| 1 | // basisu_containers.h |
| 2 | #pragma once |
| 3 | #include <stdlib.h> |
| 4 | #include <stdio.h> |
| 5 | #include <stdint.h> |
| 6 | #include <assert.h> |
| 7 | #include <algorithm> |
| 8 | |
| 9 | #if defined(__linux__) && !defined(ANDROID) |
| 10 | // Only for malloc_usable_size() in basisu_containers_impl.h |
| 11 | #include <malloc.h> |
| 12 | #define HAS_MALLOC_USABLE_SIZE 1 |
| 13 | #endif |
| 14 | |
| 15 | // Set to 1 to always check vector operator[], front(), and back() even in release. |
| 16 | #define BASISU_VECTOR_FORCE_CHECKING 0 |
| 17 | |
| 18 | // If 1, the vector container will not query the CRT to get the size of resized memory blocks. |
| 19 | #define BASISU_VECTOR_DETERMINISTIC 1 |
| 20 | |
| 21 | #ifdef _MSC_VER |
| 22 | #define BASISU_FORCE_INLINE __forceinline |
| 23 | #else |
| 24 | #define BASISU_FORCE_INLINE inline |
| 25 | #endif |
| 26 | |
| 27 | namespace basisu |
| 28 | { |
| 29 | enum { cInvalidIndex = -1 }; |
| 30 | |
| 31 | namespace helpers |
| 32 | { |
| 33 | inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); } |
| 34 | inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); } |
| 35 | template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; } |
| 36 | template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; } |
| 37 | |
| 38 | inline uint32_t floor_log2i(uint32_t v) |
| 39 | { |
| 40 | uint32_t l = 0; |
| 41 | while (v > 1U) |
| 42 | { |
| 43 | v >>= 1; |
| 44 | l++; |
| 45 | } |
| 46 | return l; |
| 47 | } |
| 48 | |
| 49 | inline uint32_t next_pow2(uint32_t val) |
| 50 | { |
| 51 | val--; |
| 52 | val |= val >> 16; |
| 53 | val |= val >> 8; |
| 54 | val |= val >> 4; |
| 55 | val |= val >> 2; |
| 56 | val |= val >> 1; |
| 57 | return val + 1; |
| 58 | } |
| 59 | |
| 60 | inline uint64_t next_pow2(uint64_t val) |
| 61 | { |
| 62 | val--; |
| 63 | val |= val >> 32; |
| 64 | val |= val >> 16; |
| 65 | val |= val >> 8; |
| 66 | val |= val >> 4; |
| 67 | val |= val >> 2; |
| 68 | val |= val >> 1; |
| 69 | return val + 1; |
| 70 | } |
| 71 | } // namespace helpers |
| 72 | |
| 73 | template <typename T> |
| 74 | inline T* construct(T* p) |
| 75 | { |
| 76 | return new (static_cast<void*>(p)) T; |
| 77 | } |
| 78 | |
| 79 | template <typename T, typename U> |
| 80 | inline T* construct(T* p, const U& init) |
| 81 | { |
| 82 | return new (static_cast<void*>(p)) T(init); |
| 83 | } |
| 84 | |
| 85 | template <typename T> |
| 86 | inline void construct_array(T* p, size_t n) |
| 87 | { |
| 88 | T* q = p + n; |
| 89 | for (; p != q; ++p) |
| 90 | new (static_cast<void*>(p)) T; |
| 91 | } |
| 92 | |
| 93 | template <typename T, typename U> |
| 94 | inline void construct_array(T* p, size_t n, const U& init) |
| 95 | { |
| 96 | T* q = p + n; |
| 97 | for (; p != q; ++p) |
| 98 | new (static_cast<void*>(p)) T(init); |
| 99 | } |
| 100 | |
| 101 | template <typename T> |
| 102 | inline void destruct(T* p) |
| 103 | { |
| 104 | (void)p; |
| 105 | p->~T(); |
| 106 | } |
| 107 | |
| 108 | template <typename T> inline void destruct_array(T* p, size_t n) |
| 109 | { |
| 110 | T* q = p + n; |
| 111 | for (; p != q; ++p) |
| 112 | p->~T(); |
| 113 | } |
| 114 | |
| 115 | template<typename T> struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; |
| 116 | |
| 117 | template<> struct int_traits<int8_t> { enum { cMin = INT8_MIN, cMax = INT8_MAX, cSigned = true }; }; |
| 118 | template<> struct int_traits<int16_t> { enum { cMin = INT16_MIN, cMax = INT16_MAX, cSigned = true }; }; |
| 119 | template<> struct int_traits<int32_t> { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; |
| 120 | |
| 121 | template<> struct int_traits<uint8_t> { enum { cMin = 0, cMax = UINT8_MAX, cSigned = false }; }; |
| 122 | template<> struct int_traits<uint16_t> { enum { cMin = 0, cMax = UINT16_MAX, cSigned = false }; }; |
| 123 | template<> struct int_traits<uint32_t> { enum { cMin = 0, cMax = UINT32_MAX, cSigned = false }; }; |
| 124 | |
| 125 | template<typename T> |
| 126 | struct scalar_type |
| 127 | { |
| 128 | enum { cFlag = false }; |
| 129 | static inline void construct(T* p) { basisu::construct(p); } |
| 130 | static inline void construct(T* p, const T& init) { basisu::construct(p, init); } |
| 131 | static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); } |
| 132 | static inline void destruct(T* p) { basisu::destruct(p); } |
| 133 | static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); } |
| 134 | }; |
| 135 | |
| 136 | template<typename T> struct scalar_type<T*> |
| 137 | { |
| 138 | enum { cFlag = true }; |
| 139 | static inline void construct(T** p) { memset(p, 0, sizeof(T*)); } |
| 140 | static inline void construct(T** p, T* init) { *p = init; } |
| 141 | static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); } |
| 142 | static inline void destruct(T** p) { p; } |
| 143 | static inline void destruct_array(T** p, size_t n) { p, n; } |
| 144 | }; |
| 145 | |
| 146 | #define BASISU_DEFINE_BUILT_IN_TYPE(X) \ |
| 147 | template<> struct scalar_type<X> { \ |
| 148 | enum { cFlag = true }; \ |
| 149 | static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \ |
| 150 | static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \ |
| 151 | static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \ |
| 152 | static inline void destruct(X* p) { p; } \ |
| 153 | static inline void destruct_array(X* p, size_t n) { p, n; } }; |
| 154 | |
| 155 | BASISU_DEFINE_BUILT_IN_TYPE(bool) |
| 156 | BASISU_DEFINE_BUILT_IN_TYPE(char) |
| 157 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned char) |
| 158 | BASISU_DEFINE_BUILT_IN_TYPE(short) |
| 159 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned short) |
| 160 | BASISU_DEFINE_BUILT_IN_TYPE(int) |
| 161 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned int) |
| 162 | BASISU_DEFINE_BUILT_IN_TYPE(long) |
| 163 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned long) |
| 164 | #ifdef __GNUC__ |
| 165 | BASISU_DEFINE_BUILT_IN_TYPE(long long) |
| 166 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long) |
| 167 | #else |
| 168 | BASISU_DEFINE_BUILT_IN_TYPE(__int64) |
| 169 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64) |
| 170 | #endif |
| 171 | BASISU_DEFINE_BUILT_IN_TYPE(float) |
| 172 | BASISU_DEFINE_BUILT_IN_TYPE(double) |
| 173 | BASISU_DEFINE_BUILT_IN_TYPE(long double) |
| 174 | |
| 175 | #undef BASISU_DEFINE_BUILT_IN_TYPE |
| 176 | |
| 177 | template<typename T> |
| 178 | struct bitwise_movable { enum { cFlag = false }; }; |
| 179 | |
| 180 | #define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; }; |
| 181 | |
| 182 | template<typename T> |
| 183 | struct bitwise_copyable { enum { cFlag = false }; }; |
| 184 | |
| 185 | #define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; }; |
| 186 | |
| 187 | #define BASISU_IS_POD(T) __is_pod(T) |
| 188 | |
| 189 | #define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag) |
| 190 | |
| 191 | #if defined(__GNUC__) && __GNUC__<5 |
| 192 | #define BASISU_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) |
| 193 | #else |
| 194 | #define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value |
| 195 | #endif |
| 196 | |
| 197 | // TODO: clean this up |
| 198 | #define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || (bitwise_copyable<T>::cFlag)) |
| 199 | |
| 200 | #define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag)) |
| 201 | |
| 202 | #define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T))) |
| 203 | |
| 204 | typedef char(&yes_t)[1]; |
| 205 | typedef char(&no_t)[2]; |
| 206 | |
| 207 | template <class U> yes_t class_test(int U::*); |
| 208 | template <class U> no_t class_test(...); |
| 209 | |
| 210 | template <class T> struct is_class |
| 211 | { |
| 212 | enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) }; |
| 213 | }; |
| 214 | |
| 215 | template <typename T> struct is_pointer |
| 216 | { |
| 217 | enum { value = false }; |
| 218 | }; |
| 219 | |
| 220 | template <typename T> struct is_pointer<T*> |
| 221 | { |
| 222 | enum { value = true }; |
| 223 | }; |
| 224 | |
| 225 | struct empty_type { }; |
| 226 | |
| 227 | BASISU_DEFINE_BITWISE_COPYABLE(empty_type); |
| 228 | BASISU_DEFINE_BITWISE_MOVABLE(empty_type); |
| 229 | |
| 230 | template<typename T> struct rel_ops |
| 231 | { |
| 232 | friend bool operator!=(const T& x, const T& y) { return (!(x == y)); } |
| 233 | friend bool operator> (const T& x, const T& y) { return (y < x); } |
| 234 | friend bool operator<=(const T& x, const T& y) { return (!(y < x)); } |
| 235 | friend bool operator>=(const T& x, const T& y) { return (!(x < y)); } |
| 236 | }; |
| 237 | |
| 238 | struct elemental_vector |
| 239 | { |
| 240 | void* m_p; |
| 241 | uint32_t m_size; |
| 242 | uint32_t m_capacity; |
| 243 | |
| 244 | typedef void (*object_mover)(void* pDst, void* pSrc, uint32_t num); |
| 245 | |
| 246 | bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pRelocate, bool nofail); |
| 247 | }; |
| 248 | |
| 249 | template<typename T> |
| 250 | class vector : public rel_ops< vector<T> > |
| 251 | { |
| 252 | public: |
| 253 | typedef T* iterator; |
| 254 | typedef const T* const_iterator; |
| 255 | typedef T value_type; |
| 256 | typedef T& reference; |
| 257 | typedef const T& const_reference; |
| 258 | typedef T* pointer; |
| 259 | typedef const T* const_pointer; |
| 260 | |
| 261 | inline vector() : |
| 262 | m_p(NULL), |
| 263 | m_size(0), |
| 264 | m_capacity(0) |
| 265 | { |
| 266 | } |
| 267 | |
| 268 | inline vector(uint32_t n, const T& init) : |
| 269 | m_p(NULL), |
| 270 | m_size(0), |
| 271 | m_capacity(0) |
| 272 | { |
| 273 | increase_capacity(n, false); |
| 274 | construct_array(m_p, n, init); |
| 275 | m_size = n; |
| 276 | } |
| 277 | |
| 278 | inline vector(const vector& other) : |
| 279 | m_p(NULL), |
| 280 | m_size(0), |
| 281 | m_capacity(0) |
| 282 | { |
| 283 | increase_capacity(other.m_size, false); |
| 284 | |
| 285 | m_size = other.m_size; |
| 286 | |
| 287 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
| 288 | { |
| 289 | if ((m_p) && (other.m_p)) |
| 290 | memcpy(m_p, other.m_p, m_size * sizeof(T)); |
| 291 | } |
| 292 | else |
| 293 | { |
| 294 | T* pDst = m_p; |
| 295 | const T* pSrc = other.m_p; |
| 296 | for (uint32_t i = m_size; i > 0; i--) |
| 297 | construct(pDst++, *pSrc++); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | inline explicit vector(size_t size) : |
| 302 | m_p(NULL), |
| 303 | m_size(0), |
| 304 | m_capacity(0) |
| 305 | { |
| 306 | resize(size); |
| 307 | } |
| 308 | |
| 309 | inline ~vector() |
| 310 | { |
| 311 | if (m_p) |
| 312 | { |
| 313 | scalar_type<T>::destruct_array(m_p, m_size); |
| 314 | free(m_p); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | inline vector& operator= (const vector& other) |
| 319 | { |
| 320 | if (this == &other) |
| 321 | return *this; |
| 322 | |
| 323 | if (m_capacity >= other.m_size) |
| 324 | resize(0); |
| 325 | else |
| 326 | { |
| 327 | clear(); |
| 328 | increase_capacity(other.m_size, false); |
| 329 | } |
| 330 | |
| 331 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
| 332 | { |
| 333 | if ((m_p) && (other.m_p)) |
| 334 | memcpy(m_p, other.m_p, other.m_size * sizeof(T)); |
| 335 | } |
| 336 | else |
| 337 | { |
| 338 | T* pDst = m_p; |
| 339 | const T* pSrc = other.m_p; |
| 340 | for (uint32_t i = other.m_size; i > 0; i--) |
| 341 | construct(pDst++, *pSrc++); |
| 342 | } |
| 343 | |
| 344 | m_size = other.m_size; |
| 345 | |
| 346 | return *this; |
| 347 | } |
| 348 | |
| 349 | BASISU_FORCE_INLINE const T* begin() const { return m_p; } |
| 350 | BASISU_FORCE_INLINE T* begin() { return m_p; } |
| 351 | |
| 352 | BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; } |
| 353 | BASISU_FORCE_INLINE T* end() { return m_p + m_size; } |
| 354 | |
| 355 | BASISU_FORCE_INLINE bool empty() const { return !m_size; } |
| 356 | BASISU_FORCE_INLINE uint32_t size() const { return m_size; } |
| 357 | BASISU_FORCE_INLINE uint32_t size_in_bytes() const { return m_size * sizeof(T); } |
| 358 | BASISU_FORCE_INLINE uint32_t capacity() const { return m_capacity; } |
| 359 | |
| 360 | // operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method. |
| 361 | //BASISU_FORCE_INLINE const T& operator[] (uint32_t i) const { assert(i < m_size); return m_p[i]; } |
| 362 | //BASISU_FORCE_INLINE T& operator[] (uint32_t i) { assert(i < m_size); return m_p[i]; } |
| 363 | |
| 364 | #if !BASISU_VECTOR_FORCE_CHECKING |
| 365 | BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; } |
| 366 | BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; } |
| 367 | #else |
| 368 | BASISU_FORCE_INLINE const T& operator[] (size_t i) const |
| 369 | { |
| 370 | if (i >= m_size) |
| 371 | { |
| 372 | fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n" , (uint32_t)i, m_size, (uint32_t)sizeof(T)); |
| 373 | abort(); |
| 374 | } |
| 375 | return m_p[i]; |
| 376 | } |
| 377 | BASISU_FORCE_INLINE T& operator[] (size_t i) |
| 378 | { |
| 379 | if (i >= m_size) |
| 380 | { |
| 381 | fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n" , (uint32_t)i, m_size, (uint32_t)sizeof(T)); |
| 382 | abort(); |
| 383 | } |
| 384 | return m_p[i]; |
| 385 | } |
| 386 | #endif |
| 387 | |
| 388 | // at() always includes range checking, even in final builds, unlike operator []. |
| 389 | // The first element is returned if the index is out of range. |
| 390 | BASISU_FORCE_INLINE const T& at(size_t i) const { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } |
| 391 | BASISU_FORCE_INLINE T& at(size_t i) { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } |
| 392 | |
| 393 | #if !BASISU_VECTOR_FORCE_CHECKING |
| 394 | BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; } |
| 395 | BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; } |
| 396 | |
| 397 | BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; } |
| 398 | BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; } |
| 399 | #else |
| 400 | BASISU_FORCE_INLINE const T& front() const |
| 401 | { |
| 402 | if (!m_size) |
| 403 | { |
| 404 | fprintf(stderr, "front: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
| 405 | abort(); |
| 406 | } |
| 407 | return m_p[0]; |
| 408 | } |
| 409 | BASISU_FORCE_INLINE T& front() |
| 410 | { |
| 411 | if (!m_size) |
| 412 | { |
| 413 | fprintf(stderr, "front: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
| 414 | abort(); |
| 415 | } |
| 416 | return m_p[0]; |
| 417 | } |
| 418 | |
| 419 | BASISU_FORCE_INLINE const T& back() const |
| 420 | { |
| 421 | if(!m_size) |
| 422 | { |
| 423 | fprintf(stderr, "back: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
| 424 | abort(); |
| 425 | } |
| 426 | return m_p[m_size - 1]; |
| 427 | } |
| 428 | BASISU_FORCE_INLINE T& back() |
| 429 | { |
| 430 | if (!m_size) |
| 431 | { |
| 432 | fprintf(stderr, "back: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
| 433 | abort(); |
| 434 | } |
| 435 | return m_p[m_size - 1]; |
| 436 | } |
| 437 | #endif |
| 438 | |
| 439 | BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; } |
| 440 | BASISU_FORCE_INLINE T* get_ptr() { return m_p; } |
| 441 | |
| 442 | BASISU_FORCE_INLINE const T* data() const { return m_p; } |
| 443 | BASISU_FORCE_INLINE T* data() { return m_p; } |
| 444 | |
| 445 | // clear() sets the container to empty, then frees the allocated block. |
| 446 | inline void clear() |
| 447 | { |
| 448 | if (m_p) |
| 449 | { |
| 450 | scalar_type<T>::destruct_array(m_p, m_size); |
| 451 | free(m_p); |
| 452 | m_p = NULL; |
| 453 | m_size = 0; |
| 454 | m_capacity = 0; |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | inline void clear_no_destruction() |
| 459 | { |
| 460 | if (m_p) |
| 461 | { |
| 462 | free(m_p); |
| 463 | m_p = NULL; |
| 464 | m_size = 0; |
| 465 | m_capacity = 0; |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | inline void reserve(size_t new_capacity_size_t) |
| 470 | { |
| 471 | if (new_capacity_size_t > UINT32_MAX) |
| 472 | { |
| 473 | assert(0); |
| 474 | return; |
| 475 | } |
| 476 | |
| 477 | uint32_t new_capacity = (uint32_t)new_capacity_size_t; |
| 478 | |
| 479 | if (new_capacity > m_capacity) |
| 480 | increase_capacity(new_capacity, false); |
| 481 | else if (new_capacity < m_capacity) |
| 482 | { |
| 483 | // Must work around the lack of a "decrease_capacity()" method. |
| 484 | // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. |
| 485 | vector tmp; |
| 486 | tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); |
| 487 | tmp = *this; |
| 488 | swap(tmp); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | inline bool try_reserve(size_t new_capacity_size_t) |
| 493 | { |
| 494 | if (new_capacity_size_t > UINT32_MAX) |
| 495 | { |
| 496 | assert(0); |
| 497 | return false; |
| 498 | } |
| 499 | |
| 500 | uint32_t new_capacity = (uint32_t)new_capacity_size_t; |
| 501 | |
| 502 | if (new_capacity > m_capacity) |
| 503 | { |
| 504 | if (!increase_capacity(new_capacity, false)) |
| 505 | return false; |
| 506 | } |
| 507 | else if (new_capacity < m_capacity) |
| 508 | { |
| 509 | // Must work around the lack of a "decrease_capacity()" method. |
| 510 | // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. |
| 511 | vector tmp; |
| 512 | tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); |
| 513 | tmp = *this; |
| 514 | swap(tmp); |
| 515 | } |
| 516 | |
| 517 | return true; |
| 518 | } |
| 519 | |
| 520 | // resize(0) sets the container to empty, but does not free the allocated block. |
| 521 | inline void resize(size_t new_size_size_t, bool grow_hint = false) |
| 522 | { |
| 523 | if (new_size_size_t > UINT32_MAX) |
| 524 | { |
| 525 | assert(0); |
| 526 | return; |
| 527 | } |
| 528 | |
| 529 | uint32_t new_size = (uint32_t)new_size_size_t; |
| 530 | |
| 531 | if (m_size != new_size) |
| 532 | { |
| 533 | if (new_size < m_size) |
| 534 | scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size); |
| 535 | else |
| 536 | { |
| 537 | if (new_size > m_capacity) |
| 538 | increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint); |
| 539 | |
| 540 | scalar_type<T>::construct_array(m_p + m_size, new_size - m_size); |
| 541 | } |
| 542 | |
| 543 | m_size = new_size; |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | inline bool try_resize(size_t new_size_size_t, bool grow_hint = false) |
| 548 | { |
| 549 | if (new_size_size_t > UINT32_MAX) |
| 550 | { |
| 551 | assert(0); |
| 552 | return false; |
| 553 | } |
| 554 | |
| 555 | uint32_t new_size = (uint32_t)new_size_size_t; |
| 556 | |
| 557 | if (m_size != new_size) |
| 558 | { |
| 559 | if (new_size < m_size) |
| 560 | scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size); |
| 561 | else |
| 562 | { |
| 563 | if (new_size > m_capacity) |
| 564 | { |
| 565 | if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) |
| 566 | return false; |
| 567 | } |
| 568 | |
| 569 | scalar_type<T>::construct_array(m_p + m_size, new_size - m_size); |
| 570 | } |
| 571 | |
| 572 | m_size = new_size; |
| 573 | } |
| 574 | |
| 575 | return true; |
| 576 | } |
| 577 | |
| 578 | // If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future). |
| 579 | // Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494 |
| 580 | inline void reset() |
| 581 | { |
| 582 | if (m_size >= (m_capacity >> 1)) |
| 583 | resize(0); |
| 584 | else |
| 585 | clear(); |
| 586 | } |
| 587 | |
| 588 | inline T* enlarge(uint32_t i) |
| 589 | { |
| 590 | uint32_t cur_size = m_size; |
| 591 | resize(cur_size + i, true); |
| 592 | return get_ptr() + cur_size; |
| 593 | } |
| 594 | |
| 595 | inline T* try_enlarge(uint32_t i) |
| 596 | { |
| 597 | uint32_t cur_size = m_size; |
| 598 | if (!try_resize(cur_size + i, true)) |
| 599 | return NULL; |
| 600 | return get_ptr() + cur_size; |
| 601 | } |
| 602 | |
| 603 | BASISU_FORCE_INLINE void push_back(const T& obj) |
| 604 | { |
| 605 | assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); |
| 606 | |
| 607 | if (m_size >= m_capacity) |
| 608 | increase_capacity(m_size + 1, true); |
| 609 | |
| 610 | scalar_type<T>::construct(m_p + m_size, obj); |
| 611 | m_size++; |
| 612 | } |
| 613 | |
| 614 | inline bool try_push_back(const T& obj) |
| 615 | { |
| 616 | assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); |
| 617 | |
| 618 | if (m_size >= m_capacity) |
| 619 | { |
| 620 | if (!increase_capacity(m_size + 1, true, true)) |
| 621 | return false; |
| 622 | } |
| 623 | |
| 624 | scalar_type<T>::construct(m_p + m_size, obj); |
| 625 | m_size++; |
| 626 | |
| 627 | return true; |
| 628 | } |
| 629 | |
| 630 | inline void push_back_value(T obj) |
| 631 | { |
| 632 | if (m_size >= m_capacity) |
| 633 | increase_capacity(m_size + 1, true); |
| 634 | |
| 635 | scalar_type<T>::construct(m_p + m_size, obj); |
| 636 | m_size++; |
| 637 | } |
| 638 | |
| 639 | inline void pop_back() |
| 640 | { |
| 641 | assert(m_size); |
| 642 | |
| 643 | if (m_size) |
| 644 | { |
| 645 | m_size--; |
| 646 | scalar_type<T>::destruct(&m_p[m_size]); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | inline void insert(uint32_t index, const T* p, uint32_t n) |
| 651 | { |
| 652 | assert(index <= m_size); |
| 653 | if (!n) |
| 654 | return; |
| 655 | |
| 656 | const uint32_t orig_size = m_size; |
| 657 | resize(m_size + n, true); |
| 658 | |
| 659 | const uint32_t num_to_move = orig_size - index; |
| 660 | |
| 661 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
| 662 | { |
| 663 | // This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction. |
| 664 | memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move); |
| 665 | } |
| 666 | else |
| 667 | { |
| 668 | const T* pSrc = m_p + orig_size - 1; |
| 669 | T* pDst = const_cast<T*>(pSrc) + n; |
| 670 | |
| 671 | for (uint32_t i = 0; i < num_to_move; i++) |
| 672 | { |
| 673 | assert((pDst - m_p) < (int)m_size); |
| 674 | *pDst-- = *pSrc--; |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | T* pDst = m_p + index; |
| 679 | |
| 680 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
| 681 | { |
| 682 | // This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction. |
| 683 | memcpy(pDst, p, sizeof(T) * n); |
| 684 | } |
| 685 | else |
| 686 | { |
| 687 | for (uint32_t i = 0; i < n; i++) |
| 688 | { |
| 689 | assert((pDst - m_p) < (int)m_size); |
| 690 | *pDst++ = *p++; |
| 691 | } |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | inline void insert(T* p, const T& obj) |
| 696 | { |
| 697 | int64_t ofs = p - begin(); |
| 698 | if ((ofs < 0) || (ofs > UINT32_MAX)) |
| 699 | { |
| 700 | assert(0); |
| 701 | return; |
| 702 | } |
| 703 | |
| 704 | insert((uint32_t)ofs, &obj, 1); |
| 705 | } |
| 706 | |
| 707 | // push_front() isn't going to be very fast - it's only here for usability. |
| 708 | inline void push_front(const T& obj) |
| 709 | { |
| 710 | insert(0, &obj, 1); |
| 711 | } |
| 712 | |
| 713 | vector& append(const vector& other) |
| 714 | { |
| 715 | if (other.m_size) |
| 716 | insert(m_size, &other[0], other.m_size); |
| 717 | return *this; |
| 718 | } |
| 719 | |
| 720 | vector& append(const T* p, uint32_t n) |
| 721 | { |
| 722 | if (n) |
| 723 | insert(m_size, p, n); |
| 724 | return *this; |
| 725 | } |
| 726 | |
| 727 | inline void erase(uint32_t start, uint32_t n) |
| 728 | { |
| 729 | assert((start + n) <= m_size); |
| 730 | if ((start + n) > m_size) |
| 731 | return; |
| 732 | |
| 733 | if (!n) |
| 734 | return; |
| 735 | |
| 736 | const uint32_t num_to_move = m_size - (start + n); |
| 737 | |
| 738 | T* pDst = m_p + start; |
| 739 | |
| 740 | const T* pSrc = m_p + start + n; |
| 741 | |
| 742 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T)) |
| 743 | { |
| 744 | // This test is overly cautious. |
| 745 | if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T))) |
| 746 | { |
| 747 | // Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed. |
| 748 | // First destroy the erased objects. |
| 749 | scalar_type<T>::destruct_array(pDst, n); |
| 750 | } |
| 751 | |
| 752 | // Copy "down" the objects to preserve, filling in the empty slots. |
| 753 | memmove(pDst, pSrc, num_to_move * sizeof(T)); |
| 754 | } |
| 755 | else |
| 756 | { |
| 757 | // Type is not bitwise copyable or movable. |
| 758 | // Move them down one at a time by using the equals operator, and destroying anything that's left over at the end. |
| 759 | T* pDst_end = pDst + num_to_move; |
| 760 | while (pDst != pDst_end) |
| 761 | *pDst++ = *pSrc++; |
| 762 | |
| 763 | scalar_type<T>::destruct_array(pDst_end, n); |
| 764 | } |
| 765 | |
| 766 | m_size -= n; |
| 767 | } |
| 768 | |
| 769 | inline void erase(uint32_t index) |
| 770 | { |
| 771 | erase(index, 1); |
| 772 | } |
| 773 | |
| 774 | inline void erase(T* p) |
| 775 | { |
| 776 | assert((p >= m_p) && (p < (m_p + m_size))); |
| 777 | erase(static_cast<uint32_t>(p - m_p)); |
| 778 | } |
| 779 | |
| 780 | inline void erase(T *pFirst, T *pEnd) |
| 781 | { |
| 782 | assert(pFirst <= pEnd); |
| 783 | assert(pFirst >= begin() && pFirst <= end()); |
| 784 | assert(pEnd >= begin() && pEnd <= end()); |
| 785 | |
| 786 | int64_t ofs = pFirst - begin(); |
| 787 | if ((ofs < 0) || (ofs > UINT32_MAX)) |
| 788 | { |
| 789 | assert(0); |
| 790 | return; |
| 791 | } |
| 792 | |
| 793 | int64_t n = pEnd - pFirst; |
| 794 | if ((n < 0) || (n > UINT32_MAX)) |
| 795 | { |
| 796 | assert(0); |
| 797 | return; |
| 798 | } |
| 799 | |
| 800 | erase((uint32_t)ofs, (uint32_t)n); |
| 801 | } |
| 802 | |
| 803 | void erase_unordered(uint32_t index) |
| 804 | { |
| 805 | assert(index < m_size); |
| 806 | |
| 807 | if ((index + 1) < m_size) |
| 808 | (*this)[index] = back(); |
| 809 | |
| 810 | pop_back(); |
| 811 | } |
| 812 | |
| 813 | inline bool operator== (const vector& rhs) const |
| 814 | { |
| 815 | if (m_size != rhs.m_size) |
| 816 | return false; |
| 817 | else if (m_size) |
| 818 | { |
| 819 | if (scalar_type<T>::cFlag) |
| 820 | return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0; |
| 821 | else |
| 822 | { |
| 823 | const T* pSrc = m_p; |
| 824 | const T* pDst = rhs.m_p; |
| 825 | for (uint32_t i = m_size; i; i--) |
| 826 | if (!(*pSrc++ == *pDst++)) |
| 827 | return false; |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | return true; |
| 832 | } |
| 833 | |
| 834 | inline bool operator< (const vector& rhs) const |
| 835 | { |
| 836 | const uint32_t min_size = helpers::minimum(m_size, rhs.m_size); |
| 837 | |
| 838 | const T* pSrc = m_p; |
| 839 | const T* pSrc_end = m_p + min_size; |
| 840 | const T* pDst = rhs.m_p; |
| 841 | |
| 842 | while ((pSrc < pSrc_end) && (*pSrc == *pDst)) |
| 843 | { |
| 844 | pSrc++; |
| 845 | pDst++; |
| 846 | } |
| 847 | |
| 848 | if (pSrc < pSrc_end) |
| 849 | return *pSrc < *pDst; |
| 850 | |
| 851 | return m_size < rhs.m_size; |
| 852 | } |
| 853 | |
| 854 | inline void swap(vector& other) |
| 855 | { |
| 856 | std::swap(m_p, other.m_p); |
| 857 | std::swap(m_size, other.m_size); |
| 858 | std::swap(m_capacity, other.m_capacity); |
| 859 | } |
| 860 | |
| 861 | inline void sort() |
| 862 | { |
| 863 | std::sort(begin(), end()); |
| 864 | } |
| 865 | |
| 866 | inline void unique() |
| 867 | { |
| 868 | if (!empty()) |
| 869 | { |
| 870 | sort(); |
| 871 | |
| 872 | resize(std::unique(begin(), end()) - begin()); |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | inline void reverse() |
| 877 | { |
| 878 | uint32_t j = m_size >> 1; |
| 879 | for (uint32_t i = 0; i < j; i++) |
| 880 | std::swap(m_p[i], m_p[m_size - 1 - i]); |
| 881 | } |
| 882 | |
| 883 | inline int find(const T& key) const |
| 884 | { |
| 885 | const T* p = m_p; |
| 886 | const T* p_end = m_p + m_size; |
| 887 | |
| 888 | uint32_t index = 0; |
| 889 | |
| 890 | while (p != p_end) |
| 891 | { |
| 892 | if (key == *p) |
| 893 | return index; |
| 894 | |
| 895 | p++; |
| 896 | index++; |
| 897 | } |
| 898 | |
| 899 | return cInvalidIndex; |
| 900 | } |
| 901 | |
| 902 | inline int find_sorted(const T& key) const |
| 903 | { |
| 904 | if (m_size) |
| 905 | { |
| 906 | // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. |
| 907 | int i = ((m_size + 1) >> 1) - 1; |
| 908 | int m = m_size; |
| 909 | |
| 910 | for (; ; ) |
| 911 | { |
| 912 | assert(i >= 0 && i < (int)m_size); |
| 913 | const T* pKey_i = m_p + i; |
| 914 | int cmp = key < *pKey_i; |
| 915 | #if defined(_DEBUG) || defined(DEBUG) |
| 916 | int cmp2 = *pKey_i < key; |
| 917 | assert((cmp != cmp2) || (key == *pKey_i)); |
| 918 | #endif |
| 919 | if ((!cmp) && (key == *pKey_i)) return i; |
| 920 | m >>= 1; |
| 921 | if (!m) break; |
| 922 | cmp = -cmp; |
| 923 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
| 924 | if (i < 0) |
| 925 | break; |
| 926 | |
| 927 | assert(i >= 0 && i < (int)m_size); |
| 928 | pKey_i = m_p + i; |
| 929 | cmp = key < *pKey_i; |
| 930 | #if defined(_DEBUG) || defined(DEBUG) |
| 931 | cmp2 = *pKey_i < key; |
| 932 | assert((cmp != cmp2) || (key == *pKey_i)); |
| 933 | #endif |
| 934 | if ((!cmp) && (key == *pKey_i)) return i; |
| 935 | m >>= 1; |
| 936 | if (!m) break; |
| 937 | cmp = -cmp; |
| 938 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
| 939 | if (i < 0) |
| 940 | break; |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | return cInvalidIndex; |
| 945 | } |
| 946 | |
| 947 | template<typename Q> |
| 948 | inline int find_sorted(const T& key, Q less_than) const |
| 949 | { |
| 950 | if (m_size) |
| 951 | { |
| 952 | // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. |
| 953 | int i = ((m_size + 1) >> 1) - 1; |
| 954 | int m = m_size; |
| 955 | |
| 956 | for (; ; ) |
| 957 | { |
| 958 | assert(i >= 0 && i < (int)m_size); |
| 959 | const T* pKey_i = m_p + i; |
| 960 | int cmp = less_than(key, *pKey_i); |
| 961 | if ((!cmp) && (!less_than(*pKey_i, key))) return i; |
| 962 | m >>= 1; |
| 963 | if (!m) break; |
| 964 | cmp = -cmp; |
| 965 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
| 966 | if (i < 0) |
| 967 | break; |
| 968 | |
| 969 | assert(i >= 0 && i < (int)m_size); |
| 970 | pKey_i = m_p + i; |
| 971 | cmp = less_than(key, *pKey_i); |
| 972 | if ((!cmp) && (!less_than(*pKey_i, key))) return i; |
| 973 | m >>= 1; |
| 974 | if (!m) break; |
| 975 | cmp = -cmp; |
| 976 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
| 977 | if (i < 0) |
| 978 | break; |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | return cInvalidIndex; |
| 983 | } |
| 984 | |
| 985 | inline uint32_t count_occurences(const T& key) const |
| 986 | { |
| 987 | uint32_t c = 0; |
| 988 | |
| 989 | const T* p = m_p; |
| 990 | const T* p_end = m_p + m_size; |
| 991 | |
| 992 | while (p != p_end) |
| 993 | { |
| 994 | if (key == *p) |
| 995 | c++; |
| 996 | |
| 997 | p++; |
| 998 | } |
| 999 | |
| 1000 | return c; |
| 1001 | } |
| 1002 | |
| 1003 | inline void set_all(const T& o) |
| 1004 | { |
| 1005 | if ((sizeof(T) == 1) && (scalar_type<T>::cFlag)) |
| 1006 | memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size); |
| 1007 | else |
| 1008 | { |
| 1009 | T* pDst = m_p; |
| 1010 | T* pDst_end = pDst + m_size; |
| 1011 | while (pDst != pDst_end) |
| 1012 | *pDst++ = o; |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | // Caller assumes ownership of the heap block associated with the container. Container is cleared. |
| 1017 | inline void* assume_ownership() |
| 1018 | { |
| 1019 | T* p = m_p; |
| 1020 | m_p = NULL; |
| 1021 | m_size = 0; |
| 1022 | m_capacity = 0; |
| 1023 | return p; |
| 1024 | } |
| 1025 | |
| 1026 | // Caller is granting ownership of the indicated heap block. |
| 1027 | // Block must have size constructed elements, and have enough room for capacity elements. |
| 1028 | // The block must have been allocated using malloc(). |
| 1029 | // Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method. |
| 1030 | inline bool grant_ownership(T* p, uint32_t size, uint32_t capacity) |
| 1031 | { |
| 1032 | // To to prevent the caller from obviously shooting themselves in the foot. |
| 1033 | if (((p + capacity) > m_p) && (p < (m_p + m_capacity))) |
| 1034 | { |
| 1035 | // Can grant ownership of a block inside the container itself! |
| 1036 | assert(0); |
| 1037 | return false; |
| 1038 | } |
| 1039 | |
| 1040 | if (size > capacity) |
| 1041 | { |
| 1042 | assert(0); |
| 1043 | return false; |
| 1044 | } |
| 1045 | |
| 1046 | if (!p) |
| 1047 | { |
| 1048 | if (capacity) |
| 1049 | { |
| 1050 | assert(0); |
| 1051 | return false; |
| 1052 | } |
| 1053 | } |
| 1054 | else if (!capacity) |
| 1055 | { |
| 1056 | assert(0); |
| 1057 | return false; |
| 1058 | } |
| 1059 | |
| 1060 | clear(); |
| 1061 | m_p = p; |
| 1062 | m_size = size; |
| 1063 | m_capacity = capacity; |
| 1064 | return true; |
| 1065 | } |
| 1066 | |
| 1067 | private: |
| 1068 | T* m_p; |
| 1069 | uint32_t m_size; |
| 1070 | uint32_t m_capacity; |
| 1071 | |
| 1072 | template<typename Q> struct is_vector { enum { cFlag = false }; }; |
| 1073 | template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; }; |
| 1074 | |
| 1075 | static void object_mover(void* pDst_void, void* pSrc_void, uint32_t num) |
| 1076 | { |
| 1077 | T* pSrc = static_cast<T*>(pSrc_void); |
| 1078 | T* const pSrc_end = pSrc + num; |
| 1079 | T* pDst = static_cast<T*>(pDst_void); |
| 1080 | |
| 1081 | while (pSrc != pSrc_end) |
| 1082 | { |
| 1083 | // placement new |
| 1084 | new (static_cast<void*>(pDst)) T(*pSrc); |
| 1085 | pSrc->~T(); |
| 1086 | ++pSrc; |
| 1087 | ++pDst; |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | inline bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, bool nofail = false) |
| 1092 | { |
| 1093 | return reinterpret_cast<elemental_vector*>(this)->increase_capacity( |
| 1094 | min_new_capacity, grow_hint, sizeof(T), |
| 1095 | (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? NULL : object_mover, nofail); |
| 1096 | } |
| 1097 | }; |
| 1098 | |
| 1099 | template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; }; |
| 1100 | |
| 1101 | // Hash map |
| 1102 | |
| 1103 | template <typename T> |
| 1104 | struct hasher |
| 1105 | { |
| 1106 | inline size_t operator() (const T& key) const { return static_cast<size_t>(key); } |
| 1107 | }; |
| 1108 | |
| 1109 | template <typename T> |
| 1110 | struct equal_to |
| 1111 | { |
| 1112 | inline bool operator()(const T& a, const T& b) const { return a == b; } |
| 1113 | }; |
| 1114 | |
| 1115 | // Important: The Hasher and Equals objects must be bitwise movable! |
| 1116 | template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> > |
| 1117 | class hash_map |
| 1118 | { |
| 1119 | public: |
| 1120 | class iterator; |
| 1121 | class const_iterator; |
| 1122 | |
| 1123 | private: |
| 1124 | friend class iterator; |
| 1125 | friend class const_iterator; |
| 1126 | |
| 1127 | enum state |
| 1128 | { |
| 1129 | cStateInvalid = 0, |
| 1130 | cStateValid = 1 |
| 1131 | }; |
| 1132 | |
| 1133 | enum |
| 1134 | { |
| 1135 | cMinHashSize = 4U |
| 1136 | }; |
| 1137 | |
| 1138 | public: |
| 1139 | typedef hash_map<Key, Value, Hasher, Equals> hash_map_type; |
| 1140 | typedef std::pair<Key, Value> value_type; |
| 1141 | typedef Key key_type; |
| 1142 | typedef Value referent_type; |
| 1143 | typedef Hasher hasher_type; |
| 1144 | typedef Equals equals_type; |
| 1145 | |
| 1146 | hash_map() : |
| 1147 | m_hash_shift(32), m_num_valid(0), m_grow_threshold(0) |
| 1148 | { |
| 1149 | } |
| 1150 | |
| 1151 | hash_map(const hash_map& other) : |
| 1152 | m_values(other.m_values), |
| 1153 | m_hash_shift(other.m_hash_shift), |
| 1154 | m_hasher(other.m_hasher), |
| 1155 | m_equals(other.m_equals), |
| 1156 | m_num_valid(other.m_num_valid), |
| 1157 | m_grow_threshold(other.m_grow_threshold) |
| 1158 | { |
| 1159 | } |
| 1160 | |
| 1161 | hash_map& operator= (const hash_map& other) |
| 1162 | { |
| 1163 | if (this == &other) |
| 1164 | return *this; |
| 1165 | |
| 1166 | clear(); |
| 1167 | |
| 1168 | m_values = other.m_values; |
| 1169 | m_hash_shift = other.m_hash_shift; |
| 1170 | m_num_valid = other.m_num_valid; |
| 1171 | m_grow_threshold = other.m_grow_threshold; |
| 1172 | m_hasher = other.m_hasher; |
| 1173 | m_equals = other.m_equals; |
| 1174 | |
| 1175 | return *this; |
| 1176 | } |
| 1177 | |
| 1178 | inline ~hash_map() |
| 1179 | { |
| 1180 | clear(); |
| 1181 | } |
| 1182 | |
| 1183 | const Equals& get_equals() const { return m_equals; } |
| 1184 | Equals& get_equals() { return m_equals; } |
| 1185 | |
| 1186 | void set_equals(const Equals& equals) { m_equals = equals; } |
| 1187 | |
| 1188 | const Hasher& get_hasher() const { return m_hasher; } |
| 1189 | Hasher& get_hasher() { return m_hasher; } |
| 1190 | |
| 1191 | void set_hasher(const Hasher& hasher) { m_hasher = hasher; } |
| 1192 | |
| 1193 | inline void clear() |
| 1194 | { |
| 1195 | if (!m_values.empty()) |
| 1196 | { |
| 1197 | if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) |
| 1198 | { |
| 1199 | node* p = &get_node(0); |
| 1200 | node* p_end = p + m_values.size(); |
| 1201 | |
| 1202 | uint32_t num_remaining = m_num_valid; |
| 1203 | while (p != p_end) |
| 1204 | { |
| 1205 | if (p->state) |
| 1206 | { |
| 1207 | destruct_value_type(p); |
| 1208 | num_remaining--; |
| 1209 | if (!num_remaining) |
| 1210 | break; |
| 1211 | } |
| 1212 | |
| 1213 | p++; |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | m_values.clear_no_destruction(); |
| 1218 | |
| 1219 | m_hash_shift = 32; |
| 1220 | m_num_valid = 0; |
| 1221 | m_grow_threshold = 0; |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | inline void reset() |
| 1226 | { |
| 1227 | if (!m_num_valid) |
| 1228 | return; |
| 1229 | |
| 1230 | if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) |
| 1231 | { |
| 1232 | node* p = &get_node(0); |
| 1233 | node* p_end = p + m_values.size(); |
| 1234 | |
| 1235 | uint32_t num_remaining = m_num_valid; |
| 1236 | while (p != p_end) |
| 1237 | { |
| 1238 | if (p->state) |
| 1239 | { |
| 1240 | destruct_value_type(p); |
| 1241 | p->state = cStateInvalid; |
| 1242 | |
| 1243 | num_remaining--; |
| 1244 | if (!num_remaining) |
| 1245 | break; |
| 1246 | } |
| 1247 | |
| 1248 | p++; |
| 1249 | } |
| 1250 | } |
| 1251 | else if (sizeof(node) <= 32) |
| 1252 | { |
| 1253 | memset(&m_values[0], 0, m_values.size_in_bytes()); |
| 1254 | } |
| 1255 | else |
| 1256 | { |
| 1257 | node* p = &get_node(0); |
| 1258 | node* p_end = p + m_values.size(); |
| 1259 | |
| 1260 | uint32_t num_remaining = m_num_valid; |
| 1261 | while (p != p_end) |
| 1262 | { |
| 1263 | if (p->state) |
| 1264 | { |
| 1265 | p->state = cStateInvalid; |
| 1266 | |
| 1267 | num_remaining--; |
| 1268 | if (!num_remaining) |
| 1269 | break; |
| 1270 | } |
| 1271 | |
| 1272 | p++; |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | m_num_valid = 0; |
| 1277 | } |
| 1278 | |
| 1279 | inline uint32_t size() |
| 1280 | { |
| 1281 | return m_num_valid; |
| 1282 | } |
| 1283 | |
| 1284 | inline uint32_t get_table_size() |
| 1285 | { |
| 1286 | return m_values.size(); |
| 1287 | } |
| 1288 | |
| 1289 | inline bool empty() |
| 1290 | { |
| 1291 | return !m_num_valid; |
| 1292 | } |
| 1293 | |
| 1294 | inline void reserve(uint32_t new_capacity) |
| 1295 | { |
| 1296 | uint64_t new_hash_size = helpers::maximum(1U, new_capacity); |
| 1297 | |
| 1298 | new_hash_size = new_hash_size * 2ULL; |
| 1299 | |
| 1300 | if (!helpers::is_power_of_2(new_hash_size)) |
| 1301 | new_hash_size = helpers::next_pow2(new_hash_size); |
| 1302 | |
| 1303 | new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size); |
| 1304 | |
| 1305 | new_hash_size = helpers::minimum<uint64_t>(0x80000000UL, new_hash_size); |
| 1306 | |
| 1307 | if (new_hash_size > m_values.size()) |
| 1308 | rehash((uint32_t)new_hash_size); |
| 1309 | } |
| 1310 | |
| 1311 | class iterator |
| 1312 | { |
| 1313 | friend class hash_map<Key, Value, Hasher, Equals>; |
| 1314 | friend class hash_map<Key, Value, Hasher, Equals>::const_iterator; |
| 1315 | |
| 1316 | public: |
| 1317 | inline iterator() : m_pTable(NULL), m_index(0) { } |
| 1318 | inline iterator(hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } |
| 1319 | inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } |
| 1320 | |
| 1321 | inline iterator& operator= (const iterator& other) |
| 1322 | { |
| 1323 | m_pTable = other.m_pTable; |
| 1324 | m_index = other.m_index; |
| 1325 | return *this; |
| 1326 | } |
| 1327 | |
| 1328 | // post-increment |
| 1329 | inline iterator operator++(int) |
| 1330 | { |
| 1331 | iterator result(*this); |
| 1332 | ++*this; |
| 1333 | return result; |
| 1334 | } |
| 1335 | |
| 1336 | // pre-increment |
| 1337 | inline iterator& operator++() |
| 1338 | { |
| 1339 | probe(); |
| 1340 | return *this; |
| 1341 | } |
| 1342 | |
| 1343 | inline value_type& operator*() const { return *get_cur(); } |
| 1344 | inline value_type* operator->() const { return get_cur(); } |
| 1345 | |
| 1346 | inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
| 1347 | inline bool operator != (const iterator& b) const { return !(*this == b); } |
| 1348 | inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
| 1349 | inline bool operator != (const const_iterator& b) const { return !(*this == b); } |
| 1350 | |
| 1351 | private: |
| 1352 | hash_map_type* m_pTable; |
| 1353 | uint32_t m_index; |
| 1354 | |
| 1355 | inline value_type* get_cur() const |
| 1356 | { |
| 1357 | assert(m_pTable && (m_index < m_pTable->m_values.size())); |
| 1358 | assert(m_pTable->get_node_state(m_index) == cStateValid); |
| 1359 | |
| 1360 | return &m_pTable->get_node(m_index); |
| 1361 | } |
| 1362 | |
| 1363 | inline void probe() |
| 1364 | { |
| 1365 | assert(m_pTable); |
| 1366 | m_index = m_pTable->find_next(m_index); |
| 1367 | } |
| 1368 | }; |
| 1369 | |
| 1370 | class const_iterator |
| 1371 | { |
| 1372 | friend class hash_map<Key, Value, Hasher, Equals>; |
| 1373 | friend class hash_map<Key, Value, Hasher, Equals>::iterator; |
| 1374 | |
| 1375 | public: |
| 1376 | inline const_iterator() : m_pTable(NULL), m_index(0) { } |
| 1377 | inline const_iterator(const hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } |
| 1378 | inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } |
| 1379 | inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } |
| 1380 | |
| 1381 | inline const_iterator& operator= (const const_iterator& other) |
| 1382 | { |
| 1383 | m_pTable = other.m_pTable; |
| 1384 | m_index = other.m_index; |
| 1385 | return *this; |
| 1386 | } |
| 1387 | |
| 1388 | inline const_iterator& operator= (const iterator& other) |
| 1389 | { |
| 1390 | m_pTable = other.m_pTable; |
| 1391 | m_index = other.m_index; |
| 1392 | return *this; |
| 1393 | } |
| 1394 | |
| 1395 | // post-increment |
| 1396 | inline const_iterator operator++(int) |
| 1397 | { |
| 1398 | const_iterator result(*this); |
| 1399 | ++*this; |
| 1400 | return result; |
| 1401 | } |
| 1402 | |
| 1403 | // pre-increment |
| 1404 | inline const_iterator& operator++() |
| 1405 | { |
| 1406 | probe(); |
| 1407 | return *this; |
| 1408 | } |
| 1409 | |
| 1410 | inline const value_type& operator*() const { return *get_cur(); } |
| 1411 | inline const value_type* operator->() const { return get_cur(); } |
| 1412 | |
| 1413 | inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
| 1414 | inline bool operator != (const const_iterator& b) const { return !(*this == b); } |
| 1415 | inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
| 1416 | inline bool operator != (const iterator& b) const { return !(*this == b); } |
| 1417 | |
| 1418 | private: |
| 1419 | const hash_map_type* m_pTable; |
| 1420 | uint32_t m_index; |
| 1421 | |
| 1422 | inline const value_type* get_cur() const |
| 1423 | { |
| 1424 | assert(m_pTable && (m_index < m_pTable->m_values.size())); |
| 1425 | assert(m_pTable->get_node_state(m_index) == cStateValid); |
| 1426 | |
| 1427 | return &m_pTable->get_node(m_index); |
| 1428 | } |
| 1429 | |
| 1430 | inline void probe() |
| 1431 | { |
| 1432 | assert(m_pTable); |
| 1433 | m_index = m_pTable->find_next(m_index); |
| 1434 | } |
| 1435 | }; |
| 1436 | |
| 1437 | inline const_iterator begin() const |
| 1438 | { |
| 1439 | if (!m_num_valid) |
| 1440 | return end(); |
| 1441 | |
| 1442 | return const_iterator(*this, find_next(UINT32_MAX)); |
| 1443 | } |
| 1444 | |
| 1445 | inline const_iterator end() const |
| 1446 | { |
| 1447 | return const_iterator(*this, m_values.size()); |
| 1448 | } |
| 1449 | |
| 1450 | inline iterator begin() |
| 1451 | { |
| 1452 | if (!m_num_valid) |
| 1453 | return end(); |
| 1454 | |
| 1455 | return iterator(*this, find_next(UINT32_MAX)); |
| 1456 | } |
| 1457 | |
| 1458 | inline iterator end() |
| 1459 | { |
| 1460 | return iterator(*this, m_values.size()); |
| 1461 | } |
| 1462 | |
| 1463 | // insert_result.first will always point to inserted key/value (or the already existing key/value). |
| 1464 | // insert_resutt.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value). |
| 1465 | typedef std::pair<iterator, bool> insert_result; |
| 1466 | |
| 1467 | inline insert_result insert(const Key& k, const Value& v = Value()) |
| 1468 | { |
| 1469 | insert_result result; |
| 1470 | if (!insert_no_grow(result, k, v)) |
| 1471 | { |
| 1472 | grow(); |
| 1473 | |
| 1474 | // This must succeed. |
| 1475 | if (!insert_no_grow(result, k, v)) |
| 1476 | { |
| 1477 | fprintf(stderr, "insert() failed" ); |
| 1478 | abort(); |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | return result; |
| 1483 | } |
| 1484 | |
| 1485 | inline insert_result insert(const value_type& v) |
| 1486 | { |
| 1487 | return insert(v.first, v.second); |
| 1488 | } |
| 1489 | |
| 1490 | inline const_iterator find(const Key& k) const |
| 1491 | { |
| 1492 | return const_iterator(*this, find_index(k)); |
| 1493 | } |
| 1494 | |
| 1495 | inline iterator find(const Key& k) |
| 1496 | { |
| 1497 | return iterator(*this, find_index(k)); |
| 1498 | } |
| 1499 | |
| 1500 | inline bool erase(const Key& k) |
| 1501 | { |
| 1502 | uint32_t i = find_index(k); |
| 1503 | |
| 1504 | if (i >= m_values.size()) |
| 1505 | return false; |
| 1506 | |
| 1507 | node* pDst = &get_node(i); |
| 1508 | destruct_value_type(pDst); |
| 1509 | pDst->state = cStateInvalid; |
| 1510 | |
| 1511 | m_num_valid--; |
| 1512 | |
| 1513 | for (; ; ) |
| 1514 | { |
| 1515 | uint32_t r, j = i; |
| 1516 | |
| 1517 | node* pSrc = pDst; |
| 1518 | |
| 1519 | do |
| 1520 | { |
| 1521 | if (!i) |
| 1522 | { |
| 1523 | i = m_values.size() - 1; |
| 1524 | pSrc = &get_node(i); |
| 1525 | } |
| 1526 | else |
| 1527 | { |
| 1528 | i--; |
| 1529 | pSrc--; |
| 1530 | } |
| 1531 | |
| 1532 | if (!pSrc->state) |
| 1533 | return true; |
| 1534 | |
| 1535 | r = hash_key(pSrc->first); |
| 1536 | |
| 1537 | } while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)); |
| 1538 | |
| 1539 | move_node(pDst, pSrc); |
| 1540 | |
| 1541 | pDst = pSrc; |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | inline void swap(hash_map_type& other) |
| 1546 | { |
| 1547 | m_values.swap(other.m_values); |
| 1548 | std::swap(m_hash_shift, other.m_hash_shift); |
| 1549 | std::swap(m_num_valid, other.m_num_valid); |
| 1550 | std::swap(m_grow_threshold, other.m_grow_threshold); |
| 1551 | std::swap(m_hasher, other.m_hasher); |
| 1552 | std::swap(m_equals, other.m_equals); |
| 1553 | } |
| 1554 | |
| 1555 | private: |
| 1556 | struct node : public value_type |
| 1557 | { |
| 1558 | uint8_t state; |
| 1559 | }; |
| 1560 | |
| 1561 | static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v) |
| 1562 | { |
| 1563 | if (BASISU_IS_BITWISE_COPYABLE(Key)) |
| 1564 | memcpy(&pDst->first, &k, sizeof(Key)); |
| 1565 | else |
| 1566 | scalar_type<Key>::construct(&pDst->first, k); |
| 1567 | |
| 1568 | if (BASISU_IS_BITWISE_COPYABLE(Value)) |
| 1569 | memcpy(&pDst->second, &v, sizeof(Value)); |
| 1570 | else |
| 1571 | scalar_type<Value>::construct(&pDst->second, v); |
| 1572 | } |
| 1573 | |
| 1574 | static inline void construct_value_type(value_type* pDst, const value_type* pSrc) |
| 1575 | { |
| 1576 | if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value))) |
| 1577 | { |
| 1578 | memcpy(pDst, pSrc, sizeof(value_type)); |
| 1579 | } |
| 1580 | else |
| 1581 | { |
| 1582 | if (BASISU_IS_BITWISE_COPYABLE(Key)) |
| 1583 | memcpy(&pDst->first, &pSrc->first, sizeof(Key)); |
| 1584 | else |
| 1585 | scalar_type<Key>::construct(&pDst->first, pSrc->first); |
| 1586 | |
| 1587 | if (BASISU_IS_BITWISE_COPYABLE(Value)) |
| 1588 | memcpy(&pDst->second, &pSrc->second, sizeof(Value)); |
| 1589 | else |
| 1590 | scalar_type<Value>::construct(&pDst->second, pSrc->second); |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | static inline void destruct_value_type(value_type* p) |
| 1595 | { |
| 1596 | scalar_type<Key>::destruct(&p->first); |
| 1597 | scalar_type<Value>::destruct(&p->second); |
| 1598 | } |
| 1599 | |
| 1600 | // Moves *pSrc to *pDst efficiently. |
| 1601 | // pDst should NOT be constructed on entry. |
| 1602 | static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true) |
| 1603 | { |
| 1604 | assert(!pDst->state); |
| 1605 | |
| 1606 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) |
| 1607 | { |
| 1608 | memcpy(pDst, pSrc, sizeof(node)); |
| 1609 | } |
| 1610 | else |
| 1611 | { |
| 1612 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key)) |
| 1613 | memcpy(&pDst->first, &pSrc->first, sizeof(Key)); |
| 1614 | else |
| 1615 | { |
| 1616 | scalar_type<Key>::construct(&pDst->first, pSrc->first); |
| 1617 | scalar_type<Key>::destruct(&pSrc->first); |
| 1618 | } |
| 1619 | |
| 1620 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) |
| 1621 | memcpy(&pDst->second, &pSrc->second, sizeof(Value)); |
| 1622 | else |
| 1623 | { |
| 1624 | scalar_type<Value>::construct(&pDst->second, pSrc->second); |
| 1625 | scalar_type<Value>::destruct(&pSrc->second); |
| 1626 | } |
| 1627 | |
| 1628 | pDst->state = cStateValid; |
| 1629 | } |
| 1630 | |
| 1631 | if (update_src_state) |
| 1632 | pSrc->state = cStateInvalid; |
| 1633 | } |
| 1634 | |
| 1635 | struct raw_node |
| 1636 | { |
| 1637 | inline raw_node() |
| 1638 | { |
| 1639 | node* p = reinterpret_cast<node*>(this); |
| 1640 | p->state = cStateInvalid; |
| 1641 | } |
| 1642 | |
| 1643 | inline ~raw_node() |
| 1644 | { |
| 1645 | node* p = reinterpret_cast<node*>(this); |
| 1646 | if (p->state) |
| 1647 | hash_map_type::destruct_value_type(p); |
| 1648 | } |
| 1649 | |
| 1650 | inline raw_node(const raw_node& other) |
| 1651 | { |
| 1652 | node* pDst = reinterpret_cast<node*>(this); |
| 1653 | const node* pSrc = reinterpret_cast<const node*>(&other); |
| 1654 | |
| 1655 | if (pSrc->state) |
| 1656 | { |
| 1657 | hash_map_type::construct_value_type(pDst, pSrc); |
| 1658 | pDst->state = cStateValid; |
| 1659 | } |
| 1660 | else |
| 1661 | pDst->state = cStateInvalid; |
| 1662 | } |
| 1663 | |
| 1664 | inline raw_node& operator= (const raw_node& rhs) |
| 1665 | { |
| 1666 | if (this == &rhs) |
| 1667 | return *this; |
| 1668 | |
| 1669 | node* pDst = reinterpret_cast<node*>(this); |
| 1670 | const node* pSrc = reinterpret_cast<const node*>(&rhs); |
| 1671 | |
| 1672 | if (pSrc->state) |
| 1673 | { |
| 1674 | if (pDst->state) |
| 1675 | { |
| 1676 | pDst->first = pSrc->first; |
| 1677 | pDst->second = pSrc->second; |
| 1678 | } |
| 1679 | else |
| 1680 | { |
| 1681 | hash_map_type::construct_value_type(pDst, pSrc); |
| 1682 | pDst->state = cStateValid; |
| 1683 | } |
| 1684 | } |
| 1685 | else if (pDst->state) |
| 1686 | { |
| 1687 | hash_map_type::destruct_value_type(pDst); |
| 1688 | pDst->state = cStateInvalid; |
| 1689 | } |
| 1690 | |
| 1691 | return *this; |
| 1692 | } |
| 1693 | |
| 1694 | uint8_t m_bits[sizeof(node)]; |
| 1695 | }; |
| 1696 | |
| 1697 | typedef basisu::vector<raw_node> node_vector; |
| 1698 | |
| 1699 | node_vector m_values; |
| 1700 | uint32_t m_hash_shift; |
| 1701 | |
| 1702 | Hasher m_hasher; |
| 1703 | Equals m_equals; |
| 1704 | |
| 1705 | uint32_t m_num_valid; |
| 1706 | |
| 1707 | uint32_t m_grow_threshold; |
| 1708 | |
| 1709 | inline uint32_t hash_key(const Key& k) const |
| 1710 | { |
| 1711 | assert((1U << (32U - m_hash_shift)) == m_values.size()); |
| 1712 | |
| 1713 | uint32_t hash = static_cast<uint32_t>(m_hasher(k)); |
| 1714 | |
| 1715 | // Fibonacci hashing |
| 1716 | hash = (2654435769U * hash) >> m_hash_shift; |
| 1717 | |
| 1718 | assert(hash < m_values.size()); |
| 1719 | return hash; |
| 1720 | } |
| 1721 | |
| 1722 | inline const node& get_node(uint32_t index) const |
| 1723 | { |
| 1724 | return *reinterpret_cast<const node*>(&m_values[index]); |
| 1725 | } |
| 1726 | |
| 1727 | inline node& get_node(uint32_t index) |
| 1728 | { |
| 1729 | return *reinterpret_cast<node*>(&m_values[index]); |
| 1730 | } |
| 1731 | |
| 1732 | inline state get_node_state(uint32_t index) const |
| 1733 | { |
| 1734 | return static_cast<state>(get_node(index).state); |
| 1735 | } |
| 1736 | |
| 1737 | inline void set_node_state(uint32_t index, bool valid) |
| 1738 | { |
| 1739 | get_node(index).state = valid; |
| 1740 | } |
| 1741 | |
| 1742 | inline void grow() |
| 1743 | { |
| 1744 | uint64_t n = m_values.size() * 3ULL; // was * 2 |
| 1745 | |
| 1746 | if (!helpers::is_power_of_2(n)) |
| 1747 | n = helpers::next_pow2(n); |
| 1748 | |
| 1749 | if (n > 0x80000000UL) |
| 1750 | n = 0x80000000UL; |
| 1751 | |
| 1752 | rehash(helpers::maximum<uint32_t>(cMinHashSize, (uint32_t)n)); |
| 1753 | } |
| 1754 | |
| 1755 | inline void rehash(uint32_t new_hash_size) |
| 1756 | { |
| 1757 | assert(new_hash_size >= m_num_valid); |
| 1758 | assert(helpers::is_power_of_2(new_hash_size)); |
| 1759 | |
| 1760 | if ((new_hash_size < m_num_valid) || (new_hash_size == m_values.size())) |
| 1761 | return; |
| 1762 | |
| 1763 | hash_map new_map; |
| 1764 | new_map.m_values.resize(new_hash_size); |
| 1765 | new_map.m_hash_shift = 32U - helpers::floor_log2i(new_hash_size); |
| 1766 | assert(new_hash_size == (1U << (32U - new_map.m_hash_shift))); |
| 1767 | new_map.m_grow_threshold = UINT_MAX; |
| 1768 | |
| 1769 | node* pNode = reinterpret_cast<node*>(m_values.begin()); |
| 1770 | node* pNode_end = pNode + m_values.size(); |
| 1771 | |
| 1772 | while (pNode != pNode_end) |
| 1773 | { |
| 1774 | if (pNode->state) |
| 1775 | { |
| 1776 | new_map.move_into(pNode); |
| 1777 | |
| 1778 | if (new_map.m_num_valid == m_num_valid) |
| 1779 | break; |
| 1780 | } |
| 1781 | |
| 1782 | pNode++; |
| 1783 | } |
| 1784 | |
| 1785 | new_map.m_grow_threshold = (new_hash_size + 1U) >> 1U; |
| 1786 | |
| 1787 | m_values.clear_no_destruction(); |
| 1788 | m_hash_shift = 32; |
| 1789 | |
| 1790 | swap(new_map); |
| 1791 | } |
| 1792 | |
| 1793 | inline uint32_t find_next(uint32_t index) const |
| 1794 | { |
| 1795 | index++; |
| 1796 | |
| 1797 | if (index >= m_values.size()) |
| 1798 | return index; |
| 1799 | |
| 1800 | const node* pNode = &get_node(index); |
| 1801 | |
| 1802 | for (; ; ) |
| 1803 | { |
| 1804 | if (pNode->state) |
| 1805 | break; |
| 1806 | |
| 1807 | if (++index >= m_values.size()) |
| 1808 | break; |
| 1809 | |
| 1810 | pNode++; |
| 1811 | } |
| 1812 | |
| 1813 | return index; |
| 1814 | } |
| 1815 | |
| 1816 | inline uint32_t find_index(const Key& k) const |
| 1817 | { |
| 1818 | if (m_num_valid) |
| 1819 | { |
| 1820 | uint32_t index = hash_key(k); |
| 1821 | const node* pNode = &get_node(index); |
| 1822 | |
| 1823 | if (pNode->state) |
| 1824 | { |
| 1825 | if (m_equals(pNode->first, k)) |
| 1826 | return index; |
| 1827 | |
| 1828 | const uint32_t orig_index = index; |
| 1829 | |
| 1830 | for (; ; ) |
| 1831 | { |
| 1832 | if (!index) |
| 1833 | { |
| 1834 | index = m_values.size() - 1; |
| 1835 | pNode = &get_node(index); |
| 1836 | } |
| 1837 | else |
| 1838 | { |
| 1839 | index--; |
| 1840 | pNode--; |
| 1841 | } |
| 1842 | |
| 1843 | if (index == orig_index) |
| 1844 | break; |
| 1845 | |
| 1846 | if (!pNode->state) |
| 1847 | break; |
| 1848 | |
| 1849 | if (m_equals(pNode->first, k)) |
| 1850 | return index; |
| 1851 | } |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | return m_values.size(); |
| 1856 | } |
| 1857 | |
| 1858 | inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v = Value()) |
| 1859 | { |
| 1860 | if (!m_values.size()) |
| 1861 | return false; |
| 1862 | |
| 1863 | uint32_t index = hash_key(k); |
| 1864 | node* pNode = &get_node(index); |
| 1865 | |
| 1866 | if (pNode->state) |
| 1867 | { |
| 1868 | if (m_equals(pNode->first, k)) |
| 1869 | { |
| 1870 | result.first = iterator(*this, index); |
| 1871 | result.second = false; |
| 1872 | return true; |
| 1873 | } |
| 1874 | |
| 1875 | const uint32_t orig_index = index; |
| 1876 | |
| 1877 | for (; ; ) |
| 1878 | { |
| 1879 | if (!index) |
| 1880 | { |
| 1881 | index = m_values.size() - 1; |
| 1882 | pNode = &get_node(index); |
| 1883 | } |
| 1884 | else |
| 1885 | { |
| 1886 | index--; |
| 1887 | pNode--; |
| 1888 | } |
| 1889 | |
| 1890 | if (orig_index == index) |
| 1891 | return false; |
| 1892 | |
| 1893 | if (!pNode->state) |
| 1894 | break; |
| 1895 | |
| 1896 | if (m_equals(pNode->first, k)) |
| 1897 | { |
| 1898 | result.first = iterator(*this, index); |
| 1899 | result.second = false; |
| 1900 | return true; |
| 1901 | } |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | if (m_num_valid >= m_grow_threshold) |
| 1906 | return false; |
| 1907 | |
| 1908 | construct_value_type(pNode, k, v); |
| 1909 | |
| 1910 | pNode->state = cStateValid; |
| 1911 | |
| 1912 | m_num_valid++; |
| 1913 | assert(m_num_valid <= m_values.size()); |
| 1914 | |
| 1915 | result.first = iterator(*this, index); |
| 1916 | result.second = true; |
| 1917 | |
| 1918 | return true; |
| 1919 | } |
| 1920 | |
| 1921 | inline void move_into(node* pNode) |
| 1922 | { |
| 1923 | uint32_t index = hash_key(pNode->first); |
| 1924 | node* pDst_node = &get_node(index); |
| 1925 | |
| 1926 | if (pDst_node->state) |
| 1927 | { |
| 1928 | const uint32_t orig_index = index; |
| 1929 | |
| 1930 | for (; ; ) |
| 1931 | { |
| 1932 | if (!index) |
| 1933 | { |
| 1934 | index = m_values.size() - 1; |
| 1935 | pDst_node = &get_node(index); |
| 1936 | } |
| 1937 | else |
| 1938 | { |
| 1939 | index--; |
| 1940 | pDst_node--; |
| 1941 | } |
| 1942 | |
| 1943 | if (index == orig_index) |
| 1944 | { |
| 1945 | assert(false); |
| 1946 | return; |
| 1947 | } |
| 1948 | |
| 1949 | if (!pDst_node->state) |
| 1950 | break; |
| 1951 | } |
| 1952 | } |
| 1953 | |
| 1954 | move_node(pDst_node, pNode, false); |
| 1955 | |
| 1956 | m_num_valid++; |
| 1957 | } |
| 1958 | }; |
| 1959 | |
| 1960 | template<typename Key, typename Value, typename Hasher, typename Equals> |
| 1961 | struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; }; |
| 1962 | |
| 1963 | #if BASISU_HASHMAP_TEST |
| 1964 | extern void hash_map_test(); |
| 1965 | #endif |
| 1966 | |
| 1967 | } // namespace basisu |
| 1968 | |
| 1969 | namespace std |
| 1970 | { |
| 1971 | template<typename T> |
| 1972 | inline void swap(basisu::vector<T>& a, basisu::vector<T>& b) |
| 1973 | { |
| 1974 | a.swap(b); |
| 1975 | } |
| 1976 | |
| 1977 | template<typename Key, typename Value, typename Hasher, typename Equals> |
| 1978 | inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b) |
| 1979 | { |
| 1980 | a.swap(b); |
| 1981 | } |
| 1982 | |
| 1983 | } // namespace std |
| 1984 | |