1 | #pragma once |
2 | #ifndef __CVTT_ENDPOINTSELECTOR_H__ |
3 | #define __CVTT_ENDPOINTSELECTOR_H__ |
4 | |
5 | #include "ConvectionKernels_ParallelMath.h" |
6 | #include "ConvectionKernels_UnfinishedEndpoints.h" |
7 | #include "ConvectionKernels_PackedCovarianceMatrix.h" |
8 | |
9 | namespace cvtt |
10 | { |
11 | namespace Internal |
12 | { |
13 | static const int NumEndpointSelectorPasses = 3; |
14 | |
15 | template<int TVectorSize, int TIterationCount> |
16 | class EndpointSelector |
17 | { |
18 | public: |
19 | typedef ParallelMath::Float MFloat; |
20 | |
21 | EndpointSelector() |
22 | { |
23 | for (int ch = 0; ch < TVectorSize; ch++) |
24 | { |
25 | m_centroid[ch] = ParallelMath::MakeFloatZero(); |
26 | m_direction[ch] = ParallelMath::MakeFloatZero(); |
27 | } |
28 | m_weightTotal = ParallelMath::MakeFloatZero(); |
29 | m_minDist = ParallelMath::MakeFloat(FLT_MAX); |
30 | m_maxDist = ParallelMath::MakeFloat(-FLT_MAX); |
31 | } |
32 | |
33 | void ContributePass(const MFloat *value, int pass, const MFloat &weight) |
34 | { |
35 | if (pass == 0) |
36 | ContributeCentroid(value, weight); |
37 | else if (pass == 1) |
38 | ContributeDirection(value, weight); |
39 | else if (pass == 2) |
40 | ContributeMinMax(value); |
41 | } |
42 | |
43 | void FinishPass(int pass) |
44 | { |
45 | if (pass == 0) |
46 | FinishCentroid(); |
47 | else if (pass == 1) |
48 | FinishDirection(); |
49 | } |
50 | |
51 | UnfinishedEndpoints<TVectorSize> GetEndpoints(const float channelWeights[TVectorSize]) const |
52 | { |
53 | MFloat unweightedBase[TVectorSize]; |
54 | MFloat unweightedOffset[TVectorSize]; |
55 | |
56 | for (int ch = 0; ch < TVectorSize; ch++) |
57 | { |
58 | MFloat min = m_centroid[ch] + m_direction[ch] * m_minDist; |
59 | MFloat max = m_centroid[ch] + m_direction[ch] * m_maxDist; |
60 | |
61 | float safeWeight = channelWeights[ch]; |
62 | if (safeWeight == 0.f) |
63 | safeWeight = 1.0f; |
64 | |
65 | unweightedBase[ch] = min / channelWeights[ch]; |
66 | unweightedOffset[ch] = (max - min) / channelWeights[ch]; |
67 | } |
68 | |
69 | return UnfinishedEndpoints<TVectorSize>(unweightedBase, unweightedOffset); |
70 | } |
71 | |
72 | private: |
73 | void ContributeCentroid(const MFloat *value, const MFloat &weight) |
74 | { |
75 | for (int ch = 0; ch < TVectorSize; ch++) |
76 | m_centroid[ch] = m_centroid[ch] + value[ch] * weight; |
77 | m_weightTotal = m_weightTotal + weight; |
78 | } |
79 | |
80 | void FinishCentroid() |
81 | { |
82 | MFloat denom = m_weightTotal; |
83 | ParallelMath::MakeSafeDenominator(denom); |
84 | |
85 | for (int ch = 0; ch < TVectorSize; ch++) |
86 | m_centroid[ch] = m_centroid[ch] / denom; |
87 | } |
88 | |
89 | void ContributeDirection(const MFloat *value, const MFloat &weight) |
90 | { |
91 | MFloat diff[TVectorSize]; |
92 | for (int ch = 0; ch < TVectorSize; ch++) |
93 | diff[ch] = value[ch] - m_centroid[ch]; |
94 | |
95 | m_covarianceMatrix.Add(diff, weight); |
96 | } |
97 | |
98 | void FinishDirection() |
99 | { |
100 | MFloat approx[TVectorSize]; |
101 | for (int ch = 0; ch < TVectorSize; ch++) |
102 | approx[ch] = ParallelMath::MakeFloat(1.0f); |
103 | |
104 | for (int i = 0; i < TIterationCount; i++) |
105 | { |
106 | MFloat product[TVectorSize]; |
107 | m_covarianceMatrix.Product(product, approx); |
108 | |
109 | MFloat largestComponent = product[0]; |
110 | for (int ch = 1; ch < TVectorSize; ch++) |
111 | largestComponent = ParallelMath::Max(largestComponent, product[ch]); |
112 | |
113 | // product = largestComponent*newApprox |
114 | ParallelMath::MakeSafeDenominator(largestComponent); |
115 | for (int ch = 0; ch < TVectorSize; ch++) |
116 | approx[ch] = product[ch] / largestComponent; |
117 | } |
118 | |
119 | // Normalize |
120 | MFloat approxLen = ParallelMath::MakeFloatZero(); |
121 | for (int ch = 0; ch < TVectorSize; ch++) |
122 | approxLen = approxLen + approx[ch] * approx[ch]; |
123 | |
124 | approxLen = ParallelMath::Sqrt(approxLen); |
125 | |
126 | ParallelMath::MakeSafeDenominator(approxLen); |
127 | |
128 | for (int ch = 0; ch < TVectorSize; ch++) |
129 | m_direction[ch] = approx[ch] / approxLen; |
130 | } |
131 | |
132 | void ContributeMinMax(const MFloat *value) |
133 | { |
134 | MFloat dist = ParallelMath::MakeFloatZero(); |
135 | for (int ch = 0; ch < TVectorSize; ch++) |
136 | dist = dist + m_direction[ch] * (value[ch] - m_centroid[ch]); |
137 | |
138 | m_minDist = ParallelMath::Min(m_minDist, dist); |
139 | m_maxDist = ParallelMath::Max(m_maxDist, dist); |
140 | } |
141 | |
142 | ParallelMath::Float m_centroid[TVectorSize]; |
143 | ParallelMath::Float m_direction[TVectorSize]; |
144 | PackedCovarianceMatrix<TVectorSize> m_covarianceMatrix; |
145 | ParallelMath::Float m_weightTotal; |
146 | |
147 | ParallelMath::Float m_minDist; |
148 | ParallelMath::Float m_maxDist; |
149 | }; |
150 | } |
151 | } |
152 | |
153 | #endif |
154 | |