| 1 | /** |
| 2 | @file peer.c |
| 3 | @brief ENet peer management functions |
| 4 | */ |
| 5 | #include <string.h> |
| 6 | #define ENET_BUILDING_LIB 1 |
| 7 | #include "enet/enet.h" |
| 8 | |
| 9 | /** @defgroup peer ENet peer functions |
| 10 | @{ |
| 11 | */ |
| 12 | |
| 13 | /** Configures throttle parameter for a peer. |
| 14 | |
| 15 | Unreliable packets are dropped by ENet in response to the varying conditions |
| 16 | of the Internet connection to the peer. The throttle represents a probability |
| 17 | that an unreliable packet should not be dropped and thus sent by ENet to the peer. |
| 18 | The lowest mean round trip time from the sending of a reliable packet to the |
| 19 | receipt of its acknowledgement is measured over an amount of time specified by |
| 20 | the interval parameter in milliseconds. If a measured round trip time happens to |
| 21 | be significantly less than the mean round trip time measured over the interval, |
| 22 | then the throttle probability is increased to allow more traffic by an amount |
| 23 | specified in the acceleration parameter, which is a ratio to the ENET_PEER_PACKET_THROTTLE_SCALE |
| 24 | constant. If a measured round trip time happens to be significantly greater than |
| 25 | the mean round trip time measured over the interval, then the throttle probability |
| 26 | is decreased to limit traffic by an amount specified in the deceleration parameter, which |
| 27 | is a ratio to the ENET_PEER_PACKET_THROTTLE_SCALE constant. When the throttle has |
| 28 | a value of ENET_PEER_PACKET_THROTTLE_SCALE, no unreliable packets are dropped by |
| 29 | ENet, and so 100% of all unreliable packets will be sent. When the throttle has a |
| 30 | value of 0, all unreliable packets are dropped by ENet, and so 0% of all unreliable |
| 31 | packets will be sent. Intermediate values for the throttle represent intermediate |
| 32 | probabilities between 0% and 100% of unreliable packets being sent. The bandwidth |
| 33 | limits of the local and foreign hosts are taken into account to determine a |
| 34 | sensible limit for the throttle probability above which it should not raise even in |
| 35 | the best of conditions. |
| 36 | |
| 37 | @param peer peer to configure |
| 38 | @param interval interval, in milliseconds, over which to measure lowest mean RTT; the default value is ENET_PEER_PACKET_THROTTLE_INTERVAL. |
| 39 | @param acceleration rate at which to increase the throttle probability as mean RTT declines |
| 40 | @param deceleration rate at which to decrease the throttle probability as mean RTT increases |
| 41 | */ |
| 42 | void |
| 43 | enet_peer_throttle_configure (ENetPeer * peer, enet_uint32 interval, enet_uint32 acceleration, enet_uint32 deceleration) |
| 44 | { |
| 45 | ENetProtocol command; |
| 46 | |
| 47 | peer -> packetThrottleInterval = interval; |
| 48 | peer -> packetThrottleAcceleration = acceleration; |
| 49 | peer -> packetThrottleDeceleration = deceleration; |
| 50 | |
| 51 | command.header.command = ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; |
| 52 | command.header.channelID = 0xFF; |
| 53 | |
| 54 | command.throttleConfigure.packetThrottleInterval = ENET_HOST_TO_NET_32 (interval); |
| 55 | command.throttleConfigure.packetThrottleAcceleration = ENET_HOST_TO_NET_32 (acceleration); |
| 56 | command.throttleConfigure.packetThrottleDeceleration = ENET_HOST_TO_NET_32 (deceleration); |
| 57 | |
| 58 | enet_peer_queue_outgoing_command (peer, & command, NULL, 0, 0); |
| 59 | } |
| 60 | |
| 61 | int |
| 62 | enet_peer_throttle (ENetPeer * peer, enet_uint32 rtt) |
| 63 | { |
| 64 | if (peer -> lastRoundTripTime <= peer -> lastRoundTripTimeVariance) |
| 65 | { |
| 66 | peer -> packetThrottle = peer -> packetThrottleLimit; |
| 67 | } |
| 68 | else |
| 69 | if (rtt <= peer -> lastRoundTripTime) |
| 70 | { |
| 71 | peer -> packetThrottle += peer -> packetThrottleAcceleration; |
| 72 | |
| 73 | if (peer -> packetThrottle > peer -> packetThrottleLimit) |
| 74 | peer -> packetThrottle = peer -> packetThrottleLimit; |
| 75 | |
| 76 | return 1; |
| 77 | } |
| 78 | else |
| 79 | if (rtt > peer -> lastRoundTripTime + 2 * peer -> lastRoundTripTimeVariance) |
| 80 | { |
| 81 | if (peer -> packetThrottle > peer -> packetThrottleDeceleration) |
| 82 | peer -> packetThrottle -= peer -> packetThrottleDeceleration; |
| 83 | else |
| 84 | peer -> packetThrottle = 0; |
| 85 | |
| 86 | return -1; |
| 87 | } |
| 88 | |
| 89 | return 0; |
| 90 | } |
| 91 | |
| 92 | /** Queues a packet to be sent. |
| 93 | |
| 94 | On success, ENet will assume ownership of the packet, and so enet_packet_destroy |
| 95 | should not be called on it thereafter. On failure, the caller still must destroy |
| 96 | the packet on its own as ENet has not queued the packet. The caller can also |
| 97 | check the packet's referenceCount field after sending to check if ENet queued |
| 98 | the packet and thus incremented the referenceCount. |
| 99 | |
| 100 | @param peer destination for the packet |
| 101 | @param channelID channel on which to send |
| 102 | @param packet packet to send |
| 103 | @retval 0 on success |
| 104 | @retval < 0 on failure |
| 105 | */ |
| 106 | int |
| 107 | enet_peer_send (ENetPeer * peer, enet_uint8 channelID, ENetPacket * packet) |
| 108 | { |
| 109 | ENetChannel * channel; |
| 110 | ENetProtocol command; |
| 111 | size_t fragmentLength; |
| 112 | |
| 113 | if (peer -> state != ENET_PEER_STATE_CONNECTED || |
| 114 | channelID >= peer -> channelCount || |
| 115 | packet -> dataLength > peer -> host -> maximumPacketSize) |
| 116 | return -1; |
| 117 | |
| 118 | channel = & peer -> channels [channelID]; |
| 119 | fragmentLength = peer -> mtu - sizeof (ENetProtocolHeader) - sizeof (ENetProtocolSendFragment); |
| 120 | if (peer -> host -> checksum != NULL) |
| 121 | fragmentLength -= sizeof(enet_uint32); |
| 122 | |
| 123 | if (packet -> dataLength > fragmentLength) |
| 124 | { |
| 125 | enet_uint32 fragmentCount = (packet -> dataLength + fragmentLength - 1) / fragmentLength, |
| 126 | fragmentNumber, |
| 127 | fragmentOffset; |
| 128 | enet_uint8 commandNumber; |
| 129 | enet_uint16 startSequenceNumber; |
| 130 | ENetList fragments; |
| 131 | ENetOutgoingCommand * fragment; |
| 132 | |
| 133 | if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT) |
| 134 | return -1; |
| 135 | |
| 136 | if ((packet -> flags & (ENET_PACKET_FLAG_RELIABLE | ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT)) == ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT && |
| 137 | channel -> outgoingUnreliableSequenceNumber < 0xFFFF) |
| 138 | { |
| 139 | commandNumber = ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT; |
| 140 | startSequenceNumber = ENET_HOST_TO_NET_16 (channel -> outgoingUnreliableSequenceNumber + 1); |
| 141 | } |
| 142 | else |
| 143 | { |
| 144 | commandNumber = ENET_PROTOCOL_COMMAND_SEND_FRAGMENT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; |
| 145 | startSequenceNumber = ENET_HOST_TO_NET_16 (channel -> outgoingReliableSequenceNumber + 1); |
| 146 | } |
| 147 | |
| 148 | enet_list_clear (& fragments); |
| 149 | |
| 150 | for (fragmentNumber = 0, |
| 151 | fragmentOffset = 0; |
| 152 | fragmentOffset < packet -> dataLength; |
| 153 | ++ fragmentNumber, |
| 154 | fragmentOffset += fragmentLength) |
| 155 | { |
| 156 | if (packet -> dataLength - fragmentOffset < fragmentLength) |
| 157 | fragmentLength = packet -> dataLength - fragmentOffset; |
| 158 | |
| 159 | fragment = (ENetOutgoingCommand *) enet_malloc (sizeof (ENetOutgoingCommand)); |
| 160 | if (fragment == NULL) |
| 161 | { |
| 162 | while (! enet_list_empty (& fragments)) |
| 163 | { |
| 164 | fragment = (ENetOutgoingCommand *) enet_list_remove (enet_list_begin (& fragments)); |
| 165 | |
| 166 | enet_free (fragment); |
| 167 | } |
| 168 | |
| 169 | return -1; |
| 170 | } |
| 171 | |
| 172 | fragment -> fragmentOffset = fragmentOffset; |
| 173 | fragment -> fragmentLength = fragmentLength; |
| 174 | fragment -> packet = packet; |
| 175 | fragment -> command.header.command = commandNumber; |
| 176 | fragment -> command.header.channelID = channelID; |
| 177 | fragment -> command.sendFragment.startSequenceNumber = startSequenceNumber; |
| 178 | fragment -> command.sendFragment.dataLength = ENET_HOST_TO_NET_16 (fragmentLength); |
| 179 | fragment -> command.sendFragment.fragmentCount = ENET_HOST_TO_NET_32 (fragmentCount); |
| 180 | fragment -> command.sendFragment.fragmentNumber = ENET_HOST_TO_NET_32 (fragmentNumber); |
| 181 | fragment -> command.sendFragment.totalLength = ENET_HOST_TO_NET_32 (packet -> dataLength); |
| 182 | fragment -> command.sendFragment.fragmentOffset = ENET_NET_TO_HOST_32 (fragmentOffset); |
| 183 | |
| 184 | enet_list_insert (enet_list_end (& fragments), fragment); |
| 185 | } |
| 186 | |
| 187 | packet -> referenceCount += fragmentNumber; |
| 188 | |
| 189 | while (! enet_list_empty (& fragments)) |
| 190 | { |
| 191 | fragment = (ENetOutgoingCommand *) enet_list_remove (enet_list_begin (& fragments)); |
| 192 | |
| 193 | enet_peer_setup_outgoing_command (peer, fragment); |
| 194 | } |
| 195 | |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | command.header.channelID = channelID; |
| 200 | |
| 201 | if ((packet -> flags & (ENET_PACKET_FLAG_RELIABLE | ENET_PACKET_FLAG_UNSEQUENCED)) == ENET_PACKET_FLAG_UNSEQUENCED) |
| 202 | { |
| 203 | command.header.command = ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED | ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED; |
| 204 | command.sendUnsequenced.dataLength = ENET_HOST_TO_NET_16 (packet -> dataLength); |
| 205 | } |
| 206 | else |
| 207 | if (packet -> flags & ENET_PACKET_FLAG_RELIABLE || channel -> outgoingUnreliableSequenceNumber >= 0xFFFF) |
| 208 | { |
| 209 | command.header.command = ENET_PROTOCOL_COMMAND_SEND_RELIABLE | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; |
| 210 | command.sendReliable.dataLength = ENET_HOST_TO_NET_16 (packet -> dataLength); |
| 211 | } |
| 212 | else |
| 213 | { |
| 214 | command.header.command = ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE; |
| 215 | command.sendUnreliable.dataLength = ENET_HOST_TO_NET_16 (packet -> dataLength); |
| 216 | } |
| 217 | |
| 218 | if (enet_peer_queue_outgoing_command (peer, & command, packet, 0, packet -> dataLength) == NULL) |
| 219 | return -1; |
| 220 | |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | /** Attempts to dequeue any incoming queued packet. |
| 225 | @param peer peer to dequeue packets from |
| 226 | @param channelID holds the channel ID of the channel the packet was received on success |
| 227 | @returns a pointer to the packet, or NULL if there are no available incoming queued packets |
| 228 | */ |
| 229 | ENetPacket * |
| 230 | enet_peer_receive (ENetPeer * peer, enet_uint8 * channelID) |
| 231 | { |
| 232 | ENetIncomingCommand * incomingCommand; |
| 233 | ENetPacket * packet; |
| 234 | |
| 235 | if (enet_list_empty (& peer -> dispatchedCommands)) |
| 236 | return NULL; |
| 237 | |
| 238 | incomingCommand = (ENetIncomingCommand *) enet_list_remove (enet_list_begin (& peer -> dispatchedCommands)); |
| 239 | |
| 240 | if (channelID != NULL) |
| 241 | * channelID = incomingCommand -> command.header.channelID; |
| 242 | |
| 243 | packet = incomingCommand -> packet; |
| 244 | |
| 245 | -- packet -> referenceCount; |
| 246 | |
| 247 | if (incomingCommand -> fragments != NULL) |
| 248 | enet_free (incomingCommand -> fragments); |
| 249 | |
| 250 | enet_free (incomingCommand); |
| 251 | |
| 252 | peer -> totalWaitingData -= packet -> dataLength; |
| 253 | |
| 254 | return packet; |
| 255 | } |
| 256 | |
| 257 | static void |
| 258 | enet_peer_reset_outgoing_commands (ENetList * queue) |
| 259 | { |
| 260 | ENetOutgoingCommand * outgoingCommand; |
| 261 | |
| 262 | while (! enet_list_empty (queue)) |
| 263 | { |
| 264 | outgoingCommand = (ENetOutgoingCommand *) enet_list_remove (enet_list_begin (queue)); |
| 265 | |
| 266 | if (outgoingCommand -> packet != NULL) |
| 267 | { |
| 268 | -- outgoingCommand -> packet -> referenceCount; |
| 269 | |
| 270 | if (outgoingCommand -> packet -> referenceCount == 0) |
| 271 | enet_packet_destroy (outgoingCommand -> packet); |
| 272 | } |
| 273 | |
| 274 | enet_free (outgoingCommand); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static void |
| 279 | enet_peer_remove_incoming_commands (ENetList * queue, ENetListIterator startCommand, ENetListIterator endCommand, ENetIncomingCommand * excludeCommand) |
| 280 | { |
| 281 | ENetListIterator currentCommand; |
| 282 | |
| 283 | for (currentCommand = startCommand; currentCommand != endCommand; ) |
| 284 | { |
| 285 | ENetIncomingCommand * incomingCommand = (ENetIncomingCommand *) currentCommand; |
| 286 | |
| 287 | currentCommand = enet_list_next (currentCommand); |
| 288 | |
| 289 | if (incomingCommand == excludeCommand) |
| 290 | continue; |
| 291 | |
| 292 | enet_list_remove (& incomingCommand -> incomingCommandList); |
| 293 | |
| 294 | if (incomingCommand -> packet != NULL) |
| 295 | { |
| 296 | -- incomingCommand -> packet -> referenceCount; |
| 297 | |
| 298 | if (incomingCommand -> packet -> referenceCount == 0) |
| 299 | enet_packet_destroy (incomingCommand -> packet); |
| 300 | } |
| 301 | |
| 302 | if (incomingCommand -> fragments != NULL) |
| 303 | enet_free (incomingCommand -> fragments); |
| 304 | |
| 305 | enet_free (incomingCommand); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | static void |
| 310 | enet_peer_reset_incoming_commands (ENetList * queue) |
| 311 | { |
| 312 | enet_peer_remove_incoming_commands(queue, enet_list_begin (queue), enet_list_end (queue), NULL); |
| 313 | } |
| 314 | |
| 315 | void |
| 316 | enet_peer_reset_queues (ENetPeer * peer) |
| 317 | { |
| 318 | ENetChannel * channel; |
| 319 | |
| 320 | if (peer -> flags & ENET_PEER_FLAG_NEEDS_DISPATCH) |
| 321 | { |
| 322 | enet_list_remove (& peer -> dispatchList); |
| 323 | |
| 324 | peer -> flags &= ~ ENET_PEER_FLAG_NEEDS_DISPATCH; |
| 325 | } |
| 326 | |
| 327 | while (! enet_list_empty (& peer -> acknowledgements)) |
| 328 | enet_free (enet_list_remove (enet_list_begin (& peer -> acknowledgements))); |
| 329 | |
| 330 | enet_peer_reset_outgoing_commands (& peer -> sentReliableCommands); |
| 331 | enet_peer_reset_outgoing_commands (& peer -> outgoingCommands); |
| 332 | enet_peer_reset_outgoing_commands (& peer -> outgoingSendReliableCommands); |
| 333 | enet_peer_reset_incoming_commands (& peer -> dispatchedCommands); |
| 334 | |
| 335 | if (peer -> channels != NULL && peer -> channelCount > 0) |
| 336 | { |
| 337 | for (channel = peer -> channels; |
| 338 | channel < & peer -> channels [peer -> channelCount]; |
| 339 | ++ channel) |
| 340 | { |
| 341 | enet_peer_reset_incoming_commands (& channel -> incomingReliableCommands); |
| 342 | enet_peer_reset_incoming_commands (& channel -> incomingUnreliableCommands); |
| 343 | } |
| 344 | |
| 345 | enet_free (peer -> channels); |
| 346 | } |
| 347 | |
| 348 | peer -> channels = NULL; |
| 349 | peer -> channelCount = 0; |
| 350 | } |
| 351 | |
| 352 | void |
| 353 | enet_peer_on_connect (ENetPeer * peer) |
| 354 | { |
| 355 | if (peer -> state != ENET_PEER_STATE_CONNECTED && peer -> state != ENET_PEER_STATE_DISCONNECT_LATER) |
| 356 | { |
| 357 | if (peer -> incomingBandwidth != 0) |
| 358 | ++ peer -> host -> bandwidthLimitedPeers; |
| 359 | |
| 360 | ++ peer -> host -> connectedPeers; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | void |
| 365 | enet_peer_on_disconnect (ENetPeer * peer) |
| 366 | { |
| 367 | if (peer -> state == ENET_PEER_STATE_CONNECTED || peer -> state == ENET_PEER_STATE_DISCONNECT_LATER) |
| 368 | { |
| 369 | if (peer -> incomingBandwidth != 0) |
| 370 | -- peer -> host -> bandwidthLimitedPeers; |
| 371 | |
| 372 | -- peer -> host -> connectedPeers; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | /** Forcefully disconnects a peer. |
| 377 | @param peer peer to forcefully disconnect |
| 378 | @remarks The foreign host represented by the peer is not notified of the disconnection and will timeout |
| 379 | on its connection to the local host. |
| 380 | */ |
| 381 | void |
| 382 | enet_peer_reset (ENetPeer * peer) |
| 383 | { |
| 384 | enet_peer_on_disconnect (peer); |
| 385 | |
| 386 | peer -> outgoingPeerID = ENET_PROTOCOL_MAXIMUM_PEER_ID; |
| 387 | peer -> connectID = 0; |
| 388 | |
| 389 | peer -> state = ENET_PEER_STATE_DISCONNECTED; |
| 390 | |
| 391 | peer -> incomingBandwidth = 0; |
| 392 | peer -> outgoingBandwidth = 0; |
| 393 | peer -> incomingBandwidthThrottleEpoch = 0; |
| 394 | peer -> outgoingBandwidthThrottleEpoch = 0; |
| 395 | peer -> incomingDataTotal = 0; |
| 396 | peer -> outgoingDataTotal = 0; |
| 397 | peer -> lastSendTime = 0; |
| 398 | peer -> lastReceiveTime = 0; |
| 399 | peer -> nextTimeout = 0; |
| 400 | peer -> earliestTimeout = 0; |
| 401 | peer -> packetLossEpoch = 0; |
| 402 | peer -> packetsSent = 0; |
| 403 | peer -> packetsLost = 0; |
| 404 | peer -> packetLoss = 0; |
| 405 | peer -> packetLossVariance = 0; |
| 406 | peer -> packetThrottle = ENET_PEER_DEFAULT_PACKET_THROTTLE; |
| 407 | peer -> packetThrottleLimit = ENET_PEER_PACKET_THROTTLE_SCALE; |
| 408 | peer -> packetThrottleCounter = 0; |
| 409 | peer -> packetThrottleEpoch = 0; |
| 410 | peer -> packetThrottleAcceleration = ENET_PEER_PACKET_THROTTLE_ACCELERATION; |
| 411 | peer -> packetThrottleDeceleration = ENET_PEER_PACKET_THROTTLE_DECELERATION; |
| 412 | peer -> packetThrottleInterval = ENET_PEER_PACKET_THROTTLE_INTERVAL; |
| 413 | peer -> pingInterval = ENET_PEER_PING_INTERVAL; |
| 414 | peer -> timeoutLimit = ENET_PEER_TIMEOUT_LIMIT; |
| 415 | peer -> timeoutMinimum = ENET_PEER_TIMEOUT_MINIMUM; |
| 416 | peer -> timeoutMaximum = ENET_PEER_TIMEOUT_MAXIMUM; |
| 417 | peer -> lastRoundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME; |
| 418 | peer -> lowestRoundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME; |
| 419 | peer -> lastRoundTripTimeVariance = 0; |
| 420 | peer -> highestRoundTripTimeVariance = 0; |
| 421 | peer -> roundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME; |
| 422 | peer -> roundTripTimeVariance = 0; |
| 423 | peer -> mtu = peer -> host -> mtu; |
| 424 | peer -> reliableDataInTransit = 0; |
| 425 | peer -> outgoingReliableSequenceNumber = 0; |
| 426 | peer -> windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; |
| 427 | peer -> incomingUnsequencedGroup = 0; |
| 428 | peer -> outgoingUnsequencedGroup = 0; |
| 429 | peer -> eventData = 0; |
| 430 | peer -> totalWaitingData = 0; |
| 431 | peer -> flags = 0; |
| 432 | |
| 433 | memset (peer -> unsequencedWindow, 0, sizeof (peer -> unsequencedWindow)); |
| 434 | |
| 435 | enet_peer_reset_queues (peer); |
| 436 | } |
| 437 | |
| 438 | /** Sends a ping request to a peer. |
| 439 | @param peer destination for the ping request |
| 440 | @remarks ping requests factor into the mean round trip time as designated by the |
| 441 | roundTripTime field in the ENetPeer structure. ENet automatically pings all connected |
| 442 | peers at regular intervals, however, this function may be called to ensure more |
| 443 | frequent ping requests. |
| 444 | */ |
| 445 | void |
| 446 | enet_peer_ping (ENetPeer * peer) |
| 447 | { |
| 448 | ENetProtocol command; |
| 449 | |
| 450 | if (peer -> state != ENET_PEER_STATE_CONNECTED) |
| 451 | return; |
| 452 | |
| 453 | command.header.command = ENET_PROTOCOL_COMMAND_PING | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; |
| 454 | command.header.channelID = 0xFF; |
| 455 | |
| 456 | enet_peer_queue_outgoing_command (peer, & command, NULL, 0, 0); |
| 457 | } |
| 458 | |
| 459 | /** Sets the interval at which pings will be sent to a peer. |
| 460 | |
| 461 | Pings are used both to monitor the liveness of the connection and also to dynamically |
| 462 | adjust the throttle during periods of low traffic so that the throttle has reasonable |
| 463 | responsiveness during traffic spikes. |
| 464 | |
| 465 | @param peer the peer to adjust |
| 466 | @param pingInterval the interval at which to send pings; defaults to ENET_PEER_PING_INTERVAL if 0 |
| 467 | */ |
| 468 | void |
| 469 | enet_peer_ping_interval (ENetPeer * peer, enet_uint32 pingInterval) |
| 470 | { |
| 471 | peer -> pingInterval = pingInterval ? pingInterval : ENET_PEER_PING_INTERVAL; |
| 472 | } |
| 473 | |
| 474 | /** Sets the timeout parameters for a peer. |
| 475 | |
| 476 | The timeout parameter control how and when a peer will timeout from a failure to acknowledge |
| 477 | reliable traffic. Timeout values use an exponential backoff mechanism, where if a reliable |
| 478 | packet is not acknowledge within some multiple of the average RTT plus a variance tolerance, |
| 479 | the timeout will be doubled until it reaches a set limit. If the timeout is thus at this |
| 480 | limit and reliable packets have been sent but not acknowledged within a certain minimum time |
| 481 | period, the peer will be disconnected. Alternatively, if reliable packets have been sent |
| 482 | but not acknowledged for a certain maximum time period, the peer will be disconnected regardless |
| 483 | of the current timeout limit value. |
| 484 | |
| 485 | @param peer the peer to adjust |
| 486 | @param timeoutLimit the timeout limit; defaults to ENET_PEER_TIMEOUT_LIMIT if 0 |
| 487 | @param timeoutMinimum the timeout minimum; defaults to ENET_PEER_TIMEOUT_MINIMUM if 0 |
| 488 | @param timeoutMaximum the timeout maximum; defaults to ENET_PEER_TIMEOUT_MAXIMUM if 0 |
| 489 | */ |
| 490 | |
| 491 | void |
| 492 | enet_peer_timeout (ENetPeer * peer, enet_uint32 timeoutLimit, enet_uint32 timeoutMinimum, enet_uint32 timeoutMaximum) |
| 493 | { |
| 494 | peer -> timeoutLimit = timeoutLimit ? timeoutLimit : ENET_PEER_TIMEOUT_LIMIT; |
| 495 | peer -> timeoutMinimum = timeoutMinimum ? timeoutMinimum : ENET_PEER_TIMEOUT_MINIMUM; |
| 496 | peer -> timeoutMaximum = timeoutMaximum ? timeoutMaximum : ENET_PEER_TIMEOUT_MAXIMUM; |
| 497 | } |
| 498 | |
| 499 | /** Force an immediate disconnection from a peer. |
| 500 | @param peer peer to disconnect |
| 501 | @param data data describing the disconnection |
| 502 | @remarks No ENET_EVENT_DISCONNECT event will be generated. The foreign peer is not |
| 503 | guaranteed to receive the disconnect notification, and is reset immediately upon |
| 504 | return from this function. |
| 505 | */ |
| 506 | void |
| 507 | enet_peer_disconnect_now (ENetPeer * peer, enet_uint32 data) |
| 508 | { |
| 509 | ENetProtocol command; |
| 510 | |
| 511 | if (peer -> state == ENET_PEER_STATE_DISCONNECTED) |
| 512 | return; |
| 513 | |
| 514 | if (peer -> state != ENET_PEER_STATE_ZOMBIE && |
| 515 | peer -> state != ENET_PEER_STATE_DISCONNECTING) |
| 516 | { |
| 517 | enet_peer_reset_queues (peer); |
| 518 | |
| 519 | command.header.command = ENET_PROTOCOL_COMMAND_DISCONNECT | ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED; |
| 520 | command.header.channelID = 0xFF; |
| 521 | command.disconnect.data = ENET_HOST_TO_NET_32 (data); |
| 522 | |
| 523 | enet_peer_queue_outgoing_command (peer, & command, NULL, 0, 0); |
| 524 | |
| 525 | enet_host_flush (peer -> host); |
| 526 | } |
| 527 | |
| 528 | enet_peer_reset (peer); |
| 529 | } |
| 530 | |
| 531 | /** Request a disconnection from a peer. |
| 532 | @param peer peer to request a disconnection |
| 533 | @param data data describing the disconnection |
| 534 | @remarks An ENET_EVENT_DISCONNECT event will be generated by enet_host_service() |
| 535 | once the disconnection is complete. |
| 536 | */ |
| 537 | void |
| 538 | enet_peer_disconnect (ENetPeer * peer, enet_uint32 data) |
| 539 | { |
| 540 | ENetProtocol command; |
| 541 | |
| 542 | if (peer -> state == ENET_PEER_STATE_DISCONNECTING || |
| 543 | peer -> state == ENET_PEER_STATE_DISCONNECTED || |
| 544 | peer -> state == ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT || |
| 545 | peer -> state == ENET_PEER_STATE_ZOMBIE) |
| 546 | return; |
| 547 | |
| 548 | enet_peer_reset_queues (peer); |
| 549 | |
| 550 | command.header.command = ENET_PROTOCOL_COMMAND_DISCONNECT; |
| 551 | command.header.channelID = 0xFF; |
| 552 | command.disconnect.data = ENET_HOST_TO_NET_32 (data); |
| 553 | |
| 554 | if (peer -> state == ENET_PEER_STATE_CONNECTED || peer -> state == ENET_PEER_STATE_DISCONNECT_LATER) |
| 555 | command.header.command |= ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; |
| 556 | else |
| 557 | command.header.command |= ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED; |
| 558 | |
| 559 | enet_peer_queue_outgoing_command (peer, & command, NULL, 0, 0); |
| 560 | |
| 561 | if (peer -> state == ENET_PEER_STATE_CONNECTED || peer -> state == ENET_PEER_STATE_DISCONNECT_LATER) |
| 562 | { |
| 563 | enet_peer_on_disconnect (peer); |
| 564 | |
| 565 | peer -> state = ENET_PEER_STATE_DISCONNECTING; |
| 566 | } |
| 567 | else |
| 568 | { |
| 569 | enet_host_flush (peer -> host); |
| 570 | enet_peer_reset (peer); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | int |
| 575 | enet_peer_has_outgoing_commands (ENetPeer * peer) |
| 576 | { |
| 577 | if (enet_list_empty (& peer -> outgoingCommands) && |
| 578 | enet_list_empty (& peer -> outgoingSendReliableCommands) && |
| 579 | enet_list_empty (& peer -> sentReliableCommands)) |
| 580 | return 0; |
| 581 | |
| 582 | return 1; |
| 583 | } |
| 584 | |
| 585 | /** Request a disconnection from a peer, but only after all queued outgoing packets are sent. |
| 586 | @param peer peer to request a disconnection |
| 587 | @param data data describing the disconnection |
| 588 | @remarks An ENET_EVENT_DISCONNECT event will be generated by enet_host_service() |
| 589 | once the disconnection is complete. |
| 590 | */ |
| 591 | void |
| 592 | enet_peer_disconnect_later (ENetPeer * peer, enet_uint32 data) |
| 593 | { |
| 594 | if ((peer -> state == ENET_PEER_STATE_CONNECTED || peer -> state == ENET_PEER_STATE_DISCONNECT_LATER) && |
| 595 | enet_peer_has_outgoing_commands (peer)) |
| 596 | { |
| 597 | peer -> state = ENET_PEER_STATE_DISCONNECT_LATER; |
| 598 | peer -> eventData = data; |
| 599 | } |
| 600 | else |
| 601 | enet_peer_disconnect (peer, data); |
| 602 | } |
| 603 | |
| 604 | ENetAcknowledgement * |
| 605 | enet_peer_queue_acknowledgement (ENetPeer * peer, const ENetProtocol * command, enet_uint16 sentTime) |
| 606 | { |
| 607 | ENetAcknowledgement * acknowledgement; |
| 608 | |
| 609 | if (command -> header.channelID < peer -> channelCount) |
| 610 | { |
| 611 | ENetChannel * channel = & peer -> channels [command -> header.channelID]; |
| 612 | enet_uint16 reliableWindow = command -> header.reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE, |
| 613 | currentWindow = channel -> incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; |
| 614 | |
| 615 | if (command -> header.reliableSequenceNumber < channel -> incomingReliableSequenceNumber) |
| 616 | reliableWindow += ENET_PEER_RELIABLE_WINDOWS; |
| 617 | |
| 618 | if (reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1 && reliableWindow <= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS) |
| 619 | return NULL; |
| 620 | } |
| 621 | |
| 622 | acknowledgement = (ENetAcknowledgement *) enet_malloc (sizeof (ENetAcknowledgement)); |
| 623 | if (acknowledgement == NULL) |
| 624 | return NULL; |
| 625 | |
| 626 | peer -> outgoingDataTotal += sizeof (ENetProtocolAcknowledge); |
| 627 | |
| 628 | acknowledgement -> sentTime = sentTime; |
| 629 | acknowledgement -> command = * command; |
| 630 | |
| 631 | enet_list_insert (enet_list_end (& peer -> acknowledgements), acknowledgement); |
| 632 | |
| 633 | return acknowledgement; |
| 634 | } |
| 635 | |
| 636 | void |
| 637 | enet_peer_setup_outgoing_command (ENetPeer * peer, ENetOutgoingCommand * outgoingCommand) |
| 638 | { |
| 639 | peer -> outgoingDataTotal += enet_protocol_command_size (outgoingCommand -> command.header.command) + outgoingCommand -> fragmentLength; |
| 640 | |
| 641 | if (outgoingCommand -> command.header.channelID == 0xFF) |
| 642 | { |
| 643 | ++ peer -> outgoingReliableSequenceNumber; |
| 644 | |
| 645 | outgoingCommand -> reliableSequenceNumber = peer -> outgoingReliableSequenceNumber; |
| 646 | outgoingCommand -> unreliableSequenceNumber = 0; |
| 647 | } |
| 648 | else |
| 649 | { |
| 650 | ENetChannel * channel = & peer -> channels [outgoingCommand -> command.header.channelID]; |
| 651 | |
| 652 | if (outgoingCommand -> command.header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) |
| 653 | { |
| 654 | ++ channel -> outgoingReliableSequenceNumber; |
| 655 | channel -> outgoingUnreliableSequenceNumber = 0; |
| 656 | |
| 657 | outgoingCommand -> reliableSequenceNumber = channel -> outgoingReliableSequenceNumber; |
| 658 | outgoingCommand -> unreliableSequenceNumber = 0; |
| 659 | } |
| 660 | else |
| 661 | if (outgoingCommand -> command.header.command & ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED) |
| 662 | { |
| 663 | ++ peer -> outgoingUnsequencedGroup; |
| 664 | |
| 665 | outgoingCommand -> reliableSequenceNumber = 0; |
| 666 | outgoingCommand -> unreliableSequenceNumber = 0; |
| 667 | } |
| 668 | else |
| 669 | { |
| 670 | if (outgoingCommand -> fragmentOffset == 0) |
| 671 | ++ channel -> outgoingUnreliableSequenceNumber; |
| 672 | |
| 673 | outgoingCommand -> reliableSequenceNumber = channel -> outgoingReliableSequenceNumber; |
| 674 | outgoingCommand -> unreliableSequenceNumber = channel -> outgoingUnreliableSequenceNumber; |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | outgoingCommand -> sendAttempts = 0; |
| 679 | outgoingCommand -> sentTime = 0; |
| 680 | outgoingCommand -> roundTripTimeout = 0; |
| 681 | outgoingCommand -> command.header.reliableSequenceNumber = ENET_HOST_TO_NET_16 (outgoingCommand -> reliableSequenceNumber); |
| 682 | outgoingCommand -> queueTime = ++ peer -> host -> totalQueued; |
| 683 | |
| 684 | switch (outgoingCommand -> command.header.command & ENET_PROTOCOL_COMMAND_MASK) |
| 685 | { |
| 686 | case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE: |
| 687 | outgoingCommand -> command.sendUnreliable.unreliableSequenceNumber = ENET_HOST_TO_NET_16 (outgoingCommand -> unreliableSequenceNumber); |
| 688 | break; |
| 689 | |
| 690 | case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED: |
| 691 | outgoingCommand -> command.sendUnsequenced.unsequencedGroup = ENET_HOST_TO_NET_16 (peer -> outgoingUnsequencedGroup); |
| 692 | break; |
| 693 | |
| 694 | default: |
| 695 | break; |
| 696 | } |
| 697 | |
| 698 | if ((outgoingCommand -> command.header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) != 0 && |
| 699 | outgoingCommand -> packet != NULL) |
| 700 | enet_list_insert (enet_list_end (& peer -> outgoingSendReliableCommands), outgoingCommand); |
| 701 | else |
| 702 | enet_list_insert (enet_list_end (& peer -> outgoingCommands), outgoingCommand); |
| 703 | } |
| 704 | |
| 705 | ENetOutgoingCommand * |
| 706 | enet_peer_queue_outgoing_command (ENetPeer * peer, const ENetProtocol * command, ENetPacket * packet, enet_uint32 offset, enet_uint16 length) |
| 707 | { |
| 708 | ENetOutgoingCommand * outgoingCommand = (ENetOutgoingCommand *) enet_malloc (sizeof (ENetOutgoingCommand)); |
| 709 | if (outgoingCommand == NULL) |
| 710 | return NULL; |
| 711 | |
| 712 | outgoingCommand -> command = * command; |
| 713 | outgoingCommand -> fragmentOffset = offset; |
| 714 | outgoingCommand -> fragmentLength = length; |
| 715 | outgoingCommand -> packet = packet; |
| 716 | if (packet != NULL) |
| 717 | ++ packet -> referenceCount; |
| 718 | |
| 719 | enet_peer_setup_outgoing_command (peer, outgoingCommand); |
| 720 | |
| 721 | return outgoingCommand; |
| 722 | } |
| 723 | |
| 724 | void |
| 725 | enet_peer_dispatch_incoming_unreliable_commands (ENetPeer * peer, ENetChannel * channel, ENetIncomingCommand * queuedCommand) |
| 726 | { |
| 727 | ENetListIterator droppedCommand, startCommand, currentCommand; |
| 728 | |
| 729 | for (droppedCommand = startCommand = currentCommand = enet_list_begin (& channel -> incomingUnreliableCommands); |
| 730 | currentCommand != enet_list_end (& channel -> incomingUnreliableCommands); |
| 731 | currentCommand = enet_list_next (currentCommand)) |
| 732 | { |
| 733 | ENetIncomingCommand * incomingCommand = (ENetIncomingCommand *) currentCommand; |
| 734 | |
| 735 | if ((incomingCommand -> command.header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) |
| 736 | continue; |
| 737 | |
| 738 | if (incomingCommand -> reliableSequenceNumber == channel -> incomingReliableSequenceNumber) |
| 739 | { |
| 740 | if (incomingCommand -> fragmentsRemaining <= 0) |
| 741 | { |
| 742 | channel -> incomingUnreliableSequenceNumber = incomingCommand -> unreliableSequenceNumber; |
| 743 | continue; |
| 744 | } |
| 745 | |
| 746 | if (startCommand != currentCommand) |
| 747 | { |
| 748 | enet_list_move (enet_list_end (& peer -> dispatchedCommands), startCommand, enet_list_previous (currentCommand)); |
| 749 | |
| 750 | if (! (peer -> flags & ENET_PEER_FLAG_NEEDS_DISPATCH)) |
| 751 | { |
| 752 | enet_list_insert (enet_list_end (& peer -> host -> dispatchQueue), & peer -> dispatchList); |
| 753 | |
| 754 | peer -> flags |= ENET_PEER_FLAG_NEEDS_DISPATCH; |
| 755 | } |
| 756 | |
| 757 | droppedCommand = currentCommand; |
| 758 | } |
| 759 | else |
| 760 | if (droppedCommand != currentCommand) |
| 761 | droppedCommand = enet_list_previous (currentCommand); |
| 762 | } |
| 763 | else |
| 764 | { |
| 765 | enet_uint16 reliableWindow = incomingCommand -> reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE, |
| 766 | currentWindow = channel -> incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; |
| 767 | if (incomingCommand -> reliableSequenceNumber < channel -> incomingReliableSequenceNumber) |
| 768 | reliableWindow += ENET_PEER_RELIABLE_WINDOWS; |
| 769 | if (reliableWindow >= currentWindow && reliableWindow < currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) |
| 770 | break; |
| 771 | |
| 772 | droppedCommand = enet_list_next (currentCommand); |
| 773 | |
| 774 | if (startCommand != currentCommand) |
| 775 | { |
| 776 | enet_list_move (enet_list_end (& peer -> dispatchedCommands), startCommand, enet_list_previous (currentCommand)); |
| 777 | |
| 778 | if (! (peer -> flags & ENET_PEER_FLAG_NEEDS_DISPATCH)) |
| 779 | { |
| 780 | enet_list_insert (enet_list_end (& peer -> host -> dispatchQueue), & peer -> dispatchList); |
| 781 | |
| 782 | peer -> flags |= ENET_PEER_FLAG_NEEDS_DISPATCH; |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | startCommand = enet_list_next (currentCommand); |
| 788 | } |
| 789 | |
| 790 | if (startCommand != currentCommand) |
| 791 | { |
| 792 | enet_list_move (enet_list_end (& peer -> dispatchedCommands), startCommand, enet_list_previous (currentCommand)); |
| 793 | |
| 794 | if (! (peer -> flags & ENET_PEER_FLAG_NEEDS_DISPATCH)) |
| 795 | { |
| 796 | enet_list_insert (enet_list_end (& peer -> host -> dispatchQueue), & peer -> dispatchList); |
| 797 | |
| 798 | peer -> flags |= ENET_PEER_FLAG_NEEDS_DISPATCH; |
| 799 | } |
| 800 | |
| 801 | droppedCommand = currentCommand; |
| 802 | } |
| 803 | |
| 804 | enet_peer_remove_incoming_commands (& channel -> incomingUnreliableCommands, enet_list_begin (& channel -> incomingUnreliableCommands), droppedCommand, queuedCommand); |
| 805 | } |
| 806 | |
| 807 | void |
| 808 | enet_peer_dispatch_incoming_reliable_commands (ENetPeer * peer, ENetChannel * channel, ENetIncomingCommand * queuedCommand) |
| 809 | { |
| 810 | ENetListIterator currentCommand; |
| 811 | |
| 812 | for (currentCommand = enet_list_begin (& channel -> incomingReliableCommands); |
| 813 | currentCommand != enet_list_end (& channel -> incomingReliableCommands); |
| 814 | currentCommand = enet_list_next (currentCommand)) |
| 815 | { |
| 816 | ENetIncomingCommand * incomingCommand = (ENetIncomingCommand *) currentCommand; |
| 817 | |
| 818 | if (incomingCommand -> fragmentsRemaining > 0 || |
| 819 | incomingCommand -> reliableSequenceNumber != (enet_uint16) (channel -> incomingReliableSequenceNumber + 1)) |
| 820 | break; |
| 821 | |
| 822 | channel -> incomingReliableSequenceNumber = incomingCommand -> reliableSequenceNumber; |
| 823 | |
| 824 | if (incomingCommand -> fragmentCount > 0) |
| 825 | channel -> incomingReliableSequenceNumber += incomingCommand -> fragmentCount - 1; |
| 826 | } |
| 827 | |
| 828 | if (currentCommand == enet_list_begin (& channel -> incomingReliableCommands)) |
| 829 | return; |
| 830 | |
| 831 | channel -> incomingUnreliableSequenceNumber = 0; |
| 832 | |
| 833 | enet_list_move (enet_list_end (& peer -> dispatchedCommands), enet_list_begin (& channel -> incomingReliableCommands), enet_list_previous (currentCommand)); |
| 834 | |
| 835 | if (! (peer -> flags & ENET_PEER_FLAG_NEEDS_DISPATCH)) |
| 836 | { |
| 837 | enet_list_insert (enet_list_end (& peer -> host -> dispatchQueue), & peer -> dispatchList); |
| 838 | |
| 839 | peer -> flags |= ENET_PEER_FLAG_NEEDS_DISPATCH; |
| 840 | } |
| 841 | |
| 842 | if (! enet_list_empty (& channel -> incomingUnreliableCommands)) |
| 843 | enet_peer_dispatch_incoming_unreliable_commands (peer, channel, queuedCommand); |
| 844 | } |
| 845 | |
| 846 | ENetIncomingCommand * |
| 847 | enet_peer_queue_incoming_command (ENetPeer * peer, const ENetProtocol * command, const void * data, size_t dataLength, enet_uint32 flags, enet_uint32 fragmentCount) |
| 848 | { |
| 849 | static ENetIncomingCommand dummyCommand; |
| 850 | |
| 851 | ENetChannel * channel = & peer -> channels [command -> header.channelID]; |
| 852 | enet_uint32 unreliableSequenceNumber = 0, reliableSequenceNumber = 0; |
| 853 | enet_uint16 reliableWindow, currentWindow; |
| 854 | ENetIncomingCommand * incomingCommand; |
| 855 | ENetListIterator currentCommand; |
| 856 | ENetPacket * packet = NULL; |
| 857 | |
| 858 | if (peer -> state == ENET_PEER_STATE_DISCONNECT_LATER) |
| 859 | goto discardCommand; |
| 860 | |
| 861 | if ((command -> header.command & ENET_PROTOCOL_COMMAND_MASK) != ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) |
| 862 | { |
| 863 | reliableSequenceNumber = command -> header.reliableSequenceNumber; |
| 864 | reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; |
| 865 | currentWindow = channel -> incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; |
| 866 | |
| 867 | if (reliableSequenceNumber < channel -> incomingReliableSequenceNumber) |
| 868 | reliableWindow += ENET_PEER_RELIABLE_WINDOWS; |
| 869 | |
| 870 | if (reliableWindow < currentWindow || reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) |
| 871 | goto discardCommand; |
| 872 | } |
| 873 | |
| 874 | switch (command -> header.command & ENET_PROTOCOL_COMMAND_MASK) |
| 875 | { |
| 876 | case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT: |
| 877 | case ENET_PROTOCOL_COMMAND_SEND_RELIABLE: |
| 878 | if (reliableSequenceNumber == channel -> incomingReliableSequenceNumber) |
| 879 | goto discardCommand; |
| 880 | |
| 881 | for (currentCommand = enet_list_previous (enet_list_end (& channel -> incomingReliableCommands)); |
| 882 | currentCommand != enet_list_end (& channel -> incomingReliableCommands); |
| 883 | currentCommand = enet_list_previous (currentCommand)) |
| 884 | { |
| 885 | incomingCommand = (ENetIncomingCommand *) currentCommand; |
| 886 | |
| 887 | if (reliableSequenceNumber >= channel -> incomingReliableSequenceNumber) |
| 888 | { |
| 889 | if (incomingCommand -> reliableSequenceNumber < channel -> incomingReliableSequenceNumber) |
| 890 | continue; |
| 891 | } |
| 892 | else |
| 893 | if (incomingCommand -> reliableSequenceNumber >= channel -> incomingReliableSequenceNumber) |
| 894 | break; |
| 895 | |
| 896 | if (incomingCommand -> reliableSequenceNumber <= reliableSequenceNumber) |
| 897 | { |
| 898 | if (incomingCommand -> reliableSequenceNumber < reliableSequenceNumber) |
| 899 | break; |
| 900 | |
| 901 | goto discardCommand; |
| 902 | } |
| 903 | } |
| 904 | break; |
| 905 | |
| 906 | case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE: |
| 907 | case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT: |
| 908 | unreliableSequenceNumber = ENET_NET_TO_HOST_16 (command -> sendUnreliable.unreliableSequenceNumber); |
| 909 | |
| 910 | if (reliableSequenceNumber == channel -> incomingReliableSequenceNumber && |
| 911 | unreliableSequenceNumber <= channel -> incomingUnreliableSequenceNumber) |
| 912 | goto discardCommand; |
| 913 | |
| 914 | for (currentCommand = enet_list_previous (enet_list_end (& channel -> incomingUnreliableCommands)); |
| 915 | currentCommand != enet_list_end (& channel -> incomingUnreliableCommands); |
| 916 | currentCommand = enet_list_previous (currentCommand)) |
| 917 | { |
| 918 | incomingCommand = (ENetIncomingCommand *) currentCommand; |
| 919 | |
| 920 | if ((command -> header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) |
| 921 | continue; |
| 922 | |
| 923 | if (reliableSequenceNumber >= channel -> incomingReliableSequenceNumber) |
| 924 | { |
| 925 | if (incomingCommand -> reliableSequenceNumber < channel -> incomingReliableSequenceNumber) |
| 926 | continue; |
| 927 | } |
| 928 | else |
| 929 | if (incomingCommand -> reliableSequenceNumber >= channel -> incomingReliableSequenceNumber) |
| 930 | break; |
| 931 | |
| 932 | if (incomingCommand -> reliableSequenceNumber < reliableSequenceNumber) |
| 933 | break; |
| 934 | |
| 935 | if (incomingCommand -> reliableSequenceNumber > reliableSequenceNumber) |
| 936 | continue; |
| 937 | |
| 938 | if (incomingCommand -> unreliableSequenceNumber <= unreliableSequenceNumber) |
| 939 | { |
| 940 | if (incomingCommand -> unreliableSequenceNumber < unreliableSequenceNumber) |
| 941 | break; |
| 942 | |
| 943 | goto discardCommand; |
| 944 | } |
| 945 | } |
| 946 | break; |
| 947 | |
| 948 | case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED: |
| 949 | currentCommand = enet_list_end (& channel -> incomingUnreliableCommands); |
| 950 | break; |
| 951 | |
| 952 | default: |
| 953 | goto discardCommand; |
| 954 | } |
| 955 | |
| 956 | if (peer -> totalWaitingData >= peer -> host -> maximumWaitingData) |
| 957 | goto notifyError; |
| 958 | |
| 959 | packet = enet_packet_create (data, dataLength, flags); |
| 960 | if (packet == NULL) |
| 961 | goto notifyError; |
| 962 | |
| 963 | incomingCommand = (ENetIncomingCommand *) enet_malloc (sizeof (ENetIncomingCommand)); |
| 964 | if (incomingCommand == NULL) |
| 965 | goto notifyError; |
| 966 | |
| 967 | incomingCommand -> reliableSequenceNumber = command -> header.reliableSequenceNumber; |
| 968 | incomingCommand -> unreliableSequenceNumber = unreliableSequenceNumber & 0xFFFF; |
| 969 | incomingCommand -> command = * command; |
| 970 | incomingCommand -> fragmentCount = fragmentCount; |
| 971 | incomingCommand -> fragmentsRemaining = fragmentCount; |
| 972 | incomingCommand -> packet = packet; |
| 973 | incomingCommand -> fragments = NULL; |
| 974 | |
| 975 | if (fragmentCount > 0) |
| 976 | { |
| 977 | if (fragmentCount <= ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT) |
| 978 | incomingCommand -> fragments = (enet_uint32 *) enet_malloc ((fragmentCount + 31) / 32 * sizeof (enet_uint32)); |
| 979 | if (incomingCommand -> fragments == NULL) |
| 980 | { |
| 981 | enet_free (incomingCommand); |
| 982 | |
| 983 | goto notifyError; |
| 984 | } |
| 985 | memset (incomingCommand -> fragments, 0, (fragmentCount + 31) / 32 * sizeof (enet_uint32)); |
| 986 | } |
| 987 | |
| 988 | if (packet != NULL) |
| 989 | { |
| 990 | ++ packet -> referenceCount; |
| 991 | |
| 992 | peer -> totalWaitingData += packet -> dataLength; |
| 993 | } |
| 994 | |
| 995 | enet_list_insert (enet_list_next (currentCommand), incomingCommand); |
| 996 | |
| 997 | switch (command -> header.command & ENET_PROTOCOL_COMMAND_MASK) |
| 998 | { |
| 999 | case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT: |
| 1000 | case ENET_PROTOCOL_COMMAND_SEND_RELIABLE: |
| 1001 | enet_peer_dispatch_incoming_reliable_commands (peer, channel, incomingCommand); |
| 1002 | break; |
| 1003 | |
| 1004 | default: |
| 1005 | enet_peer_dispatch_incoming_unreliable_commands (peer, channel, incomingCommand); |
| 1006 | break; |
| 1007 | } |
| 1008 | |
| 1009 | return incomingCommand; |
| 1010 | |
| 1011 | discardCommand: |
| 1012 | if (fragmentCount > 0) |
| 1013 | goto notifyError; |
| 1014 | |
| 1015 | if (packet != NULL && packet -> referenceCount == 0) |
| 1016 | enet_packet_destroy (packet); |
| 1017 | |
| 1018 | return & dummyCommand; |
| 1019 | |
| 1020 | notifyError: |
| 1021 | if (packet != NULL && packet -> referenceCount == 0) |
| 1022 | enet_packet_destroy (packet); |
| 1023 | |
| 1024 | return NULL; |
| 1025 | } |
| 1026 | |
| 1027 | /** @} */ |
| 1028 | |