1 | // basisu_containers.h |
2 | #pragma once |
3 | #include <stdlib.h> |
4 | #include <stdio.h> |
5 | #include <stdint.h> |
6 | #include <assert.h> |
7 | #include <algorithm> |
8 | |
9 | #if defined(__linux__) && !defined(ANDROID) |
10 | // Only for malloc_usable_size() in basisu_containers_impl.h |
11 | #include <malloc.h> |
12 | #define HAS_MALLOC_USABLE_SIZE 1 |
13 | #endif |
14 | |
15 | // Set to 1 to always check vector operator[], front(), and back() even in release. |
16 | #define BASISU_VECTOR_FORCE_CHECKING 0 |
17 | |
18 | // If 1, the vector container will not query the CRT to get the size of resized memory blocks. |
19 | #define BASISU_VECTOR_DETERMINISTIC 1 |
20 | |
21 | #ifdef _MSC_VER |
22 | #define BASISU_FORCE_INLINE __forceinline |
23 | #else |
24 | #define BASISU_FORCE_INLINE inline |
25 | #endif |
26 | |
27 | namespace basisu |
28 | { |
29 | enum { cInvalidIndex = -1 }; |
30 | |
31 | namespace helpers |
32 | { |
33 | inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); } |
34 | inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); } |
35 | template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; } |
36 | template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; } |
37 | |
38 | inline uint32_t floor_log2i(uint32_t v) |
39 | { |
40 | uint32_t l = 0; |
41 | while (v > 1U) |
42 | { |
43 | v >>= 1; |
44 | l++; |
45 | } |
46 | return l; |
47 | } |
48 | |
49 | inline uint32_t next_pow2(uint32_t val) |
50 | { |
51 | val--; |
52 | val |= val >> 16; |
53 | val |= val >> 8; |
54 | val |= val >> 4; |
55 | val |= val >> 2; |
56 | val |= val >> 1; |
57 | return val + 1; |
58 | } |
59 | |
60 | inline uint64_t next_pow2(uint64_t val) |
61 | { |
62 | val--; |
63 | val |= val >> 32; |
64 | val |= val >> 16; |
65 | val |= val >> 8; |
66 | val |= val >> 4; |
67 | val |= val >> 2; |
68 | val |= val >> 1; |
69 | return val + 1; |
70 | } |
71 | } // namespace helpers |
72 | |
73 | template <typename T> |
74 | inline T* construct(T* p) |
75 | { |
76 | return new (static_cast<void*>(p)) T; |
77 | } |
78 | |
79 | template <typename T, typename U> |
80 | inline T* construct(T* p, const U& init) |
81 | { |
82 | return new (static_cast<void*>(p)) T(init); |
83 | } |
84 | |
85 | template <typename T> |
86 | inline void construct_array(T* p, size_t n) |
87 | { |
88 | T* q = p + n; |
89 | for (; p != q; ++p) |
90 | new (static_cast<void*>(p)) T; |
91 | } |
92 | |
93 | template <typename T, typename U> |
94 | inline void construct_array(T* p, size_t n, const U& init) |
95 | { |
96 | T* q = p + n; |
97 | for (; p != q; ++p) |
98 | new (static_cast<void*>(p)) T(init); |
99 | } |
100 | |
101 | template <typename T> |
102 | inline void destruct(T* p) |
103 | { |
104 | (void)p; |
105 | p->~T(); |
106 | } |
107 | |
108 | template <typename T> inline void destruct_array(T* p, size_t n) |
109 | { |
110 | T* q = p + n; |
111 | for (; p != q; ++p) |
112 | p->~T(); |
113 | } |
114 | |
115 | template<typename T> struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; |
116 | |
117 | template<> struct int_traits<int8_t> { enum { cMin = INT8_MIN, cMax = INT8_MAX, cSigned = true }; }; |
118 | template<> struct int_traits<int16_t> { enum { cMin = INT16_MIN, cMax = INT16_MAX, cSigned = true }; }; |
119 | template<> struct int_traits<int32_t> { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; |
120 | |
121 | template<> struct int_traits<uint8_t> { enum { cMin = 0, cMax = UINT8_MAX, cSigned = false }; }; |
122 | template<> struct int_traits<uint16_t> { enum { cMin = 0, cMax = UINT16_MAX, cSigned = false }; }; |
123 | template<> struct int_traits<uint32_t> { enum { cMin = 0, cMax = UINT32_MAX, cSigned = false }; }; |
124 | |
125 | template<typename T> |
126 | struct scalar_type |
127 | { |
128 | enum { cFlag = false }; |
129 | static inline void construct(T* p) { basisu::construct(p); } |
130 | static inline void construct(T* p, const T& init) { basisu::construct(p, init); } |
131 | static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); } |
132 | static inline void destruct(T* p) { basisu::destruct(p); } |
133 | static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); } |
134 | }; |
135 | |
136 | template<typename T> struct scalar_type<T*> |
137 | { |
138 | enum { cFlag = true }; |
139 | static inline void construct(T** p) { memset(p, 0, sizeof(T*)); } |
140 | static inline void construct(T** p, T* init) { *p = init; } |
141 | static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); } |
142 | static inline void destruct(T** p) { p; } |
143 | static inline void destruct_array(T** p, size_t n) { p, n; } |
144 | }; |
145 | |
146 | #define BASISU_DEFINE_BUILT_IN_TYPE(X) \ |
147 | template<> struct scalar_type<X> { \ |
148 | enum { cFlag = true }; \ |
149 | static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \ |
150 | static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \ |
151 | static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \ |
152 | static inline void destruct(X* p) { p; } \ |
153 | static inline void destruct_array(X* p, size_t n) { p, n; } }; |
154 | |
155 | BASISU_DEFINE_BUILT_IN_TYPE(bool) |
156 | BASISU_DEFINE_BUILT_IN_TYPE(char) |
157 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned char) |
158 | BASISU_DEFINE_BUILT_IN_TYPE(short) |
159 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned short) |
160 | BASISU_DEFINE_BUILT_IN_TYPE(int) |
161 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned int) |
162 | BASISU_DEFINE_BUILT_IN_TYPE(long) |
163 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned long) |
164 | #ifdef __GNUC__ |
165 | BASISU_DEFINE_BUILT_IN_TYPE(long long) |
166 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long) |
167 | #else |
168 | BASISU_DEFINE_BUILT_IN_TYPE(__int64) |
169 | BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64) |
170 | #endif |
171 | BASISU_DEFINE_BUILT_IN_TYPE(float) |
172 | BASISU_DEFINE_BUILT_IN_TYPE(double) |
173 | BASISU_DEFINE_BUILT_IN_TYPE(long double) |
174 | |
175 | #undef BASISU_DEFINE_BUILT_IN_TYPE |
176 | |
177 | template<typename T> |
178 | struct bitwise_movable { enum { cFlag = false }; }; |
179 | |
180 | #define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; }; |
181 | |
182 | template<typename T> |
183 | struct bitwise_copyable { enum { cFlag = false }; }; |
184 | |
185 | #define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; }; |
186 | |
187 | #define BASISU_IS_POD(T) __is_pod(T) |
188 | |
189 | #define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag) |
190 | |
191 | #if defined(__GNUC__) && __GNUC__<5 |
192 | #define BASISU_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) |
193 | #else |
194 | #define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value |
195 | #endif |
196 | |
197 | // TODO: clean this up |
198 | #define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || (bitwise_copyable<T>::cFlag)) |
199 | |
200 | #define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag)) |
201 | |
202 | #define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T))) |
203 | |
204 | typedef char(&yes_t)[1]; |
205 | typedef char(&no_t)[2]; |
206 | |
207 | template <class U> yes_t class_test(int U::*); |
208 | template <class U> no_t class_test(...); |
209 | |
210 | template <class T> struct is_class |
211 | { |
212 | enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) }; |
213 | }; |
214 | |
215 | template <typename T> struct is_pointer |
216 | { |
217 | enum { value = false }; |
218 | }; |
219 | |
220 | template <typename T> struct is_pointer<T*> |
221 | { |
222 | enum { value = true }; |
223 | }; |
224 | |
225 | struct empty_type { }; |
226 | |
227 | BASISU_DEFINE_BITWISE_COPYABLE(empty_type); |
228 | BASISU_DEFINE_BITWISE_MOVABLE(empty_type); |
229 | |
230 | template<typename T> struct rel_ops |
231 | { |
232 | friend bool operator!=(const T& x, const T& y) { return (!(x == y)); } |
233 | friend bool operator> (const T& x, const T& y) { return (y < x); } |
234 | friend bool operator<=(const T& x, const T& y) { return (!(y < x)); } |
235 | friend bool operator>=(const T& x, const T& y) { return (!(x < y)); } |
236 | }; |
237 | |
238 | struct elemental_vector |
239 | { |
240 | void* m_p; |
241 | uint32_t m_size; |
242 | uint32_t m_capacity; |
243 | |
244 | typedef void (*object_mover)(void* pDst, void* pSrc, uint32_t num); |
245 | |
246 | bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pRelocate, bool nofail); |
247 | }; |
248 | |
249 | template<typename T> |
250 | class vector : public rel_ops< vector<T> > |
251 | { |
252 | public: |
253 | typedef T* iterator; |
254 | typedef const T* const_iterator; |
255 | typedef T value_type; |
256 | typedef T& reference; |
257 | typedef const T& const_reference; |
258 | typedef T* pointer; |
259 | typedef const T* const_pointer; |
260 | |
261 | inline vector() : |
262 | m_p(NULL), |
263 | m_size(0), |
264 | m_capacity(0) |
265 | { |
266 | } |
267 | |
268 | inline vector(uint32_t n, const T& init) : |
269 | m_p(NULL), |
270 | m_size(0), |
271 | m_capacity(0) |
272 | { |
273 | increase_capacity(n, false); |
274 | construct_array(m_p, n, init); |
275 | m_size = n; |
276 | } |
277 | |
278 | inline vector(const vector& other) : |
279 | m_p(NULL), |
280 | m_size(0), |
281 | m_capacity(0) |
282 | { |
283 | increase_capacity(other.m_size, false); |
284 | |
285 | m_size = other.m_size; |
286 | |
287 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
288 | { |
289 | if ((m_p) && (other.m_p)) |
290 | memcpy(m_p, other.m_p, m_size * sizeof(T)); |
291 | } |
292 | else |
293 | { |
294 | T* pDst = m_p; |
295 | const T* pSrc = other.m_p; |
296 | for (uint32_t i = m_size; i > 0; i--) |
297 | construct(pDst++, *pSrc++); |
298 | } |
299 | } |
300 | |
301 | inline explicit vector(size_t size) : |
302 | m_p(NULL), |
303 | m_size(0), |
304 | m_capacity(0) |
305 | { |
306 | resize(size); |
307 | } |
308 | |
309 | inline ~vector() |
310 | { |
311 | if (m_p) |
312 | { |
313 | scalar_type<T>::destruct_array(m_p, m_size); |
314 | free(m_p); |
315 | } |
316 | } |
317 | |
318 | inline vector& operator= (const vector& other) |
319 | { |
320 | if (this == &other) |
321 | return *this; |
322 | |
323 | if (m_capacity >= other.m_size) |
324 | resize(0); |
325 | else |
326 | { |
327 | clear(); |
328 | increase_capacity(other.m_size, false); |
329 | } |
330 | |
331 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
332 | { |
333 | if ((m_p) && (other.m_p)) |
334 | memcpy(m_p, other.m_p, other.m_size * sizeof(T)); |
335 | } |
336 | else |
337 | { |
338 | T* pDst = m_p; |
339 | const T* pSrc = other.m_p; |
340 | for (uint32_t i = other.m_size; i > 0; i--) |
341 | construct(pDst++, *pSrc++); |
342 | } |
343 | |
344 | m_size = other.m_size; |
345 | |
346 | return *this; |
347 | } |
348 | |
349 | BASISU_FORCE_INLINE const T* begin() const { return m_p; } |
350 | BASISU_FORCE_INLINE T* begin() { return m_p; } |
351 | |
352 | BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; } |
353 | BASISU_FORCE_INLINE T* end() { return m_p + m_size; } |
354 | |
355 | BASISU_FORCE_INLINE bool empty() const { return !m_size; } |
356 | BASISU_FORCE_INLINE uint32_t size() const { return m_size; } |
357 | BASISU_FORCE_INLINE uint32_t size_in_bytes() const { return m_size * sizeof(T); } |
358 | BASISU_FORCE_INLINE uint32_t capacity() const { return m_capacity; } |
359 | |
360 | // operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method. |
361 | //BASISU_FORCE_INLINE const T& operator[] (uint32_t i) const { assert(i < m_size); return m_p[i]; } |
362 | //BASISU_FORCE_INLINE T& operator[] (uint32_t i) { assert(i < m_size); return m_p[i]; } |
363 | |
364 | #if !BASISU_VECTOR_FORCE_CHECKING |
365 | BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; } |
366 | BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; } |
367 | #else |
368 | BASISU_FORCE_INLINE const T& operator[] (size_t i) const |
369 | { |
370 | if (i >= m_size) |
371 | { |
372 | fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n" , (uint32_t)i, m_size, (uint32_t)sizeof(T)); |
373 | abort(); |
374 | } |
375 | return m_p[i]; |
376 | } |
377 | BASISU_FORCE_INLINE T& operator[] (size_t i) |
378 | { |
379 | if (i >= m_size) |
380 | { |
381 | fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n" , (uint32_t)i, m_size, (uint32_t)sizeof(T)); |
382 | abort(); |
383 | } |
384 | return m_p[i]; |
385 | } |
386 | #endif |
387 | |
388 | // at() always includes range checking, even in final builds, unlike operator []. |
389 | // The first element is returned if the index is out of range. |
390 | BASISU_FORCE_INLINE const T& at(size_t i) const { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } |
391 | BASISU_FORCE_INLINE T& at(size_t i) { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } |
392 | |
393 | #if !BASISU_VECTOR_FORCE_CHECKING |
394 | BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; } |
395 | BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; } |
396 | |
397 | BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; } |
398 | BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; } |
399 | #else |
400 | BASISU_FORCE_INLINE const T& front() const |
401 | { |
402 | if (!m_size) |
403 | { |
404 | fprintf(stderr, "front: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
405 | abort(); |
406 | } |
407 | return m_p[0]; |
408 | } |
409 | BASISU_FORCE_INLINE T& front() |
410 | { |
411 | if (!m_size) |
412 | { |
413 | fprintf(stderr, "front: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
414 | abort(); |
415 | } |
416 | return m_p[0]; |
417 | } |
418 | |
419 | BASISU_FORCE_INLINE const T& back() const |
420 | { |
421 | if(!m_size) |
422 | { |
423 | fprintf(stderr, "back: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
424 | abort(); |
425 | } |
426 | return m_p[m_size - 1]; |
427 | } |
428 | BASISU_FORCE_INLINE T& back() |
429 | { |
430 | if (!m_size) |
431 | { |
432 | fprintf(stderr, "back: vector is empty, type size %u\n" , (uint32_t)sizeof(T)); |
433 | abort(); |
434 | } |
435 | return m_p[m_size - 1]; |
436 | } |
437 | #endif |
438 | |
439 | BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; } |
440 | BASISU_FORCE_INLINE T* get_ptr() { return m_p; } |
441 | |
442 | BASISU_FORCE_INLINE const T* data() const { return m_p; } |
443 | BASISU_FORCE_INLINE T* data() { return m_p; } |
444 | |
445 | // clear() sets the container to empty, then frees the allocated block. |
446 | inline void clear() |
447 | { |
448 | if (m_p) |
449 | { |
450 | scalar_type<T>::destruct_array(m_p, m_size); |
451 | free(m_p); |
452 | m_p = NULL; |
453 | m_size = 0; |
454 | m_capacity = 0; |
455 | } |
456 | } |
457 | |
458 | inline void clear_no_destruction() |
459 | { |
460 | if (m_p) |
461 | { |
462 | free(m_p); |
463 | m_p = NULL; |
464 | m_size = 0; |
465 | m_capacity = 0; |
466 | } |
467 | } |
468 | |
469 | inline void reserve(size_t new_capacity_size_t) |
470 | { |
471 | if (new_capacity_size_t > UINT32_MAX) |
472 | { |
473 | assert(0); |
474 | return; |
475 | } |
476 | |
477 | uint32_t new_capacity = (uint32_t)new_capacity_size_t; |
478 | |
479 | if (new_capacity > m_capacity) |
480 | increase_capacity(new_capacity, false); |
481 | else if (new_capacity < m_capacity) |
482 | { |
483 | // Must work around the lack of a "decrease_capacity()" method. |
484 | // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. |
485 | vector tmp; |
486 | tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); |
487 | tmp = *this; |
488 | swap(tmp); |
489 | } |
490 | } |
491 | |
492 | inline bool try_reserve(size_t new_capacity_size_t) |
493 | { |
494 | if (new_capacity_size_t > UINT32_MAX) |
495 | { |
496 | assert(0); |
497 | return false; |
498 | } |
499 | |
500 | uint32_t new_capacity = (uint32_t)new_capacity_size_t; |
501 | |
502 | if (new_capacity > m_capacity) |
503 | { |
504 | if (!increase_capacity(new_capacity, false)) |
505 | return false; |
506 | } |
507 | else if (new_capacity < m_capacity) |
508 | { |
509 | // Must work around the lack of a "decrease_capacity()" method. |
510 | // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. |
511 | vector tmp; |
512 | tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); |
513 | tmp = *this; |
514 | swap(tmp); |
515 | } |
516 | |
517 | return true; |
518 | } |
519 | |
520 | // resize(0) sets the container to empty, but does not free the allocated block. |
521 | inline void resize(size_t new_size_size_t, bool grow_hint = false) |
522 | { |
523 | if (new_size_size_t > UINT32_MAX) |
524 | { |
525 | assert(0); |
526 | return; |
527 | } |
528 | |
529 | uint32_t new_size = (uint32_t)new_size_size_t; |
530 | |
531 | if (m_size != new_size) |
532 | { |
533 | if (new_size < m_size) |
534 | scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size); |
535 | else |
536 | { |
537 | if (new_size > m_capacity) |
538 | increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint); |
539 | |
540 | scalar_type<T>::construct_array(m_p + m_size, new_size - m_size); |
541 | } |
542 | |
543 | m_size = new_size; |
544 | } |
545 | } |
546 | |
547 | inline bool try_resize(size_t new_size_size_t, bool grow_hint = false) |
548 | { |
549 | if (new_size_size_t > UINT32_MAX) |
550 | { |
551 | assert(0); |
552 | return false; |
553 | } |
554 | |
555 | uint32_t new_size = (uint32_t)new_size_size_t; |
556 | |
557 | if (m_size != new_size) |
558 | { |
559 | if (new_size < m_size) |
560 | scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size); |
561 | else |
562 | { |
563 | if (new_size > m_capacity) |
564 | { |
565 | if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) |
566 | return false; |
567 | } |
568 | |
569 | scalar_type<T>::construct_array(m_p + m_size, new_size - m_size); |
570 | } |
571 | |
572 | m_size = new_size; |
573 | } |
574 | |
575 | return true; |
576 | } |
577 | |
578 | // If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future). |
579 | // Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494 |
580 | inline void reset() |
581 | { |
582 | if (m_size >= (m_capacity >> 1)) |
583 | resize(0); |
584 | else |
585 | clear(); |
586 | } |
587 | |
588 | inline T* enlarge(uint32_t i) |
589 | { |
590 | uint32_t cur_size = m_size; |
591 | resize(cur_size + i, true); |
592 | return get_ptr() + cur_size; |
593 | } |
594 | |
595 | inline T* try_enlarge(uint32_t i) |
596 | { |
597 | uint32_t cur_size = m_size; |
598 | if (!try_resize(cur_size + i, true)) |
599 | return NULL; |
600 | return get_ptr() + cur_size; |
601 | } |
602 | |
603 | BASISU_FORCE_INLINE void push_back(const T& obj) |
604 | { |
605 | assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); |
606 | |
607 | if (m_size >= m_capacity) |
608 | increase_capacity(m_size + 1, true); |
609 | |
610 | scalar_type<T>::construct(m_p + m_size, obj); |
611 | m_size++; |
612 | } |
613 | |
614 | inline bool try_push_back(const T& obj) |
615 | { |
616 | assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); |
617 | |
618 | if (m_size >= m_capacity) |
619 | { |
620 | if (!increase_capacity(m_size + 1, true, true)) |
621 | return false; |
622 | } |
623 | |
624 | scalar_type<T>::construct(m_p + m_size, obj); |
625 | m_size++; |
626 | |
627 | return true; |
628 | } |
629 | |
630 | inline void push_back_value(T obj) |
631 | { |
632 | if (m_size >= m_capacity) |
633 | increase_capacity(m_size + 1, true); |
634 | |
635 | scalar_type<T>::construct(m_p + m_size, obj); |
636 | m_size++; |
637 | } |
638 | |
639 | inline void pop_back() |
640 | { |
641 | assert(m_size); |
642 | |
643 | if (m_size) |
644 | { |
645 | m_size--; |
646 | scalar_type<T>::destruct(&m_p[m_size]); |
647 | } |
648 | } |
649 | |
650 | inline void insert(uint32_t index, const T* p, uint32_t n) |
651 | { |
652 | assert(index <= m_size); |
653 | if (!n) |
654 | return; |
655 | |
656 | const uint32_t orig_size = m_size; |
657 | resize(m_size + n, true); |
658 | |
659 | const uint32_t num_to_move = orig_size - index; |
660 | |
661 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
662 | { |
663 | // This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction. |
664 | memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move); |
665 | } |
666 | else |
667 | { |
668 | const T* pSrc = m_p + orig_size - 1; |
669 | T* pDst = const_cast<T*>(pSrc) + n; |
670 | |
671 | for (uint32_t i = 0; i < num_to_move; i++) |
672 | { |
673 | assert((pDst - m_p) < (int)m_size); |
674 | *pDst-- = *pSrc--; |
675 | } |
676 | } |
677 | |
678 | T* pDst = m_p + index; |
679 | |
680 | if (BASISU_IS_BITWISE_COPYABLE(T)) |
681 | { |
682 | // This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction. |
683 | memcpy(pDst, p, sizeof(T) * n); |
684 | } |
685 | else |
686 | { |
687 | for (uint32_t i = 0; i < n; i++) |
688 | { |
689 | assert((pDst - m_p) < (int)m_size); |
690 | *pDst++ = *p++; |
691 | } |
692 | } |
693 | } |
694 | |
695 | inline void insert(T* p, const T& obj) |
696 | { |
697 | int64_t ofs = p - begin(); |
698 | if ((ofs < 0) || (ofs > UINT32_MAX)) |
699 | { |
700 | assert(0); |
701 | return; |
702 | } |
703 | |
704 | insert((uint32_t)ofs, &obj, 1); |
705 | } |
706 | |
707 | // push_front() isn't going to be very fast - it's only here for usability. |
708 | inline void push_front(const T& obj) |
709 | { |
710 | insert(0, &obj, 1); |
711 | } |
712 | |
713 | vector& append(const vector& other) |
714 | { |
715 | if (other.m_size) |
716 | insert(m_size, &other[0], other.m_size); |
717 | return *this; |
718 | } |
719 | |
720 | vector& append(const T* p, uint32_t n) |
721 | { |
722 | if (n) |
723 | insert(m_size, p, n); |
724 | return *this; |
725 | } |
726 | |
727 | inline void erase(uint32_t start, uint32_t n) |
728 | { |
729 | assert((start + n) <= m_size); |
730 | if ((start + n) > m_size) |
731 | return; |
732 | |
733 | if (!n) |
734 | return; |
735 | |
736 | const uint32_t num_to_move = m_size - (start + n); |
737 | |
738 | T* pDst = m_p + start; |
739 | |
740 | const T* pSrc = m_p + start + n; |
741 | |
742 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T)) |
743 | { |
744 | // This test is overly cautious. |
745 | if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T))) |
746 | { |
747 | // Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed. |
748 | // First destroy the erased objects. |
749 | scalar_type<T>::destruct_array(pDst, n); |
750 | } |
751 | |
752 | // Copy "down" the objects to preserve, filling in the empty slots. |
753 | memmove(pDst, pSrc, num_to_move * sizeof(T)); |
754 | } |
755 | else |
756 | { |
757 | // Type is not bitwise copyable or movable. |
758 | // Move them down one at a time by using the equals operator, and destroying anything that's left over at the end. |
759 | T* pDst_end = pDst + num_to_move; |
760 | while (pDst != pDst_end) |
761 | *pDst++ = *pSrc++; |
762 | |
763 | scalar_type<T>::destruct_array(pDst_end, n); |
764 | } |
765 | |
766 | m_size -= n; |
767 | } |
768 | |
769 | inline void erase(uint32_t index) |
770 | { |
771 | erase(index, 1); |
772 | } |
773 | |
774 | inline void erase(T* p) |
775 | { |
776 | assert((p >= m_p) && (p < (m_p + m_size))); |
777 | erase(static_cast<uint32_t>(p - m_p)); |
778 | } |
779 | |
780 | inline void erase(T *pFirst, T *pEnd) |
781 | { |
782 | assert(pFirst <= pEnd); |
783 | assert(pFirst >= begin() && pFirst <= end()); |
784 | assert(pEnd >= begin() && pEnd <= end()); |
785 | |
786 | int64_t ofs = pFirst - begin(); |
787 | if ((ofs < 0) || (ofs > UINT32_MAX)) |
788 | { |
789 | assert(0); |
790 | return; |
791 | } |
792 | |
793 | int64_t n = pEnd - pFirst; |
794 | if ((n < 0) || (n > UINT32_MAX)) |
795 | { |
796 | assert(0); |
797 | return; |
798 | } |
799 | |
800 | erase((uint32_t)ofs, (uint32_t)n); |
801 | } |
802 | |
803 | void erase_unordered(uint32_t index) |
804 | { |
805 | assert(index < m_size); |
806 | |
807 | if ((index + 1) < m_size) |
808 | (*this)[index] = back(); |
809 | |
810 | pop_back(); |
811 | } |
812 | |
813 | inline bool operator== (const vector& rhs) const |
814 | { |
815 | if (m_size != rhs.m_size) |
816 | return false; |
817 | else if (m_size) |
818 | { |
819 | if (scalar_type<T>::cFlag) |
820 | return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0; |
821 | else |
822 | { |
823 | const T* pSrc = m_p; |
824 | const T* pDst = rhs.m_p; |
825 | for (uint32_t i = m_size; i; i--) |
826 | if (!(*pSrc++ == *pDst++)) |
827 | return false; |
828 | } |
829 | } |
830 | |
831 | return true; |
832 | } |
833 | |
834 | inline bool operator< (const vector& rhs) const |
835 | { |
836 | const uint32_t min_size = helpers::minimum(m_size, rhs.m_size); |
837 | |
838 | const T* pSrc = m_p; |
839 | const T* pSrc_end = m_p + min_size; |
840 | const T* pDst = rhs.m_p; |
841 | |
842 | while ((pSrc < pSrc_end) && (*pSrc == *pDst)) |
843 | { |
844 | pSrc++; |
845 | pDst++; |
846 | } |
847 | |
848 | if (pSrc < pSrc_end) |
849 | return *pSrc < *pDst; |
850 | |
851 | return m_size < rhs.m_size; |
852 | } |
853 | |
854 | inline void swap(vector& other) |
855 | { |
856 | std::swap(m_p, other.m_p); |
857 | std::swap(m_size, other.m_size); |
858 | std::swap(m_capacity, other.m_capacity); |
859 | } |
860 | |
861 | inline void sort() |
862 | { |
863 | std::sort(begin(), end()); |
864 | } |
865 | |
866 | inline void unique() |
867 | { |
868 | if (!empty()) |
869 | { |
870 | sort(); |
871 | |
872 | resize(std::unique(begin(), end()) - begin()); |
873 | } |
874 | } |
875 | |
876 | inline void reverse() |
877 | { |
878 | uint32_t j = m_size >> 1; |
879 | for (uint32_t i = 0; i < j; i++) |
880 | std::swap(m_p[i], m_p[m_size - 1 - i]); |
881 | } |
882 | |
883 | inline int find(const T& key) const |
884 | { |
885 | const T* p = m_p; |
886 | const T* p_end = m_p + m_size; |
887 | |
888 | uint32_t index = 0; |
889 | |
890 | while (p != p_end) |
891 | { |
892 | if (key == *p) |
893 | return index; |
894 | |
895 | p++; |
896 | index++; |
897 | } |
898 | |
899 | return cInvalidIndex; |
900 | } |
901 | |
902 | inline int find_sorted(const T& key) const |
903 | { |
904 | if (m_size) |
905 | { |
906 | // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. |
907 | int i = ((m_size + 1) >> 1) - 1; |
908 | int m = m_size; |
909 | |
910 | for (; ; ) |
911 | { |
912 | assert(i >= 0 && i < (int)m_size); |
913 | const T* pKey_i = m_p + i; |
914 | int cmp = key < *pKey_i; |
915 | #if defined(_DEBUG) || defined(DEBUG) |
916 | int cmp2 = *pKey_i < key; |
917 | assert((cmp != cmp2) || (key == *pKey_i)); |
918 | #endif |
919 | if ((!cmp) && (key == *pKey_i)) return i; |
920 | m >>= 1; |
921 | if (!m) break; |
922 | cmp = -cmp; |
923 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
924 | if (i < 0) |
925 | break; |
926 | |
927 | assert(i >= 0 && i < (int)m_size); |
928 | pKey_i = m_p + i; |
929 | cmp = key < *pKey_i; |
930 | #if defined(_DEBUG) || defined(DEBUG) |
931 | cmp2 = *pKey_i < key; |
932 | assert((cmp != cmp2) || (key == *pKey_i)); |
933 | #endif |
934 | if ((!cmp) && (key == *pKey_i)) return i; |
935 | m >>= 1; |
936 | if (!m) break; |
937 | cmp = -cmp; |
938 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
939 | if (i < 0) |
940 | break; |
941 | } |
942 | } |
943 | |
944 | return cInvalidIndex; |
945 | } |
946 | |
947 | template<typename Q> |
948 | inline int find_sorted(const T& key, Q less_than) const |
949 | { |
950 | if (m_size) |
951 | { |
952 | // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. |
953 | int i = ((m_size + 1) >> 1) - 1; |
954 | int m = m_size; |
955 | |
956 | for (; ; ) |
957 | { |
958 | assert(i >= 0 && i < (int)m_size); |
959 | const T* pKey_i = m_p + i; |
960 | int cmp = less_than(key, *pKey_i); |
961 | if ((!cmp) && (!less_than(*pKey_i, key))) return i; |
962 | m >>= 1; |
963 | if (!m) break; |
964 | cmp = -cmp; |
965 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
966 | if (i < 0) |
967 | break; |
968 | |
969 | assert(i >= 0 && i < (int)m_size); |
970 | pKey_i = m_p + i; |
971 | cmp = less_than(key, *pKey_i); |
972 | if ((!cmp) && (!less_than(*pKey_i, key))) return i; |
973 | m >>= 1; |
974 | if (!m) break; |
975 | cmp = -cmp; |
976 | i += (((m + 1) >> 1) ^ cmp) - cmp; |
977 | if (i < 0) |
978 | break; |
979 | } |
980 | } |
981 | |
982 | return cInvalidIndex; |
983 | } |
984 | |
985 | inline uint32_t count_occurences(const T& key) const |
986 | { |
987 | uint32_t c = 0; |
988 | |
989 | const T* p = m_p; |
990 | const T* p_end = m_p + m_size; |
991 | |
992 | while (p != p_end) |
993 | { |
994 | if (key == *p) |
995 | c++; |
996 | |
997 | p++; |
998 | } |
999 | |
1000 | return c; |
1001 | } |
1002 | |
1003 | inline void set_all(const T& o) |
1004 | { |
1005 | if ((sizeof(T) == 1) && (scalar_type<T>::cFlag)) |
1006 | memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size); |
1007 | else |
1008 | { |
1009 | T* pDst = m_p; |
1010 | T* pDst_end = pDst + m_size; |
1011 | while (pDst != pDst_end) |
1012 | *pDst++ = o; |
1013 | } |
1014 | } |
1015 | |
1016 | // Caller assumes ownership of the heap block associated with the container. Container is cleared. |
1017 | inline void* assume_ownership() |
1018 | { |
1019 | T* p = m_p; |
1020 | m_p = NULL; |
1021 | m_size = 0; |
1022 | m_capacity = 0; |
1023 | return p; |
1024 | } |
1025 | |
1026 | // Caller is granting ownership of the indicated heap block. |
1027 | // Block must have size constructed elements, and have enough room for capacity elements. |
1028 | // The block must have been allocated using malloc(). |
1029 | // Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method. |
1030 | inline bool grant_ownership(T* p, uint32_t size, uint32_t capacity) |
1031 | { |
1032 | // To to prevent the caller from obviously shooting themselves in the foot. |
1033 | if (((p + capacity) > m_p) && (p < (m_p + m_capacity))) |
1034 | { |
1035 | // Can grant ownership of a block inside the container itself! |
1036 | assert(0); |
1037 | return false; |
1038 | } |
1039 | |
1040 | if (size > capacity) |
1041 | { |
1042 | assert(0); |
1043 | return false; |
1044 | } |
1045 | |
1046 | if (!p) |
1047 | { |
1048 | if (capacity) |
1049 | { |
1050 | assert(0); |
1051 | return false; |
1052 | } |
1053 | } |
1054 | else if (!capacity) |
1055 | { |
1056 | assert(0); |
1057 | return false; |
1058 | } |
1059 | |
1060 | clear(); |
1061 | m_p = p; |
1062 | m_size = size; |
1063 | m_capacity = capacity; |
1064 | return true; |
1065 | } |
1066 | |
1067 | private: |
1068 | T* m_p; |
1069 | uint32_t m_size; |
1070 | uint32_t m_capacity; |
1071 | |
1072 | template<typename Q> struct is_vector { enum { cFlag = false }; }; |
1073 | template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; }; |
1074 | |
1075 | static void object_mover(void* pDst_void, void* pSrc_void, uint32_t num) |
1076 | { |
1077 | T* pSrc = static_cast<T*>(pSrc_void); |
1078 | T* const pSrc_end = pSrc + num; |
1079 | T* pDst = static_cast<T*>(pDst_void); |
1080 | |
1081 | while (pSrc != pSrc_end) |
1082 | { |
1083 | // placement new |
1084 | new (static_cast<void*>(pDst)) T(*pSrc); |
1085 | pSrc->~T(); |
1086 | ++pSrc; |
1087 | ++pDst; |
1088 | } |
1089 | } |
1090 | |
1091 | inline bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, bool nofail = false) |
1092 | { |
1093 | return reinterpret_cast<elemental_vector*>(this)->increase_capacity( |
1094 | min_new_capacity, grow_hint, sizeof(T), |
1095 | (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? NULL : object_mover, nofail); |
1096 | } |
1097 | }; |
1098 | |
1099 | template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; }; |
1100 | |
1101 | // Hash map |
1102 | |
1103 | template <typename T> |
1104 | struct hasher |
1105 | { |
1106 | inline size_t operator() (const T& key) const { return static_cast<size_t>(key); } |
1107 | }; |
1108 | |
1109 | template <typename T> |
1110 | struct equal_to |
1111 | { |
1112 | inline bool operator()(const T& a, const T& b) const { return a == b; } |
1113 | }; |
1114 | |
1115 | // Important: The Hasher and Equals objects must be bitwise movable! |
1116 | template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> > |
1117 | class hash_map |
1118 | { |
1119 | public: |
1120 | class iterator; |
1121 | class const_iterator; |
1122 | |
1123 | private: |
1124 | friend class iterator; |
1125 | friend class const_iterator; |
1126 | |
1127 | enum state |
1128 | { |
1129 | cStateInvalid = 0, |
1130 | cStateValid = 1 |
1131 | }; |
1132 | |
1133 | enum |
1134 | { |
1135 | cMinHashSize = 4U |
1136 | }; |
1137 | |
1138 | public: |
1139 | typedef hash_map<Key, Value, Hasher, Equals> hash_map_type; |
1140 | typedef std::pair<Key, Value> value_type; |
1141 | typedef Key key_type; |
1142 | typedef Value referent_type; |
1143 | typedef Hasher hasher_type; |
1144 | typedef Equals equals_type; |
1145 | |
1146 | hash_map() : |
1147 | m_hash_shift(32), m_num_valid(0), m_grow_threshold(0) |
1148 | { |
1149 | } |
1150 | |
1151 | hash_map(const hash_map& other) : |
1152 | m_values(other.m_values), |
1153 | m_hash_shift(other.m_hash_shift), |
1154 | m_hasher(other.m_hasher), |
1155 | m_equals(other.m_equals), |
1156 | m_num_valid(other.m_num_valid), |
1157 | m_grow_threshold(other.m_grow_threshold) |
1158 | { |
1159 | } |
1160 | |
1161 | hash_map& operator= (const hash_map& other) |
1162 | { |
1163 | if (this == &other) |
1164 | return *this; |
1165 | |
1166 | clear(); |
1167 | |
1168 | m_values = other.m_values; |
1169 | m_hash_shift = other.m_hash_shift; |
1170 | m_num_valid = other.m_num_valid; |
1171 | m_grow_threshold = other.m_grow_threshold; |
1172 | m_hasher = other.m_hasher; |
1173 | m_equals = other.m_equals; |
1174 | |
1175 | return *this; |
1176 | } |
1177 | |
1178 | inline ~hash_map() |
1179 | { |
1180 | clear(); |
1181 | } |
1182 | |
1183 | const Equals& get_equals() const { return m_equals; } |
1184 | Equals& get_equals() { return m_equals; } |
1185 | |
1186 | void set_equals(const Equals& equals) { m_equals = equals; } |
1187 | |
1188 | const Hasher& get_hasher() const { return m_hasher; } |
1189 | Hasher& get_hasher() { return m_hasher; } |
1190 | |
1191 | void set_hasher(const Hasher& hasher) { m_hasher = hasher; } |
1192 | |
1193 | inline void clear() |
1194 | { |
1195 | if (!m_values.empty()) |
1196 | { |
1197 | if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) |
1198 | { |
1199 | node* p = &get_node(0); |
1200 | node* p_end = p + m_values.size(); |
1201 | |
1202 | uint32_t num_remaining = m_num_valid; |
1203 | while (p != p_end) |
1204 | { |
1205 | if (p->state) |
1206 | { |
1207 | destruct_value_type(p); |
1208 | num_remaining--; |
1209 | if (!num_remaining) |
1210 | break; |
1211 | } |
1212 | |
1213 | p++; |
1214 | } |
1215 | } |
1216 | |
1217 | m_values.clear_no_destruction(); |
1218 | |
1219 | m_hash_shift = 32; |
1220 | m_num_valid = 0; |
1221 | m_grow_threshold = 0; |
1222 | } |
1223 | } |
1224 | |
1225 | inline void reset() |
1226 | { |
1227 | if (!m_num_valid) |
1228 | return; |
1229 | |
1230 | if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) |
1231 | { |
1232 | node* p = &get_node(0); |
1233 | node* p_end = p + m_values.size(); |
1234 | |
1235 | uint32_t num_remaining = m_num_valid; |
1236 | while (p != p_end) |
1237 | { |
1238 | if (p->state) |
1239 | { |
1240 | destruct_value_type(p); |
1241 | p->state = cStateInvalid; |
1242 | |
1243 | num_remaining--; |
1244 | if (!num_remaining) |
1245 | break; |
1246 | } |
1247 | |
1248 | p++; |
1249 | } |
1250 | } |
1251 | else if (sizeof(node) <= 32) |
1252 | { |
1253 | memset(&m_values[0], 0, m_values.size_in_bytes()); |
1254 | } |
1255 | else |
1256 | { |
1257 | node* p = &get_node(0); |
1258 | node* p_end = p + m_values.size(); |
1259 | |
1260 | uint32_t num_remaining = m_num_valid; |
1261 | while (p != p_end) |
1262 | { |
1263 | if (p->state) |
1264 | { |
1265 | p->state = cStateInvalid; |
1266 | |
1267 | num_remaining--; |
1268 | if (!num_remaining) |
1269 | break; |
1270 | } |
1271 | |
1272 | p++; |
1273 | } |
1274 | } |
1275 | |
1276 | m_num_valid = 0; |
1277 | } |
1278 | |
1279 | inline uint32_t size() |
1280 | { |
1281 | return m_num_valid; |
1282 | } |
1283 | |
1284 | inline uint32_t get_table_size() |
1285 | { |
1286 | return m_values.size(); |
1287 | } |
1288 | |
1289 | inline bool empty() |
1290 | { |
1291 | return !m_num_valid; |
1292 | } |
1293 | |
1294 | inline void reserve(uint32_t new_capacity) |
1295 | { |
1296 | uint64_t new_hash_size = helpers::maximum(1U, new_capacity); |
1297 | |
1298 | new_hash_size = new_hash_size * 2ULL; |
1299 | |
1300 | if (!helpers::is_power_of_2(new_hash_size)) |
1301 | new_hash_size = helpers::next_pow2(new_hash_size); |
1302 | |
1303 | new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size); |
1304 | |
1305 | new_hash_size = helpers::minimum<uint64_t>(0x80000000UL, new_hash_size); |
1306 | |
1307 | if (new_hash_size > m_values.size()) |
1308 | rehash((uint32_t)new_hash_size); |
1309 | } |
1310 | |
1311 | class iterator |
1312 | { |
1313 | friend class hash_map<Key, Value, Hasher, Equals>; |
1314 | friend class hash_map<Key, Value, Hasher, Equals>::const_iterator; |
1315 | |
1316 | public: |
1317 | inline iterator() : m_pTable(NULL), m_index(0) { } |
1318 | inline iterator(hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } |
1319 | inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } |
1320 | |
1321 | inline iterator& operator= (const iterator& other) |
1322 | { |
1323 | m_pTable = other.m_pTable; |
1324 | m_index = other.m_index; |
1325 | return *this; |
1326 | } |
1327 | |
1328 | // post-increment |
1329 | inline iterator operator++(int) |
1330 | { |
1331 | iterator result(*this); |
1332 | ++*this; |
1333 | return result; |
1334 | } |
1335 | |
1336 | // pre-increment |
1337 | inline iterator& operator++() |
1338 | { |
1339 | probe(); |
1340 | return *this; |
1341 | } |
1342 | |
1343 | inline value_type& operator*() const { return *get_cur(); } |
1344 | inline value_type* operator->() const { return get_cur(); } |
1345 | |
1346 | inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
1347 | inline bool operator != (const iterator& b) const { return !(*this == b); } |
1348 | inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
1349 | inline bool operator != (const const_iterator& b) const { return !(*this == b); } |
1350 | |
1351 | private: |
1352 | hash_map_type* m_pTable; |
1353 | uint32_t m_index; |
1354 | |
1355 | inline value_type* get_cur() const |
1356 | { |
1357 | assert(m_pTable && (m_index < m_pTable->m_values.size())); |
1358 | assert(m_pTable->get_node_state(m_index) == cStateValid); |
1359 | |
1360 | return &m_pTable->get_node(m_index); |
1361 | } |
1362 | |
1363 | inline void probe() |
1364 | { |
1365 | assert(m_pTable); |
1366 | m_index = m_pTable->find_next(m_index); |
1367 | } |
1368 | }; |
1369 | |
1370 | class const_iterator |
1371 | { |
1372 | friend class hash_map<Key, Value, Hasher, Equals>; |
1373 | friend class hash_map<Key, Value, Hasher, Equals>::iterator; |
1374 | |
1375 | public: |
1376 | inline const_iterator() : m_pTable(NULL), m_index(0) { } |
1377 | inline const_iterator(const hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } |
1378 | inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } |
1379 | inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } |
1380 | |
1381 | inline const_iterator& operator= (const const_iterator& other) |
1382 | { |
1383 | m_pTable = other.m_pTable; |
1384 | m_index = other.m_index; |
1385 | return *this; |
1386 | } |
1387 | |
1388 | inline const_iterator& operator= (const iterator& other) |
1389 | { |
1390 | m_pTable = other.m_pTable; |
1391 | m_index = other.m_index; |
1392 | return *this; |
1393 | } |
1394 | |
1395 | // post-increment |
1396 | inline const_iterator operator++(int) |
1397 | { |
1398 | const_iterator result(*this); |
1399 | ++*this; |
1400 | return result; |
1401 | } |
1402 | |
1403 | // pre-increment |
1404 | inline const_iterator& operator++() |
1405 | { |
1406 | probe(); |
1407 | return *this; |
1408 | } |
1409 | |
1410 | inline const value_type& operator*() const { return *get_cur(); } |
1411 | inline const value_type* operator->() const { return get_cur(); } |
1412 | |
1413 | inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
1414 | inline bool operator != (const const_iterator& b) const { return !(*this == b); } |
1415 | inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } |
1416 | inline bool operator != (const iterator& b) const { return !(*this == b); } |
1417 | |
1418 | private: |
1419 | const hash_map_type* m_pTable; |
1420 | uint32_t m_index; |
1421 | |
1422 | inline const value_type* get_cur() const |
1423 | { |
1424 | assert(m_pTable && (m_index < m_pTable->m_values.size())); |
1425 | assert(m_pTable->get_node_state(m_index) == cStateValid); |
1426 | |
1427 | return &m_pTable->get_node(m_index); |
1428 | } |
1429 | |
1430 | inline void probe() |
1431 | { |
1432 | assert(m_pTable); |
1433 | m_index = m_pTable->find_next(m_index); |
1434 | } |
1435 | }; |
1436 | |
1437 | inline const_iterator begin() const |
1438 | { |
1439 | if (!m_num_valid) |
1440 | return end(); |
1441 | |
1442 | return const_iterator(*this, find_next(UINT32_MAX)); |
1443 | } |
1444 | |
1445 | inline const_iterator end() const |
1446 | { |
1447 | return const_iterator(*this, m_values.size()); |
1448 | } |
1449 | |
1450 | inline iterator begin() |
1451 | { |
1452 | if (!m_num_valid) |
1453 | return end(); |
1454 | |
1455 | return iterator(*this, find_next(UINT32_MAX)); |
1456 | } |
1457 | |
1458 | inline iterator end() |
1459 | { |
1460 | return iterator(*this, m_values.size()); |
1461 | } |
1462 | |
1463 | // insert_result.first will always point to inserted key/value (or the already existing key/value). |
1464 | // insert_resutt.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value). |
1465 | typedef std::pair<iterator, bool> insert_result; |
1466 | |
1467 | inline insert_result insert(const Key& k, const Value& v = Value()) |
1468 | { |
1469 | insert_result result; |
1470 | if (!insert_no_grow(result, k, v)) |
1471 | { |
1472 | grow(); |
1473 | |
1474 | // This must succeed. |
1475 | if (!insert_no_grow(result, k, v)) |
1476 | { |
1477 | fprintf(stderr, "insert() failed" ); |
1478 | abort(); |
1479 | } |
1480 | } |
1481 | |
1482 | return result; |
1483 | } |
1484 | |
1485 | inline insert_result insert(const value_type& v) |
1486 | { |
1487 | return insert(v.first, v.second); |
1488 | } |
1489 | |
1490 | inline const_iterator find(const Key& k) const |
1491 | { |
1492 | return const_iterator(*this, find_index(k)); |
1493 | } |
1494 | |
1495 | inline iterator find(const Key& k) |
1496 | { |
1497 | return iterator(*this, find_index(k)); |
1498 | } |
1499 | |
1500 | inline bool erase(const Key& k) |
1501 | { |
1502 | uint32_t i = find_index(k); |
1503 | |
1504 | if (i >= m_values.size()) |
1505 | return false; |
1506 | |
1507 | node* pDst = &get_node(i); |
1508 | destruct_value_type(pDst); |
1509 | pDst->state = cStateInvalid; |
1510 | |
1511 | m_num_valid--; |
1512 | |
1513 | for (; ; ) |
1514 | { |
1515 | uint32_t r, j = i; |
1516 | |
1517 | node* pSrc = pDst; |
1518 | |
1519 | do |
1520 | { |
1521 | if (!i) |
1522 | { |
1523 | i = m_values.size() - 1; |
1524 | pSrc = &get_node(i); |
1525 | } |
1526 | else |
1527 | { |
1528 | i--; |
1529 | pSrc--; |
1530 | } |
1531 | |
1532 | if (!pSrc->state) |
1533 | return true; |
1534 | |
1535 | r = hash_key(pSrc->first); |
1536 | |
1537 | } while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)); |
1538 | |
1539 | move_node(pDst, pSrc); |
1540 | |
1541 | pDst = pSrc; |
1542 | } |
1543 | } |
1544 | |
1545 | inline void swap(hash_map_type& other) |
1546 | { |
1547 | m_values.swap(other.m_values); |
1548 | std::swap(m_hash_shift, other.m_hash_shift); |
1549 | std::swap(m_num_valid, other.m_num_valid); |
1550 | std::swap(m_grow_threshold, other.m_grow_threshold); |
1551 | std::swap(m_hasher, other.m_hasher); |
1552 | std::swap(m_equals, other.m_equals); |
1553 | } |
1554 | |
1555 | private: |
1556 | struct node : public value_type |
1557 | { |
1558 | uint8_t state; |
1559 | }; |
1560 | |
1561 | static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v) |
1562 | { |
1563 | if (BASISU_IS_BITWISE_COPYABLE(Key)) |
1564 | memcpy(&pDst->first, &k, sizeof(Key)); |
1565 | else |
1566 | scalar_type<Key>::construct(&pDst->first, k); |
1567 | |
1568 | if (BASISU_IS_BITWISE_COPYABLE(Value)) |
1569 | memcpy(&pDst->second, &v, sizeof(Value)); |
1570 | else |
1571 | scalar_type<Value>::construct(&pDst->second, v); |
1572 | } |
1573 | |
1574 | static inline void construct_value_type(value_type* pDst, const value_type* pSrc) |
1575 | { |
1576 | if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value))) |
1577 | { |
1578 | memcpy(pDst, pSrc, sizeof(value_type)); |
1579 | } |
1580 | else |
1581 | { |
1582 | if (BASISU_IS_BITWISE_COPYABLE(Key)) |
1583 | memcpy(&pDst->first, &pSrc->first, sizeof(Key)); |
1584 | else |
1585 | scalar_type<Key>::construct(&pDst->first, pSrc->first); |
1586 | |
1587 | if (BASISU_IS_BITWISE_COPYABLE(Value)) |
1588 | memcpy(&pDst->second, &pSrc->second, sizeof(Value)); |
1589 | else |
1590 | scalar_type<Value>::construct(&pDst->second, pSrc->second); |
1591 | } |
1592 | } |
1593 | |
1594 | static inline void destruct_value_type(value_type* p) |
1595 | { |
1596 | scalar_type<Key>::destruct(&p->first); |
1597 | scalar_type<Value>::destruct(&p->second); |
1598 | } |
1599 | |
1600 | // Moves *pSrc to *pDst efficiently. |
1601 | // pDst should NOT be constructed on entry. |
1602 | static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true) |
1603 | { |
1604 | assert(!pDst->state); |
1605 | |
1606 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) |
1607 | { |
1608 | memcpy(pDst, pSrc, sizeof(node)); |
1609 | } |
1610 | else |
1611 | { |
1612 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key)) |
1613 | memcpy(&pDst->first, &pSrc->first, sizeof(Key)); |
1614 | else |
1615 | { |
1616 | scalar_type<Key>::construct(&pDst->first, pSrc->first); |
1617 | scalar_type<Key>::destruct(&pSrc->first); |
1618 | } |
1619 | |
1620 | if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) |
1621 | memcpy(&pDst->second, &pSrc->second, sizeof(Value)); |
1622 | else |
1623 | { |
1624 | scalar_type<Value>::construct(&pDst->second, pSrc->second); |
1625 | scalar_type<Value>::destruct(&pSrc->second); |
1626 | } |
1627 | |
1628 | pDst->state = cStateValid; |
1629 | } |
1630 | |
1631 | if (update_src_state) |
1632 | pSrc->state = cStateInvalid; |
1633 | } |
1634 | |
1635 | struct raw_node |
1636 | { |
1637 | inline raw_node() |
1638 | { |
1639 | node* p = reinterpret_cast<node*>(this); |
1640 | p->state = cStateInvalid; |
1641 | } |
1642 | |
1643 | inline ~raw_node() |
1644 | { |
1645 | node* p = reinterpret_cast<node*>(this); |
1646 | if (p->state) |
1647 | hash_map_type::destruct_value_type(p); |
1648 | } |
1649 | |
1650 | inline raw_node(const raw_node& other) |
1651 | { |
1652 | node* pDst = reinterpret_cast<node*>(this); |
1653 | const node* pSrc = reinterpret_cast<const node*>(&other); |
1654 | |
1655 | if (pSrc->state) |
1656 | { |
1657 | hash_map_type::construct_value_type(pDst, pSrc); |
1658 | pDst->state = cStateValid; |
1659 | } |
1660 | else |
1661 | pDst->state = cStateInvalid; |
1662 | } |
1663 | |
1664 | inline raw_node& operator= (const raw_node& rhs) |
1665 | { |
1666 | if (this == &rhs) |
1667 | return *this; |
1668 | |
1669 | node* pDst = reinterpret_cast<node*>(this); |
1670 | const node* pSrc = reinterpret_cast<const node*>(&rhs); |
1671 | |
1672 | if (pSrc->state) |
1673 | { |
1674 | if (pDst->state) |
1675 | { |
1676 | pDst->first = pSrc->first; |
1677 | pDst->second = pSrc->second; |
1678 | } |
1679 | else |
1680 | { |
1681 | hash_map_type::construct_value_type(pDst, pSrc); |
1682 | pDst->state = cStateValid; |
1683 | } |
1684 | } |
1685 | else if (pDst->state) |
1686 | { |
1687 | hash_map_type::destruct_value_type(pDst); |
1688 | pDst->state = cStateInvalid; |
1689 | } |
1690 | |
1691 | return *this; |
1692 | } |
1693 | |
1694 | uint8_t m_bits[sizeof(node)]; |
1695 | }; |
1696 | |
1697 | typedef basisu::vector<raw_node> node_vector; |
1698 | |
1699 | node_vector m_values; |
1700 | uint32_t m_hash_shift; |
1701 | |
1702 | Hasher m_hasher; |
1703 | Equals m_equals; |
1704 | |
1705 | uint32_t m_num_valid; |
1706 | |
1707 | uint32_t m_grow_threshold; |
1708 | |
1709 | inline uint32_t hash_key(const Key& k) const |
1710 | { |
1711 | assert((1U << (32U - m_hash_shift)) == m_values.size()); |
1712 | |
1713 | uint32_t hash = static_cast<uint32_t>(m_hasher(k)); |
1714 | |
1715 | // Fibonacci hashing |
1716 | hash = (2654435769U * hash) >> m_hash_shift; |
1717 | |
1718 | assert(hash < m_values.size()); |
1719 | return hash; |
1720 | } |
1721 | |
1722 | inline const node& get_node(uint32_t index) const |
1723 | { |
1724 | return *reinterpret_cast<const node*>(&m_values[index]); |
1725 | } |
1726 | |
1727 | inline node& get_node(uint32_t index) |
1728 | { |
1729 | return *reinterpret_cast<node*>(&m_values[index]); |
1730 | } |
1731 | |
1732 | inline state get_node_state(uint32_t index) const |
1733 | { |
1734 | return static_cast<state>(get_node(index).state); |
1735 | } |
1736 | |
1737 | inline void set_node_state(uint32_t index, bool valid) |
1738 | { |
1739 | get_node(index).state = valid; |
1740 | } |
1741 | |
1742 | inline void grow() |
1743 | { |
1744 | uint64_t n = m_values.size() * 3ULL; // was * 2 |
1745 | |
1746 | if (!helpers::is_power_of_2(n)) |
1747 | n = helpers::next_pow2(n); |
1748 | |
1749 | if (n > 0x80000000UL) |
1750 | n = 0x80000000UL; |
1751 | |
1752 | rehash(helpers::maximum<uint32_t>(cMinHashSize, (uint32_t)n)); |
1753 | } |
1754 | |
1755 | inline void rehash(uint32_t new_hash_size) |
1756 | { |
1757 | assert(new_hash_size >= m_num_valid); |
1758 | assert(helpers::is_power_of_2(new_hash_size)); |
1759 | |
1760 | if ((new_hash_size < m_num_valid) || (new_hash_size == m_values.size())) |
1761 | return; |
1762 | |
1763 | hash_map new_map; |
1764 | new_map.m_values.resize(new_hash_size); |
1765 | new_map.m_hash_shift = 32U - helpers::floor_log2i(new_hash_size); |
1766 | assert(new_hash_size == (1U << (32U - new_map.m_hash_shift))); |
1767 | new_map.m_grow_threshold = UINT_MAX; |
1768 | |
1769 | node* pNode = reinterpret_cast<node*>(m_values.begin()); |
1770 | node* pNode_end = pNode + m_values.size(); |
1771 | |
1772 | while (pNode != pNode_end) |
1773 | { |
1774 | if (pNode->state) |
1775 | { |
1776 | new_map.move_into(pNode); |
1777 | |
1778 | if (new_map.m_num_valid == m_num_valid) |
1779 | break; |
1780 | } |
1781 | |
1782 | pNode++; |
1783 | } |
1784 | |
1785 | new_map.m_grow_threshold = (new_hash_size + 1U) >> 1U; |
1786 | |
1787 | m_values.clear_no_destruction(); |
1788 | m_hash_shift = 32; |
1789 | |
1790 | swap(new_map); |
1791 | } |
1792 | |
1793 | inline uint32_t find_next(uint32_t index) const |
1794 | { |
1795 | index++; |
1796 | |
1797 | if (index >= m_values.size()) |
1798 | return index; |
1799 | |
1800 | const node* pNode = &get_node(index); |
1801 | |
1802 | for (; ; ) |
1803 | { |
1804 | if (pNode->state) |
1805 | break; |
1806 | |
1807 | if (++index >= m_values.size()) |
1808 | break; |
1809 | |
1810 | pNode++; |
1811 | } |
1812 | |
1813 | return index; |
1814 | } |
1815 | |
1816 | inline uint32_t find_index(const Key& k) const |
1817 | { |
1818 | if (m_num_valid) |
1819 | { |
1820 | uint32_t index = hash_key(k); |
1821 | const node* pNode = &get_node(index); |
1822 | |
1823 | if (pNode->state) |
1824 | { |
1825 | if (m_equals(pNode->first, k)) |
1826 | return index; |
1827 | |
1828 | const uint32_t orig_index = index; |
1829 | |
1830 | for (; ; ) |
1831 | { |
1832 | if (!index) |
1833 | { |
1834 | index = m_values.size() - 1; |
1835 | pNode = &get_node(index); |
1836 | } |
1837 | else |
1838 | { |
1839 | index--; |
1840 | pNode--; |
1841 | } |
1842 | |
1843 | if (index == orig_index) |
1844 | break; |
1845 | |
1846 | if (!pNode->state) |
1847 | break; |
1848 | |
1849 | if (m_equals(pNode->first, k)) |
1850 | return index; |
1851 | } |
1852 | } |
1853 | } |
1854 | |
1855 | return m_values.size(); |
1856 | } |
1857 | |
1858 | inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v = Value()) |
1859 | { |
1860 | if (!m_values.size()) |
1861 | return false; |
1862 | |
1863 | uint32_t index = hash_key(k); |
1864 | node* pNode = &get_node(index); |
1865 | |
1866 | if (pNode->state) |
1867 | { |
1868 | if (m_equals(pNode->first, k)) |
1869 | { |
1870 | result.first = iterator(*this, index); |
1871 | result.second = false; |
1872 | return true; |
1873 | } |
1874 | |
1875 | const uint32_t orig_index = index; |
1876 | |
1877 | for (; ; ) |
1878 | { |
1879 | if (!index) |
1880 | { |
1881 | index = m_values.size() - 1; |
1882 | pNode = &get_node(index); |
1883 | } |
1884 | else |
1885 | { |
1886 | index--; |
1887 | pNode--; |
1888 | } |
1889 | |
1890 | if (orig_index == index) |
1891 | return false; |
1892 | |
1893 | if (!pNode->state) |
1894 | break; |
1895 | |
1896 | if (m_equals(pNode->first, k)) |
1897 | { |
1898 | result.first = iterator(*this, index); |
1899 | result.second = false; |
1900 | return true; |
1901 | } |
1902 | } |
1903 | } |
1904 | |
1905 | if (m_num_valid >= m_grow_threshold) |
1906 | return false; |
1907 | |
1908 | construct_value_type(pNode, k, v); |
1909 | |
1910 | pNode->state = cStateValid; |
1911 | |
1912 | m_num_valid++; |
1913 | assert(m_num_valid <= m_values.size()); |
1914 | |
1915 | result.first = iterator(*this, index); |
1916 | result.second = true; |
1917 | |
1918 | return true; |
1919 | } |
1920 | |
1921 | inline void move_into(node* pNode) |
1922 | { |
1923 | uint32_t index = hash_key(pNode->first); |
1924 | node* pDst_node = &get_node(index); |
1925 | |
1926 | if (pDst_node->state) |
1927 | { |
1928 | const uint32_t orig_index = index; |
1929 | |
1930 | for (; ; ) |
1931 | { |
1932 | if (!index) |
1933 | { |
1934 | index = m_values.size() - 1; |
1935 | pDst_node = &get_node(index); |
1936 | } |
1937 | else |
1938 | { |
1939 | index--; |
1940 | pDst_node--; |
1941 | } |
1942 | |
1943 | if (index == orig_index) |
1944 | { |
1945 | assert(false); |
1946 | return; |
1947 | } |
1948 | |
1949 | if (!pDst_node->state) |
1950 | break; |
1951 | } |
1952 | } |
1953 | |
1954 | move_node(pDst_node, pNode, false); |
1955 | |
1956 | m_num_valid++; |
1957 | } |
1958 | }; |
1959 | |
1960 | template<typename Key, typename Value, typename Hasher, typename Equals> |
1961 | struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; }; |
1962 | |
1963 | #if BASISU_HASHMAP_TEST |
1964 | extern void hash_map_test(); |
1965 | #endif |
1966 | |
1967 | } // namespace basisu |
1968 | |
1969 | namespace std |
1970 | { |
1971 | template<typename T> |
1972 | inline void swap(basisu::vector<T>& a, basisu::vector<T>& b) |
1973 | { |
1974 | a.swap(b); |
1975 | } |
1976 | |
1977 | template<typename Key, typename Value, typename Hasher, typename Equals> |
1978 | inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b) |
1979 | { |
1980 | a.swap(b); |
1981 | } |
1982 | |
1983 | } // namespace std |
1984 | |