bc = m_cbb[cb]; |
| 1976 | |
| 1977 | d1[0] = clamp(y_sample1 + rc); |
| 1978 | d1[1] = clamp(y_sample1 + gc); |
| 1979 | d1[2] = clamp(y_sample1 + bc); |
| 1980 | d1[3] = 255; |
| 1981 | |
| 1982 | d1 += 4; |
| 1983 | } |
| 1984 | |
| 1985 | ++x; |
| 1986 | } |
| 1987 | } |
| 1988 | |
| 1989 | return 2; |
| 1990 | } |
| 1991 | else |
| 1992 | { |
| 1993 | for (int x = 0; x < m_image_x_size; x++) |
| 1994 | { |
| 1995 | int y_sample = p_YSamples[check_sample_buf_ofs((x >> 4) * BLOCKS_PER_MCU * 64 + ((x & 8) ? 64 : 0) + (x & 7) + y_sample_base_ofs)]; |
| 1996 | |
| 1997 | int c_x0 = (x - 1) >> 1; |
| 1998 | int c_x1 = JPGD_MIN(c_x0 + 1, half_image_x_size); |
| 1999 | c_x0 = JPGD_MAX(c_x0, 0); |
| 2000 | |
| 2001 | int a = (c_x0 >> 3) * BLOCKS_PER_MCU * 64 + (c_x0 & 7); |
| 2002 | int cb00_sample = p_C0Samples[check_sample_buf_ofs(a + y0_base)]; |
| 2003 | int cr00_sample = p_C0Samples[check_sample_buf_ofs(a + y0_base + 64)]; |
| 2004 | |
| 2005 | int cb01_sample = m_pSample_buf[check_sample_buf_ofs(a + y1_base)]; |
| 2006 | int cr01_sample = m_pSample_buf[check_sample_buf_ofs(a + y1_base + 64)]; |
| 2007 | |
| 2008 | int b = (c_x1 >> 3) * BLOCKS_PER_MCU * 64 + (c_x1 & 7); |
| 2009 | int cb10_sample = p_C0Samples[check_sample_buf_ofs(b + y0_base)]; |
| 2010 | int cr10_sample = p_C0Samples[check_sample_buf_ofs(b + y0_base + 64)]; |
| 2011 | |
| 2012 | int cb11_sample = m_pSample_buf[check_sample_buf_ofs(b + y1_base)]; |
| 2013 | int cr11_sample = m_pSample_buf[check_sample_buf_ofs(b + y1_base + 64)]; |
| 2014 | |
| 2015 | const uint8_t* pMuls = &s_muls[row & 1][x & 1][0]; |
| 2016 | int cb = (cb00_sample * pMuls[0] + cb01_sample * pMuls[1] + cb10_sample * pMuls[2] + cb11_sample * pMuls[3] + 8) >> 4; |
| 2017 | int cr = (cr00_sample * pMuls[0] + cr01_sample * pMuls[1] + cr10_sample * pMuls[2] + cr11_sample * pMuls[3] + 8) >> 4; |
| 2018 | |
| 2019 | int rc = m_crr[cr]; |
| 2020 | int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); |
| 2021 | int bc = m_cbb[cb]; |
| 2022 | |
| 2023 | d0[0] = clamp(y_sample + rc); |
| 2024 | d0[1] = clamp(y_sample + gc); |
| 2025 | d0[2] = clamp(y_sample + bc); |
| 2026 | d0[3] = 255; |
| 2027 | |
| 2028 | d0 += 4; |
| 2029 | } |
| 2030 | |
| 2031 | return 1; |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | // Y (1 block per MCU) to 8-bit grayscale |
| 2036 | void jpeg_decoder::gray_convert() |
| 2037 | { |
| 2038 | int row = m_max_mcu_y_size - m_mcu_lines_left; |
| 2039 | uint8* d = m_pScan_line_0; |
| 2040 | uint8* s = m_pSample_buf + row * 8; |
| 2041 | |
| 2042 | for (int i = m_max_mcus_per_row; i > 0; i--) |
| 2043 | { |
| 2044 | *(uint*)d = *(uint*)s; |
| 2045 | *(uint*)(&d[4]) = *(uint*)(&s[4]); |
| 2046 | |
| 2047 | s += 64; |
| 2048 | d += 8; |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | // Find end of image (EOI) marker, so we can return to the user the exact size of the input stream. |
| 2053 | void jpeg_decoder::find_eoi() |
| 2054 | { |
| 2055 | if (!m_progressive_flag) |
| 2056 | { |
| 2057 | // Attempt to read the EOI marker. |
| 2058 | //get_bits_no_markers(m_bits_left & 7); |
| 2059 | |
| 2060 | // Prime the bit buffer |
| 2061 | m_bits_left = 16; |
| 2062 | get_bits(16); |
| 2063 | get_bits(16); |
| 2064 | |
| 2065 | // The next marker _should_ be EOI |
| 2066 | process_markers(); |
| 2067 | } |
| 2068 | |
| 2069 | m_total_bytes_read -= m_in_buf_left; |
| 2070 | } |
| 2071 | |
| 2072 | int jpeg_decoder::decode_next_mcu_row() |
| 2073 | { |
| 2074 | if (setjmp(m_jmp_state)) |
| 2075 | return JPGD_FAILED; |
| 2076 | |
| 2077 | const bool chroma_y_filtering = (m_flags & cFlagLinearChromaFiltering) && ((m_scan_type == JPGD_YH2V2) || (m_scan_type == JPGD_YH1V2)) && (m_image_x_size >= 2) && (m_image_y_size >= 2); |
| 2078 | if (chroma_y_filtering) |
| 2079 | { |
| 2080 | std::swap(m_pSample_buf, m_pSample_buf_prev); |
| 2081 | |
| 2082 | m_sample_buf_prev_valid = true; |
| 2083 | } |
| 2084 | |
| 2085 | if (m_progressive_flag) |
| 2086 | load_next_row(); |
| 2087 | else |
| 2088 | decode_next_row(); |
| 2089 | |
| 2090 | // Find the EOI marker if that was the last row. |
| 2091 | if (m_total_lines_left <= m_max_mcu_y_size) |
| 2092 | find_eoi(); |
| 2093 | |
| 2094 | m_mcu_lines_left = m_max_mcu_y_size; |
| 2095 | return 0; |
| 2096 | } |
| 2097 | |
| 2098 | int jpeg_decoder::decode(const void** pScan_line, uint* pScan_line_len) |
| 2099 | { |
| 2100 | if ((m_error_code) || (!m_ready_flag)) |
| 2101 | return JPGD_FAILED; |
| 2102 | |
| 2103 | if (m_total_lines_left == 0) |
| 2104 | return JPGD_DONE; |
| 2105 | |
| 2106 | const bool chroma_y_filtering = (m_flags & cFlagLinearChromaFiltering) && ((m_scan_type == JPGD_YH2V2) || (m_scan_type == JPGD_YH1V2)) && (m_image_x_size >= 2) && (m_image_y_size >= 2); |
| 2107 | |
| 2108 | bool get_another_mcu_row = false; |
| 2109 | bool got_mcu_early = false; |
| 2110 | if (chroma_y_filtering) |
| 2111 | { |
| 2112 | if (m_total_lines_left == m_image_y_size) |
| 2113 | get_another_mcu_row = true; |
| 2114 | else if ((m_mcu_lines_left == 1) && (m_total_lines_left > 1)) |
| 2115 | { |
| 2116 | get_another_mcu_row = true; |
| 2117 | got_mcu_early = true; |
| 2118 | } |
| 2119 | } |
| 2120 | else |
| 2121 | { |
| 2122 | get_another_mcu_row = (m_mcu_lines_left == 0); |
| 2123 | } |
| 2124 | |
| 2125 | if (get_another_mcu_row) |
| 2126 | { |
| 2127 | int status = decode_next_mcu_row(); |
| 2128 | if (status != 0) |
| 2129 | return status; |
| 2130 | } |
| 2131 | |
| 2132 | switch (m_scan_type) |
| 2133 | { |
| 2134 | case JPGD_YH2V2: |
| 2135 | { |
| 2136 | if ((m_flags & cFlagLinearChromaFiltering) && (m_image_x_size >= 2) && (m_image_y_size >= 2)) |
| 2137 | { |
| 2138 | if (m_num_buffered_scanlines == 1) |
| 2139 | { |
| 2140 | *pScan_line = m_pScan_line_1; |
| 2141 | } |
| 2142 | else if (m_num_buffered_scanlines == 0) |
| 2143 | { |
| 2144 | m_num_buffered_scanlines = H2V2ConvertFiltered(); |
| 2145 | *pScan_line = m_pScan_line_0; |
| 2146 | } |
| 2147 | |
| 2148 | m_num_buffered_scanlines--; |
| 2149 | } |
| 2150 | else |
| 2151 | { |
| 2152 | if ((m_mcu_lines_left & 1) == 0) |
| 2153 | { |
| 2154 | H2V2Convert(); |
| 2155 | *pScan_line = m_pScan_line_0; |
| 2156 | } |
| 2157 | else |
| 2158 | *pScan_line = m_pScan_line_1; |
| 2159 | } |
| 2160 | |
| 2161 | break; |
| 2162 | } |
| 2163 | case JPGD_YH2V1: |
| 2164 | { |
| 2165 | if ((m_flags & cFlagLinearChromaFiltering) && (m_image_x_size >= 2) && (m_image_y_size >= 2)) |
| 2166 | H2V1ConvertFiltered(); |
| 2167 | else |
| 2168 | H2V1Convert(); |
| 2169 | *pScan_line = m_pScan_line_0; |
| 2170 | break; |
| 2171 | } |
| 2172 | case JPGD_YH1V2: |
| 2173 | { |
| 2174 | if (chroma_y_filtering) |
| 2175 | { |
| 2176 | H1V2ConvertFiltered(); |
| 2177 | *pScan_line = m_pScan_line_0; |
| 2178 | } |
| 2179 | else |
| 2180 | { |
| 2181 | if ((m_mcu_lines_left & 1) == 0) |
| 2182 | { |
| 2183 | H1V2Convert(); |
| 2184 | *pScan_line = m_pScan_line_0; |
| 2185 | } |
| 2186 | else |
| 2187 | *pScan_line = m_pScan_line_1; |
| 2188 | } |
| 2189 | |
| 2190 | break; |
| 2191 | } |
| 2192 | case JPGD_YH1V1: |
| 2193 | { |
| 2194 | H1V1Convert(); |
| 2195 | *pScan_line = m_pScan_line_0; |
| 2196 | break; |
| 2197 | } |
| 2198 | case JPGD_GRAYSCALE: |
| 2199 | { |
| 2200 | gray_convert(); |
| 2201 | *pScan_line = m_pScan_line_0; |
| 2202 | |
| 2203 | break; |
| 2204 | } |
| 2205 | } |
| 2206 | |
| 2207 | *pScan_line_len = m_real_dest_bytes_per_scan_line; |
| 2208 | |
| 2209 | if (!got_mcu_early) |
| 2210 | { |
| 2211 | m_mcu_lines_left--; |
| 2212 | } |
| 2213 | |
| 2214 | m_total_lines_left--; |
| 2215 | |
| 2216 | return JPGD_SUCCESS; |
| 2217 | } |
| 2218 | |
| 2219 | // Creates the tables needed for efficient Huffman decoding. |
| 2220 | void jpeg_decoder::make_huff_table(int index, huff_tables* pH) |
| 2221 | { |
| 2222 | int p, i, l, si; |
| 2223 | uint8 huffsize[258]; |
| 2224 | uint huffcode[258]; |
| 2225 | uint code; |
| 2226 | uint subtree; |
| 2227 | int code_size; |
| 2228 | int lastp; |
| 2229 | int nextfreeentry; |
| 2230 | int currententry; |
| 2231 | |
| 2232 | pH->ac_table = m_huff_ac[index] != 0; |
| 2233 | |
| 2234 | p = 0; |
| 2235 | |
| 2236 | for (l = 1; l <= 16; l++) |
| 2237 | { |
| 2238 | for (i = 1; i <= m_huff_num[index][l]; i++) |
| 2239 | { |
| 2240 | if (p >= 257) |
| 2241 | stop_decoding(JPGD_DECODE_ERROR); |
| 2242 | huffsize[p++] = static_cast<uint8>(l); |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | assert(p < 258); |
| 2247 | huffsize[p] = 0; |
| 2248 | |
| 2249 | lastp = p; |
| 2250 | |
| 2251 | code = 0; |
| 2252 | si = huffsize[0]; |
| 2253 | p = 0; |
| 2254 | |
| 2255 | while (huffsize[p]) |
| 2256 | { |
| 2257 | while (huffsize[p] == si) |
| 2258 | { |
| 2259 | if (p >= 257) |
| 2260 | stop_decoding(JPGD_DECODE_ERROR); |
| 2261 | huffcode[p++] = code; |
| 2262 | code++; |
| 2263 | } |
| 2264 | |
| 2265 | code <<= 1; |
| 2266 | si++; |
| 2267 | } |
| 2268 | |
| 2269 | memset(pH->look_up, 0, sizeof(pH->look_up)); |
| 2270 | memset(pH->look_up2, 0, sizeof(pH->look_up2)); |
| 2271 | memset(pH->tree, 0, sizeof(pH->tree)); |
| 2272 | memset(pH->code_size, 0, sizeof(pH->code_size)); |
| 2273 | |
| 2274 | nextfreeentry = -1; |
| 2275 | |
| 2276 | p = 0; |
| 2277 | |
| 2278 | while (p < lastp) |
| 2279 | { |
| 2280 | i = m_huff_val[index][p]; |
| 2281 | |
| 2282 | code = huffcode[p]; |
| 2283 | code_size = huffsize[p]; |
| 2284 | |
| 2285 | assert(i < JPGD_HUFF_CODE_SIZE_MAX_LENGTH); |
| 2286 | pH->code_size[i] = static_cast<uint8>(code_size); |
| 2287 | |
| 2288 | if (code_size <= 8) |
| 2289 | { |
| 2290 | code <<= (8 - code_size); |
| 2291 | |
| 2292 | for (l = 1 << (8 - code_size); l > 0; l--) |
| 2293 | { |
| 2294 | if (code >= 256) |
| 2295 | stop_decoding(JPGD_DECODE_ERROR); |
| 2296 | |
| 2297 | pH->look_up[code] = i; |
| 2298 | |
| 2299 | bool = false; |
| 2300 | int = 0; |
| 2301 | int = i & 15; |
| 2302 | |
| 2303 | int bits_to_fetch = code_size; |
| 2304 | if (num_extra_bits) |
| 2305 | { |
| 2306 | int total_codesize = code_size + num_extra_bits; |
| 2307 | if (total_codesize <= 8) |
| 2308 | { |
| 2309 | has_extrabits = true; |
| 2310 | extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize)); |
| 2311 | |
| 2312 | if (extra_bits > 0x7FFF) |
| 2313 | stop_decoding(JPGD_DECODE_ERROR); |
| 2314 | |
| 2315 | bits_to_fetch += num_extra_bits; |
| 2316 | } |
| 2317 | } |
| 2318 | |
| 2319 | if (!has_extrabits) |
| 2320 | pH->look_up2[code] = i | (bits_to_fetch << 8); |
| 2321 | else |
| 2322 | pH->look_up2[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8); |
| 2323 | |
| 2324 | code++; |
| 2325 | } |
| 2326 | } |
| 2327 | else |
| 2328 | { |
| 2329 | subtree = (code >> (code_size - 8)) & 0xFF; |
| 2330 | |
| 2331 | currententry = pH->look_up[subtree]; |
| 2332 | |
| 2333 | if (currententry == 0) |
| 2334 | { |
| 2335 | pH->look_up[subtree] = currententry = nextfreeentry; |
| 2336 | pH->look_up2[subtree] = currententry = nextfreeentry; |
| 2337 | |
| 2338 | nextfreeentry -= 2; |
| 2339 | } |
| 2340 | |
| 2341 | code <<= (16 - (code_size - 8)); |
| 2342 | |
| 2343 | for (l = code_size; l > 9; l--) |
| 2344 | { |
| 2345 | if ((code & 0x8000) == 0) |
| 2346 | currententry--; |
| 2347 | |
| 2348 | unsigned int idx = -currententry - 1; |
| 2349 | |
| 2350 | if (idx >= JPGD_HUFF_TREE_MAX_LENGTH) |
| 2351 | stop_decoding(JPGD_DECODE_ERROR); |
| 2352 | |
| 2353 | if (pH->tree[idx] == 0) |
| 2354 | { |
| 2355 | pH->tree[idx] = nextfreeentry; |
| 2356 | |
| 2357 | currententry = nextfreeentry; |
| 2358 | |
| 2359 | nextfreeentry -= 2; |
| 2360 | } |
| 2361 | else |
| 2362 | { |
| 2363 | currententry = pH->tree[idx]; |
| 2364 | } |
| 2365 | |
| 2366 | code <<= 1; |
| 2367 | } |
| 2368 | |
| 2369 | if ((code & 0x8000) == 0) |
| 2370 | currententry--; |
| 2371 | |
| 2372 | if ((-currententry - 1) >= JPGD_HUFF_TREE_MAX_LENGTH) |
| 2373 | stop_decoding(JPGD_DECODE_ERROR); |
| 2374 | |
| 2375 | pH->tree[-currententry - 1] = i; |
| 2376 | } |
| 2377 | |
| 2378 | p++; |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | // Verifies the quantization tables needed for this scan are available. |
| 2383 | void jpeg_decoder::check_quant_tables() |
| 2384 | { |
| 2385 | for (int i = 0; i < m_comps_in_scan; i++) |
| 2386 | if (m_quant[m_comp_quant[m_comp_list[i]]] == nullptr) |
| 2387 | stop_decoding(JPGD_UNDEFINED_QUANT_TABLE); |
| 2388 | } |
| 2389 | |
| 2390 | // Verifies that all the Huffman tables needed for this scan are available. |
| 2391 | void jpeg_decoder::check_huff_tables() |
| 2392 | { |
| 2393 | for (int i = 0; i < m_comps_in_scan; i++) |
| 2394 | { |
| 2395 | if ((m_spectral_start == 0) && (m_huff_num[m_comp_dc_tab[m_comp_list[i]]] == nullptr)) |
| 2396 | stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); |
| 2397 | |
| 2398 | if ((m_spectral_end > 0) && (m_huff_num[m_comp_ac_tab[m_comp_list[i]]] == nullptr)) |
| 2399 | stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); |
| 2400 | } |
| 2401 | |
| 2402 | for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++) |
| 2403 | if (m_huff_num[i]) |
| 2404 | { |
| 2405 | if (!m_pHuff_tabs[i]) |
| 2406 | m_pHuff_tabs[i] = (huff_tables*)alloc(sizeof(huff_tables)); |
| 2407 | |
| 2408 | make_huff_table(i, m_pHuff_tabs[i]); |
| 2409 | } |
| 2410 | } |
| 2411 | |
| 2412 | // Determines the component order inside each MCU. |
| 2413 | // Also calcs how many MCU's are on each row, etc. |
| 2414 | bool jpeg_decoder::calc_mcu_block_order() |
| 2415 | { |
| 2416 | int component_num, component_id; |
| 2417 | int max_h_samp = 0, max_v_samp = 0; |
| 2418 | |
| 2419 | for (component_id = 0; component_id < m_comps_in_frame; component_id++) |
| 2420 | { |
| 2421 | if (m_comp_h_samp[component_id] > max_h_samp) |
| 2422 | max_h_samp = m_comp_h_samp[component_id]; |
| 2423 | |
| 2424 | if (m_comp_v_samp[component_id] > max_v_samp) |
| 2425 | max_v_samp = m_comp_v_samp[component_id]; |
| 2426 | } |
| 2427 | |
| 2428 | for (component_id = 0; component_id < m_comps_in_frame; component_id++) |
| 2429 | { |
| 2430 | m_comp_h_blocks[component_id] = ((((m_image_x_size * m_comp_h_samp[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8; |
| 2431 | m_comp_v_blocks[component_id] = ((((m_image_y_size * m_comp_v_samp[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8; |
| 2432 | } |
| 2433 | |
| 2434 | if (m_comps_in_scan == 1) |
| 2435 | { |
| 2436 | m_mcus_per_row = m_comp_h_blocks[m_comp_list[0]]; |
| 2437 | m_mcus_per_col = m_comp_v_blocks[m_comp_list[0]]; |
| 2438 | } |
| 2439 | else |
| 2440 | { |
| 2441 | m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp; |
| 2442 | m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp; |
| 2443 | } |
| 2444 | |
| 2445 | if (m_comps_in_scan == 1) |
| 2446 | { |
| 2447 | m_mcu_org[0] = m_comp_list[0]; |
| 2448 | |
| 2449 | m_blocks_per_mcu = 1; |
| 2450 | } |
| 2451 | else |
| 2452 | { |
| 2453 | m_blocks_per_mcu = 0; |
| 2454 | |
| 2455 | for (component_num = 0; component_num < m_comps_in_scan; component_num++) |
| 2456 | { |
| 2457 | int num_blocks; |
| 2458 | |
| 2459 | component_id = m_comp_list[component_num]; |
| 2460 | |
| 2461 | num_blocks = m_comp_h_samp[component_id] * m_comp_v_samp[component_id]; |
| 2462 | |
| 2463 | while (num_blocks--) |
| 2464 | m_mcu_org[m_blocks_per_mcu++] = component_id; |
| 2465 | } |
| 2466 | } |
| 2467 | |
| 2468 | if (m_blocks_per_mcu > m_max_blocks_per_mcu) |
| 2469 | return false; |
| 2470 | |
| 2471 | for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) |
| 2472 | { |
| 2473 | int comp_id = m_mcu_org[mcu_block]; |
| 2474 | if (comp_id >= JPGD_MAX_QUANT_TABLES) |
| 2475 | return false; |
| 2476 | } |
| 2477 | |
| 2478 | return true; |
| 2479 | } |
| 2480 | |
| 2481 | // Starts a new scan. |
| 2482 | int jpeg_decoder::init_scan() |
| 2483 | { |
| 2484 | if (!locate_sos_marker()) |
| 2485 | return JPGD_FALSE; |
| 2486 | |
| 2487 | if (!calc_mcu_block_order()) |
| 2488 | return JPGD_FALSE; |
| 2489 | |
| 2490 | check_huff_tables(); |
| 2491 | |
| 2492 | check_quant_tables(); |
| 2493 | |
| 2494 | memset(m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); |
| 2495 | |
| 2496 | m_eob_run = 0; |
| 2497 | |
| 2498 | if (m_restart_interval) |
| 2499 | { |
| 2500 | m_restarts_left = m_restart_interval; |
| 2501 | m_next_restart_num = 0; |
| 2502 | } |
| 2503 | |
| 2504 | fix_in_buffer(); |
| 2505 | |
| 2506 | return JPGD_TRUE; |
| 2507 | } |
| 2508 | |
| 2509 | // Starts a frame. Determines if the number of components or sampling factors |
| 2510 | // are supported. |
| 2511 | void jpeg_decoder::init_frame() |
| 2512 | { |
| 2513 | int i; |
| 2514 | |
| 2515 | if (m_comps_in_frame == 1) |
| 2516 | { |
| 2517 | if ((m_comp_h_samp[0] != 1) || (m_comp_v_samp[0] != 1)) |
| 2518 | stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); |
| 2519 | |
| 2520 | m_scan_type = JPGD_GRAYSCALE; |
| 2521 | m_max_blocks_per_mcu = 1; |
| 2522 | m_max_mcu_x_size = 8; |
| 2523 | m_max_mcu_y_size = 8; |
| 2524 | } |
| 2525 | else if (m_comps_in_frame == 3) |
| 2526 | { |
| 2527 | if (((m_comp_h_samp[1] != 1) || (m_comp_v_samp[1] != 1)) || |
| 2528 | ((m_comp_h_samp[2] != 1) || (m_comp_v_samp[2] != 1))) |
| 2529 | stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); |
| 2530 | |
| 2531 | if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) |
| 2532 | { |
| 2533 | m_scan_type = JPGD_YH1V1; |
| 2534 | |
| 2535 | m_max_blocks_per_mcu = 3; |
| 2536 | m_max_mcu_x_size = 8; |
| 2537 | m_max_mcu_y_size = 8; |
| 2538 | } |
| 2539 | else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) |
| 2540 | { |
| 2541 | m_scan_type = JPGD_YH2V1; |
| 2542 | m_max_blocks_per_mcu = 4; |
| 2543 | m_max_mcu_x_size = 16; |
| 2544 | m_max_mcu_y_size = 8; |
| 2545 | } |
| 2546 | else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 2)) |
| 2547 | { |
| 2548 | m_scan_type = JPGD_YH1V2; |
| 2549 | m_max_blocks_per_mcu = 4; |
| 2550 | m_max_mcu_x_size = 8; |
| 2551 | m_max_mcu_y_size = 16; |
| 2552 | } |
| 2553 | else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) |
| 2554 | { |
| 2555 | m_scan_type = JPGD_YH2V2; |
| 2556 | m_max_blocks_per_mcu = 6; |
| 2557 | m_max_mcu_x_size = 16; |
| 2558 | m_max_mcu_y_size = 16; |
| 2559 | } |
| 2560 | else |
| 2561 | stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); |
| 2562 | } |
| 2563 | else |
| 2564 | stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); |
| 2565 | |
| 2566 | m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size; |
| 2567 | m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size; |
| 2568 | |
| 2569 | // These values are for the *destination* pixels: after conversion. |
| 2570 | if (m_scan_type == JPGD_GRAYSCALE) |
| 2571 | m_dest_bytes_per_pixel = 1; |
| 2572 | else |
| 2573 | m_dest_bytes_per_pixel = 4; |
| 2574 | |
| 2575 | m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel; |
| 2576 | |
| 2577 | m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel); |
| 2578 | |
| 2579 | // Initialize two scan line buffers. |
| 2580 | m_pScan_line_0 = (uint8*)alloc(m_dest_bytes_per_scan_line, true); |
| 2581 | if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2)) |
| 2582 | m_pScan_line_1 = (uint8*)alloc(m_dest_bytes_per_scan_line, true); |
| 2583 | |
| 2584 | m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu; |
| 2585 | |
| 2586 | // Should never happen |
| 2587 | if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW) |
| 2588 | stop_decoding(JPGD_DECODE_ERROR); |
| 2589 | |
| 2590 | // Allocate the coefficient buffer, enough for one MCU |
| 2591 | m_pMCU_coefficients = (jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * sizeof(jpgd_block_t)); |
| 2592 | |
| 2593 | for (i = 0; i < m_max_blocks_per_mcu; i++) |
| 2594 | m_mcu_block_max_zag[i] = 64; |
| 2595 | |
| 2596 | m_pSample_buf = (uint8*)alloc(m_max_blocks_per_row * 64); |
| 2597 | m_pSample_buf_prev = (uint8*)alloc(m_max_blocks_per_row * 64); |
| 2598 | |
| 2599 | m_total_lines_left = m_image_y_size; |
| 2600 | |
| 2601 | m_mcu_lines_left = 0; |
| 2602 | |
| 2603 | create_look_ups(); |
| 2604 | } |
| 2605 | |
| 2606 | // The coeff_buf series of methods originally stored the coefficients |
| 2607 | // into a "virtual" file which was located in EMS, XMS, or a disk file. A cache |
| 2608 | // was used to make this process more efficient. Now, we can store the entire |
| 2609 | // thing in RAM. |
| 2610 | jpeg_decoder::coeff_buf* jpeg_decoder::coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y) |
| 2611 | { |
| 2612 | coeff_buf* cb = (coeff_buf*)alloc(sizeof(coeff_buf)); |
| 2613 | |
| 2614 | cb->block_num_x = block_num_x; |
| 2615 | cb->block_num_y = block_num_y; |
| 2616 | cb->block_len_x = block_len_x; |
| 2617 | cb->block_len_y = block_len_y; |
| 2618 | cb->block_size = (block_len_x * block_len_y) * sizeof(jpgd_block_t); |
| 2619 | cb->pData = (uint8*)alloc(cb->block_size * block_num_x * block_num_y, true); |
| 2620 | return cb; |
| 2621 | } |
| 2622 | |
| 2623 | inline jpgd_block_t* jpeg_decoder::coeff_buf_getp(coeff_buf* cb, int block_x, int block_y) |
| 2624 | { |
| 2625 | if ((block_x >= cb->block_num_x) || (block_y >= cb->block_num_y)) |
| 2626 | stop_decoding(JPGD_DECODE_ERROR); |
| 2627 | |
| 2628 | return (jpgd_block_t*)(cb->pData + block_x * cb->block_size + block_y * (cb->block_size * cb->block_num_x)); |
| 2629 | } |
| 2630 | |
| 2631 | // The following methods decode the various types of m_blocks encountered |
| 2632 | // in progressively encoded images. |
| 2633 | void jpeg_decoder::decode_block_dc_first(jpeg_decoder* pD, int component_id, int block_x, int block_y) |
| 2634 | { |
| 2635 | int s, r; |
| 2636 | jpgd_block_t* p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); |
| 2637 | |
| 2638 | if ((s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_dc_tab[component_id]])) != 0) |
| 2639 | { |
| 2640 | if (s >= 16) |
| 2641 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2642 | |
| 2643 | r = pD->get_bits_no_markers(s); |
| 2644 | s = JPGD_HUFF_EXTEND(r, s); |
| 2645 | } |
| 2646 | |
| 2647 | pD->m_last_dc_val[component_id] = (s += pD->m_last_dc_val[component_id]); |
| 2648 | |
| 2649 | p[0] = static_cast<jpgd_block_t>(s << pD->m_successive_low); |
| 2650 | } |
| 2651 | |
| 2652 | void jpeg_decoder::decode_block_dc_refine(jpeg_decoder* pD, int component_id, int block_x, int block_y) |
| 2653 | { |
| 2654 | if (pD->get_bits_no_markers(1)) |
| 2655 | { |
| 2656 | jpgd_block_t* p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); |
| 2657 | |
| 2658 | p[0] |= (1 << pD->m_successive_low); |
| 2659 | } |
| 2660 | } |
| 2661 | |
| 2662 | void jpeg_decoder::decode_block_ac_first(jpeg_decoder* pD, int component_id, int block_x, int block_y) |
| 2663 | { |
| 2664 | int k, s, r; |
| 2665 | |
| 2666 | if (pD->m_eob_run) |
| 2667 | { |
| 2668 | pD->m_eob_run--; |
| 2669 | return; |
| 2670 | } |
| 2671 | |
| 2672 | jpgd_block_t* p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); |
| 2673 | |
| 2674 | for (k = pD->m_spectral_start; k <= pD->m_spectral_end; k++) |
| 2675 | { |
| 2676 | unsigned int idx = pD->m_comp_ac_tab[component_id]; |
| 2677 | if (idx >= JPGD_MAX_HUFF_TABLES) |
| 2678 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2679 | |
| 2680 | s = pD->huff_decode(pD->m_pHuff_tabs[idx]); |
| 2681 | |
| 2682 | r = s >> 4; |
| 2683 | s &= 15; |
| 2684 | |
| 2685 | if (s) |
| 2686 | { |
| 2687 | if ((k += r) > 63) |
| 2688 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2689 | |
| 2690 | r = pD->get_bits_no_markers(s); |
| 2691 | s = JPGD_HUFF_EXTEND(r, s); |
| 2692 | |
| 2693 | p[g_ZAG[k]] = static_cast<jpgd_block_t>(s << pD->m_successive_low); |
| 2694 | } |
| 2695 | else |
| 2696 | { |
| 2697 | if (r == 15) |
| 2698 | { |
| 2699 | if ((k += 15) > 63) |
| 2700 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2701 | } |
| 2702 | else |
| 2703 | { |
| 2704 | pD->m_eob_run = 1 << r; |
| 2705 | |
| 2706 | if (r) |
| 2707 | pD->m_eob_run += pD->get_bits_no_markers(r); |
| 2708 | |
| 2709 | pD->m_eob_run--; |
| 2710 | |
| 2711 | break; |
| 2712 | } |
| 2713 | } |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | void jpeg_decoder::decode_block_ac_refine(jpeg_decoder* pD, int component_id, int block_x, int block_y) |
| 2718 | { |
| 2719 | int s, k, r; |
| 2720 | |
| 2721 | int p1 = 1 << pD->m_successive_low; |
| 2722 | |
| 2723 | //int m1 = (-1) << pD->m_successive_low; |
| 2724 | int m1 = static_cast<int>((UINT32_MAX << pD->m_successive_low)); |
| 2725 | |
| 2726 | jpgd_block_t* p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); |
| 2727 | if (pD->m_spectral_end > 63) |
| 2728 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2729 | |
| 2730 | k = pD->m_spectral_start; |
| 2731 | |
| 2732 | if (pD->m_eob_run == 0) |
| 2733 | { |
| 2734 | for (; k <= pD->m_spectral_end; k++) |
| 2735 | { |
| 2736 | unsigned int idx = pD->m_comp_ac_tab[component_id]; |
| 2737 | if (idx >= JPGD_MAX_HUFF_TABLES) |
| 2738 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2739 | |
| 2740 | s = pD->huff_decode(pD->m_pHuff_tabs[idx]); |
| 2741 | |
| 2742 | r = s >> 4; |
| 2743 | s &= 15; |
| 2744 | |
| 2745 | if (s) |
| 2746 | { |
| 2747 | if (s != 1) |
| 2748 | pD->stop_decoding(JPGD_DECODE_ERROR); |
| 2749 | |
| 2750 | if (pD->get_bits_no_markers(1)) |
| 2751 | s = p1; |
| 2752 | else |
| 2753 | s = m1; |
| 2754 | } |
| 2755 | else |
| 2756 | { |
| 2757 | if (r != 15) |
| 2758 | { |
| 2759 | pD->m_eob_run = 1 << r; |
| 2760 | |
| 2761 | if (r) |
| 2762 | pD->m_eob_run += pD->get_bits_no_markers(r); |
| 2763 | |
| 2764 | break; |
| 2765 | } |
| 2766 | } |
| 2767 | |
| 2768 | do |
| 2769 | { |
| 2770 | jpgd_block_t* this_coef = p + g_ZAG[k & 63]; |
| 2771 | |
| 2772 | if (*this_coef != 0) |
| 2773 | { |
| 2774 | if (pD->get_bits_no_markers(1)) |
| 2775 | { |
| 2776 | if ((*this_coef & p1) == 0) |
| 2777 | { |
| 2778 | if (*this_coef >= 0) |
| 2779 | *this_coef = static_cast<jpgd_block_t>(*this_coef + p1); |
| 2780 | else |
| 2781 | *this_coef = static_cast<jpgd_block_t>(*this_coef + m1); |
| 2782 | } |
| 2783 | } |
| 2784 | } |
| 2785 | else |
| 2786 | { |
| 2787 | if (--r < 0) |
| 2788 | break; |
| 2789 | } |
| 2790 | |
| 2791 | k++; |
| 2792 | |
| 2793 | } while (k <= pD->m_spectral_end); |
| 2794 | |
| 2795 | if ((s) && (k < 64)) |
| 2796 | { |
| 2797 | p[g_ZAG[k]] = static_cast<jpgd_block_t>(s); |
| 2798 | } |
| 2799 | } |
| 2800 | } |
| 2801 | |
| 2802 | if (pD->m_eob_run > 0) |
| 2803 | { |
| 2804 | for (; k <= pD->m_spectral_end; k++) |
| 2805 | { |
| 2806 | jpgd_block_t* this_coef = p + g_ZAG[k & 63]; // logical AND to shut up static code analysis |
| 2807 | |
| 2808 | if (*this_coef != 0) |
| 2809 | { |
| 2810 | if (pD->get_bits_no_markers(1)) |
| 2811 | { |
| 2812 | if ((*this_coef & p1) == 0) |
| 2813 | { |
| 2814 | if (*this_coef >= 0) |
| 2815 | *this_coef = static_cast<jpgd_block_t>(*this_coef + p1); |
| 2816 | else |
| 2817 | *this_coef = static_cast<jpgd_block_t>(*this_coef + m1); |
| 2818 | } |
| 2819 | } |
| 2820 | } |
| 2821 | } |
| 2822 | |
| 2823 | pD->m_eob_run--; |
| 2824 | } |
| 2825 | } |
| 2826 | |
| 2827 | // Decode a scan in a progressively encoded image. |
| 2828 | void jpeg_decoder::decode_scan(pDecode_block_func decode_block_func) |
| 2829 | { |
| 2830 | int mcu_row, mcu_col, mcu_block; |
| 2831 | int block_x_mcu[JPGD_MAX_COMPONENTS], block_y_mcu[JPGD_MAX_COMPONENTS]; |
| 2832 | |
| 2833 | memset(block_y_mcu, 0, sizeof(block_y_mcu)); |
| 2834 | |
| 2835 | for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++) |
| 2836 | { |
| 2837 | int component_num, component_id; |
| 2838 | |
| 2839 | memset(block_x_mcu, 0, sizeof(block_x_mcu)); |
| 2840 | |
| 2841 | for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) |
| 2842 | { |
| 2843 | int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; |
| 2844 | |
| 2845 | if ((m_restart_interval) && (m_restarts_left == 0)) |
| 2846 | process_restart(); |
| 2847 | |
| 2848 | for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) |
| 2849 | { |
| 2850 | component_id = m_mcu_org[mcu_block]; |
| 2851 | |
| 2852 | decode_block_func(this, component_id, block_x_mcu[component_id] + block_x_mcu_ofs, block_y_mcu[component_id] + block_y_mcu_ofs); |
| 2853 | |
| 2854 | if (m_comps_in_scan == 1) |
| 2855 | block_x_mcu[component_id]++; |
| 2856 | else |
| 2857 | { |
| 2858 | if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) |
| 2859 | { |
| 2860 | block_x_mcu_ofs = 0; |
| 2861 | |
| 2862 | if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) |
| 2863 | { |
| 2864 | block_y_mcu_ofs = 0; |
| 2865 | block_x_mcu[component_id] += m_comp_h_samp[component_id]; |
| 2866 | } |
| 2867 | } |
| 2868 | } |
| 2869 | } |
| 2870 | |
| 2871 | m_restarts_left--; |
| 2872 | } |
| 2873 | |
| 2874 | if (m_comps_in_scan == 1) |
| 2875 | block_y_mcu[m_comp_list[0]]++; |
| 2876 | else |
| 2877 | { |
| 2878 | for (component_num = 0; component_num < m_comps_in_scan; component_num++) |
| 2879 | { |
| 2880 | component_id = m_comp_list[component_num]; |
| 2881 | block_y_mcu[component_id] += m_comp_v_samp[component_id]; |
| 2882 | } |
| 2883 | } |
| 2884 | } |
| 2885 | } |
| 2886 | |
| 2887 | // Decode a progressively encoded image. |
| 2888 | void jpeg_decoder::init_progressive() |
| 2889 | { |
| 2890 | int i; |
| 2891 | |
| 2892 | if (m_comps_in_frame == 4) |
| 2893 | stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); |
| 2894 | |
| 2895 | // Allocate the coefficient buffers. |
| 2896 | for (i = 0; i < m_comps_in_frame; i++) |
| 2897 | { |
| 2898 | m_dc_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 1, 1); |
| 2899 | m_ac_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 8, 8); |
| 2900 | } |
| 2901 | |
| 2902 | // See https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf |
| 2903 | uint32_t total_scans = 0; |
| 2904 | const uint32_t MAX_SCANS_TO_PROCESS = 1000; |
| 2905 | |
| 2906 | for (; ; ) |
| 2907 | { |
| 2908 | int dc_only_scan, refinement_scan; |
| 2909 | pDecode_block_func decode_block_func; |
| 2910 | |
| 2911 | if (!init_scan()) |
| 2912 | break; |
| 2913 | |
| 2914 | dc_only_scan = (m_spectral_start == 0); |
| 2915 | refinement_scan = (m_successive_high != 0); |
| 2916 | |
| 2917 | if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63)) |
| 2918 | stop_decoding(JPGD_BAD_SOS_SPECTRAL); |
| 2919 | |
| 2920 | if (dc_only_scan) |
| 2921 | { |
| 2922 | if (m_spectral_end) |
| 2923 | stop_decoding(JPGD_BAD_SOS_SPECTRAL); |
| 2924 | } |
| 2925 | else if (m_comps_in_scan != 1) /* AC scans can only contain one component */ |
| 2926 | stop_decoding(JPGD_BAD_SOS_SPECTRAL); |
| 2927 | |
| 2928 | if ((refinement_scan) && (m_successive_low != m_successive_high - 1)) |
| 2929 | stop_decoding(JPGD_BAD_SOS_SUCCESSIVE); |
| 2930 | |
| 2931 | if (dc_only_scan) |
| 2932 | { |
| 2933 | if (refinement_scan) |
| 2934 | decode_block_func = decode_block_dc_refine; |
| 2935 | else |
| 2936 | decode_block_func = decode_block_dc_first; |
| 2937 | } |
| 2938 | else |
| 2939 | { |
| 2940 | if (refinement_scan) |
| 2941 | decode_block_func = decode_block_ac_refine; |
| 2942 | else |
| 2943 | decode_block_func = decode_block_ac_first; |
| 2944 | } |
| 2945 | |
| 2946 | decode_scan(decode_block_func); |
| 2947 | |
| 2948 | m_bits_left = 16; |
| 2949 | get_bits(16); |
| 2950 | get_bits(16); |
| 2951 | |
| 2952 | total_scans++; |
| 2953 | if (total_scans > MAX_SCANS_TO_PROCESS) |
| 2954 | stop_decoding(JPGD_TOO_MANY_SCANS); |
| 2955 | } |
| 2956 | |
| 2957 | m_comps_in_scan = m_comps_in_frame; |
| 2958 | |
| 2959 | for (i = 0; i < m_comps_in_frame; i++) |
| 2960 | m_comp_list[i] = i; |
| 2961 | |
| 2962 | if (!calc_mcu_block_order()) |
| 2963 | stop_decoding(JPGD_DECODE_ERROR); |
| 2964 | } |
| 2965 | |
| 2966 | void jpeg_decoder::init_sequential() |
| 2967 | { |
| 2968 | if (!init_scan()) |
| 2969 | stop_decoding(JPGD_UNEXPECTED_MARKER); |
| 2970 | } |
| 2971 | |
| 2972 | void jpeg_decoder::decode_start() |
| 2973 | { |
| 2974 | init_frame(); |
| 2975 | |
| 2976 | if (m_progressive_flag) |
| 2977 | init_progressive(); |
| 2978 | else |
| 2979 | init_sequential(); |
| 2980 | } |
| 2981 | |
| 2982 | void jpeg_decoder::decode_init(jpeg_decoder_stream* pStream, uint32_t flags) |
| 2983 | { |
| 2984 | init(pStream, flags); |
| 2985 | locate_sof_marker(); |
| 2986 | } |
| 2987 | |
| 2988 | jpeg_decoder::jpeg_decoder(jpeg_decoder_stream* pStream, uint32_t flags) |
| 2989 | { |
| 2990 | if (setjmp(m_jmp_state)) |
| 2991 | return; |
| 2992 | decode_init(pStream, flags); |
| 2993 | } |
| 2994 | |
| 2995 | int jpeg_decoder::begin_decoding() |
| 2996 | { |
| 2997 | if (m_ready_flag) |
| 2998 | return JPGD_SUCCESS; |
| 2999 | |
| 3000 | if (m_error_code) |
| 3001 | return JPGD_FAILED; |
| 3002 | |
| 3003 | if (setjmp(m_jmp_state)) |
| 3004 | return JPGD_FAILED; |
| 3005 | |
| 3006 | decode_start(); |
| 3007 | |
| 3008 | m_ready_flag = true; |
| 3009 | |
| 3010 | return JPGD_SUCCESS; |
| 3011 | } |
| 3012 | |
| 3013 | jpeg_decoder::~jpeg_decoder() |
| 3014 | { |
| 3015 | free_all_blocks(); |
| 3016 | } |
| 3017 | |
| 3018 | jpeg_decoder_file_stream::jpeg_decoder_file_stream() |
| 3019 | { |
| 3020 | m_pFile = nullptr; |
| 3021 | m_eof_flag = false; |
| 3022 | m_error_flag = false; |
| 3023 | } |
| 3024 | |
| 3025 | void jpeg_decoder_file_stream::close() |
| 3026 | { |
| 3027 | if (m_pFile) |
| 3028 | { |
| 3029 | fclose(m_pFile); |
| 3030 | m_pFile = nullptr; |
| 3031 | } |
| 3032 | |
| 3033 | m_eof_flag = false; |
| 3034 | m_error_flag = false; |
| 3035 | } |
| 3036 | |
| 3037 | jpeg_decoder_file_stream::~jpeg_decoder_file_stream() |
| 3038 | { |
| 3039 | close(); |
| 3040 | } |
| 3041 | |
| 3042 | bool jpeg_decoder_file_stream::open(const char* Pfilename) |
| 3043 | { |
| 3044 | close(); |
| 3045 | |
| 3046 | m_eof_flag = false; |
| 3047 | m_error_flag = false; |
| 3048 | |
| 3049 | #if defined(_MSC_VER) |
| 3050 | m_pFile = nullptr; |
| 3051 | fopen_s(&m_pFile, Pfilename, "rb" ); |
| 3052 | #else |
| 3053 | m_pFile = fopen(Pfilename, "rb" ); |
| 3054 | #endif |
| 3055 | return m_pFile != nullptr; |
| 3056 | } |
| 3057 | |
| 3058 | int jpeg_decoder_file_stream::read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag) |
| 3059 | { |
| 3060 | if (!m_pFile) |
| 3061 | return -1; |
| 3062 | |
| 3063 | if (m_eof_flag) |
| 3064 | { |
| 3065 | *pEOF_flag = true; |
| 3066 | return 0; |
| 3067 | } |
| 3068 | |
| 3069 | if (m_error_flag) |
| 3070 | return -1; |
| 3071 | |
| 3072 | int bytes_read = static_cast<int>(fread(pBuf, 1, max_bytes_to_read, m_pFile)); |
| 3073 | if (bytes_read < max_bytes_to_read) |
| 3074 | { |
| 3075 | if (ferror(m_pFile)) |
| 3076 | { |
| 3077 | m_error_flag = true; |
| 3078 | return -1; |
| 3079 | } |
| 3080 | |
| 3081 | m_eof_flag = true; |
| 3082 | *pEOF_flag = true; |
| 3083 | } |
| 3084 | |
| 3085 | return bytes_read; |
| 3086 | } |
| 3087 | |
| 3088 | bool jpeg_decoder_mem_stream::open(const uint8* pSrc_data, uint size) |
| 3089 | { |
| 3090 | close(); |
| 3091 | m_pSrc_data = pSrc_data; |
| 3092 | m_ofs = 0; |
| 3093 | m_size = size; |
| 3094 | return true; |
| 3095 | } |
| 3096 | |
| 3097 | int jpeg_decoder_mem_stream::read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag) |
| 3098 | { |
| 3099 | *pEOF_flag = false; |
| 3100 | |
| 3101 | if (!m_pSrc_data) |
| 3102 | return -1; |
| 3103 | |
| 3104 | uint bytes_remaining = m_size - m_ofs; |
| 3105 | if ((uint)max_bytes_to_read > bytes_remaining) |
| 3106 | { |
| 3107 | max_bytes_to_read = bytes_remaining; |
| 3108 | *pEOF_flag = true; |
| 3109 | } |
| 3110 | |
| 3111 | memcpy(pBuf, m_pSrc_data + m_ofs, max_bytes_to_read); |
| 3112 | m_ofs += max_bytes_to_read; |
| 3113 | |
| 3114 | return max_bytes_to_read; |
| 3115 | } |
| 3116 | |
| 3117 | unsigned char* decompress_jpeg_image_from_stream(jpeg_decoder_stream* pStream, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags) |
| 3118 | { |
| 3119 | if (!actual_comps) |
| 3120 | return nullptr; |
| 3121 | *actual_comps = 0; |
| 3122 | |
| 3123 | if ((!pStream) || (!width) || (!height) || (!req_comps)) |
| 3124 | return nullptr; |
| 3125 | |
| 3126 | if ((req_comps != 1) && (req_comps != 3) && (req_comps != 4)) |
| 3127 | return nullptr; |
| 3128 | |
| 3129 | jpeg_decoder decoder(pStream, flags); |
| 3130 | if (decoder.get_error_code() != JPGD_SUCCESS) |
| 3131 | return nullptr; |
| 3132 | |
| 3133 | const int image_width = decoder.get_width(), image_height = decoder.get_height(); |
| 3134 | *width = image_width; |
| 3135 | *height = image_height; |
| 3136 | *actual_comps = decoder.get_num_components(); |
| 3137 | |
| 3138 | if (decoder.begin_decoding() != JPGD_SUCCESS) |
| 3139 | return nullptr; |
| 3140 | |
| 3141 | const int dst_bpl = image_width * req_comps; |
| 3142 | |
| 3143 | uint8* pImage_data = (uint8*)jpgd_malloc(dst_bpl * image_height); |
| 3144 | if (!pImage_data) |
| 3145 | return nullptr; |
| 3146 | |
| 3147 | for (int y = 0; y < image_height; y++) |
| 3148 | { |
| 3149 | const uint8* pScan_line; |
| 3150 | uint scan_line_len; |
| 3151 | if (decoder.decode((const void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) |
| 3152 | { |
| 3153 | jpgd_free(pImage_data); |
| 3154 | return nullptr; |
| 3155 | } |
| 3156 | |
| 3157 | uint8* pDst = pImage_data + y * dst_bpl; |
| 3158 | |
| 3159 | if (((req_comps == 1) && (decoder.get_num_components() == 1)) || ((req_comps == 4) && (decoder.get_num_components() == 3))) |
| 3160 | memcpy(pDst, pScan_line, dst_bpl); |
| 3161 | else if (decoder.get_num_components() == 1) |
| 3162 | { |
| 3163 | if (req_comps == 3) |
| 3164 | { |
| 3165 | for (int x = 0; x < image_width; x++) |
| 3166 | { |
| 3167 | uint8 luma = pScan_line[x]; |
| 3168 | pDst[0] = luma; |
| 3169 | pDst[1] = luma; |
| 3170 | pDst[2] = luma; |
| 3171 | pDst += 3; |
| 3172 | } |
| 3173 | } |
| 3174 | else |
| 3175 | { |
| 3176 | for (int x = 0; x < image_width; x++) |
| 3177 | { |
| 3178 | uint8 luma = pScan_line[x]; |
| 3179 | pDst[0] = luma; |
| 3180 | pDst[1] = luma; |
| 3181 | pDst[2] = luma; |
| 3182 | pDst[3] = 255; |
| 3183 | pDst += 4; |
| 3184 | } |
| 3185 | } |
| 3186 | } |
| 3187 | else if (decoder.get_num_components() == 3) |
| 3188 | { |
| 3189 | if (req_comps == 1) |
| 3190 | { |
| 3191 | const int YR = 19595, YG = 38470, YB = 7471; |
| 3192 | for (int x = 0; x < image_width; x++) |
| 3193 | { |
| 3194 | int r = pScan_line[x * 4 + 0]; |
| 3195 | int g = pScan_line[x * 4 + 1]; |
| 3196 | int b = pScan_line[x * 4 + 2]; |
| 3197 | *pDst++ = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); |
| 3198 | } |
| 3199 | } |
| 3200 | else |
| 3201 | { |
| 3202 | for (int x = 0; x < image_width; x++) |
| 3203 | { |
| 3204 | pDst[0] = pScan_line[x * 4 + 0]; |
| 3205 | pDst[1] = pScan_line[x * 4 + 1]; |
| 3206 | pDst[2] = pScan_line[x * 4 + 2]; |
| 3207 | pDst += 3; |
| 3208 | } |
| 3209 | } |
| 3210 | } |
| 3211 | } |
| 3212 | |
| 3213 | return pImage_data; |
| 3214 | } |
| 3215 | |
| 3216 | unsigned char* decompress_jpeg_image_from_memory(const unsigned char* pSrc_data, int src_data_size, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags) |
| 3217 | { |
| 3218 | jpgd::jpeg_decoder_mem_stream mem_stream(pSrc_data, src_data_size); |
| 3219 | return decompress_jpeg_image_from_stream(&mem_stream, width, height, actual_comps, req_comps, flags); |
| 3220 | } |
| 3221 | |
| 3222 | unsigned char* decompress_jpeg_image_from_file(const char* pSrc_filename, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags) |
| 3223 | { |
| 3224 | jpgd::jpeg_decoder_file_stream file_stream; |
| 3225 | if (!file_stream.open(pSrc_filename)) |
| 3226 | return nullptr; |
| 3227 | return decompress_jpeg_image_from_stream(&file_stream, width, height, actual_comps, req_comps, flags); |
| 3228 | } |
| 3229 | |
| 3230 | } // namespace jpgd |
| 3231 | |