| 1 | /**************************************************************************** |
| 2 | * |
| 3 | * ftbbox.c |
| 4 | * |
| 5 | * FreeType bbox computation (body). |
| 6 | * |
| 7 | * Copyright (C) 1996-2023 by |
| 8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
| 9 | * |
| 10 | * This file is part of the FreeType project, and may only be used |
| 11 | * modified and distributed under the terms of the FreeType project |
| 12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| 13 | * this file you indicate that you have read the license and |
| 14 | * understand and accept it fully. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | |
| 19 | /************************************************************************** |
| 20 | * |
| 21 | * This component has a _single_ role: to compute exact outline bounding |
| 22 | * boxes. |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | |
| 27 | #include <freetype/internal/ftdebug.h> |
| 28 | |
| 29 | #include <freetype/ftbbox.h> |
| 30 | #include <freetype/ftimage.h> |
| 31 | #include <freetype/ftoutln.h> |
| 32 | #include <freetype/internal/ftcalc.h> |
| 33 | #include <freetype/internal/ftobjs.h> |
| 34 | |
| 35 | |
| 36 | typedef struct TBBox_Rec_ |
| 37 | { |
| 38 | FT_Vector last; |
| 39 | FT_BBox bbox; |
| 40 | |
| 41 | } TBBox_Rec; |
| 42 | |
| 43 | |
| 44 | #define FT_UPDATE_BBOX( p, bbox ) \ |
| 45 | FT_BEGIN_STMNT \ |
| 46 | if ( p->x < bbox.xMin ) \ |
| 47 | bbox.xMin = p->x; \ |
| 48 | if ( p->x > bbox.xMax ) \ |
| 49 | bbox.xMax = p->x; \ |
| 50 | if ( p->y < bbox.yMin ) \ |
| 51 | bbox.yMin = p->y; \ |
| 52 | if ( p->y > bbox.yMax ) \ |
| 53 | bbox.yMax = p->y; \ |
| 54 | FT_END_STMNT |
| 55 | |
| 56 | #define CHECK_X( p, bbox ) \ |
| 57 | ( p->x < bbox.xMin || p->x > bbox.xMax ) |
| 58 | |
| 59 | #define CHECK_Y( p, bbox ) \ |
| 60 | ( p->y < bbox.yMin || p->y > bbox.yMax ) |
| 61 | |
| 62 | |
| 63 | /************************************************************************** |
| 64 | * |
| 65 | * @Function: |
| 66 | * BBox_Move_To |
| 67 | * |
| 68 | * @Description: |
| 69 | * This function is used as a `move_to' emitter during |
| 70 | * FT_Outline_Decompose(). It simply records the destination point |
| 71 | * in `user->last'. We also update bbox in case contour starts with |
| 72 | * an implicit `on' point. |
| 73 | * |
| 74 | * @Input: |
| 75 | * to :: |
| 76 | * A pointer to the destination vector. |
| 77 | * |
| 78 | * @InOut: |
| 79 | * user :: |
| 80 | * A pointer to the current walk context. |
| 81 | * |
| 82 | * @Return: |
| 83 | * Always 0. Needed for the interface only. |
| 84 | */ |
| 85 | FT_CALLBACK_DEF( int ) |
| 86 | BBox_Move_To( const FT_Vector* to, |
| 87 | void* user_ ) |
| 88 | { |
| 89 | TBBox_Rec* user = (TBBox_Rec*)user_; |
| 90 | |
| 91 | |
| 92 | FT_UPDATE_BBOX( to, user->bbox ); |
| 93 | |
| 94 | user->last = *to; |
| 95 | |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | |
| 100 | /************************************************************************** |
| 101 | * |
| 102 | * @Function: |
| 103 | * BBox_Line_To |
| 104 | * |
| 105 | * @Description: |
| 106 | * This function is used as a `line_to' emitter during |
| 107 | * FT_Outline_Decompose(). It simply records the destination point |
| 108 | * in `user->last'; no further computations are necessary because |
| 109 | * bbox already contains both explicit ends of the line segment. |
| 110 | * |
| 111 | * @Input: |
| 112 | * to :: |
| 113 | * A pointer to the destination vector. |
| 114 | * |
| 115 | * @InOut: |
| 116 | * user :: |
| 117 | * A pointer to the current walk context. |
| 118 | * |
| 119 | * @Return: |
| 120 | * Always 0. Needed for the interface only. |
| 121 | */ |
| 122 | FT_CALLBACK_DEF( int ) |
| 123 | BBox_Line_To( const FT_Vector* to, |
| 124 | void* user_ ) |
| 125 | { |
| 126 | TBBox_Rec* user = (TBBox_Rec*)user_; |
| 127 | |
| 128 | |
| 129 | user->last = *to; |
| 130 | |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | |
| 135 | /************************************************************************** |
| 136 | * |
| 137 | * @Function: |
| 138 | * BBox_Conic_Check |
| 139 | * |
| 140 | * @Description: |
| 141 | * Find the extrema of a 1-dimensional conic Bezier curve and update |
| 142 | * a bounding range. This version uses direct computation, as it |
| 143 | * doesn't need square roots. |
| 144 | * |
| 145 | * @Input: |
| 146 | * y1 :: |
| 147 | * The start coordinate. |
| 148 | * |
| 149 | * y2 :: |
| 150 | * The coordinate of the control point. |
| 151 | * |
| 152 | * y3 :: |
| 153 | * The end coordinate. |
| 154 | * |
| 155 | * @InOut: |
| 156 | * min :: |
| 157 | * The address of the current minimum. |
| 158 | * |
| 159 | * max :: |
| 160 | * The address of the current maximum. |
| 161 | */ |
| 162 | static void |
| 163 | BBox_Conic_Check( FT_Pos y1, |
| 164 | FT_Pos y2, |
| 165 | FT_Pos y3, |
| 166 | FT_Pos* min, |
| 167 | FT_Pos* max ) |
| 168 | { |
| 169 | /* This function is only called when a control off-point is outside */ |
| 170 | /* the bbox that contains all on-points. It finds a local extremum */ |
| 171 | /* within the segment, equal to (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */ |
| 172 | /* Or, offsetting from y2, we get */ |
| 173 | |
| 174 | y1 -= y2; |
| 175 | y3 -= y2; |
| 176 | y2 += FT_MulDiv( y1, y3, y1 + y3 ); |
| 177 | |
| 178 | if ( y2 < *min ) |
| 179 | *min = y2; |
| 180 | if ( y2 > *max ) |
| 181 | *max = y2; |
| 182 | } |
| 183 | |
| 184 | |
| 185 | /************************************************************************** |
| 186 | * |
| 187 | * @Function: |
| 188 | * BBox_Conic_To |
| 189 | * |
| 190 | * @Description: |
| 191 | * This function is used as a `conic_to' emitter during |
| 192 | * FT_Outline_Decompose(). It checks a conic Bezier curve with the |
| 193 | * current bounding box, and computes its extrema if necessary to |
| 194 | * update it. |
| 195 | * |
| 196 | * @Input: |
| 197 | * control :: |
| 198 | * A pointer to a control point. |
| 199 | * |
| 200 | * to :: |
| 201 | * A pointer to the destination vector. |
| 202 | * |
| 203 | * @InOut: |
| 204 | * user :: |
| 205 | * The address of the current walk context. |
| 206 | * |
| 207 | * @Return: |
| 208 | * Always 0. Needed for the interface only. |
| 209 | * |
| 210 | * @Note: |
| 211 | * In the case of a non-monotonous arc, we compute directly the |
| 212 | * extremum coordinates, as it is sufficiently fast. |
| 213 | */ |
| 214 | FT_CALLBACK_DEF( int ) |
| 215 | BBox_Conic_To( const FT_Vector* control, |
| 216 | const FT_Vector* to, |
| 217 | void* user_ ) |
| 218 | { |
| 219 | TBBox_Rec* user = (TBBox_Rec*)user_; |
| 220 | |
| 221 | |
| 222 | /* in case `to' is implicit and not included in bbox yet */ |
| 223 | FT_UPDATE_BBOX( to, user->bbox ); |
| 224 | |
| 225 | if ( CHECK_X( control, user->bbox ) ) |
| 226 | BBox_Conic_Check( user->last.x, |
| 227 | control->x, |
| 228 | to->x, |
| 229 | &user->bbox.xMin, |
| 230 | &user->bbox.xMax ); |
| 231 | |
| 232 | if ( CHECK_Y( control, user->bbox ) ) |
| 233 | BBox_Conic_Check( user->last.y, |
| 234 | control->y, |
| 235 | to->y, |
| 236 | &user->bbox.yMin, |
| 237 | &user->bbox.yMax ); |
| 238 | |
| 239 | user->last = *to; |
| 240 | |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | |
| 245 | /************************************************************************** |
| 246 | * |
| 247 | * @Function: |
| 248 | * BBox_Cubic_Check |
| 249 | * |
| 250 | * @Description: |
| 251 | * Find the extrema of a 1-dimensional cubic Bezier curve and |
| 252 | * update a bounding range. This version uses iterative splitting |
| 253 | * because it is faster than the exact solution with square roots. |
| 254 | * |
| 255 | * @Input: |
| 256 | * p1 :: |
| 257 | * The start coordinate. |
| 258 | * |
| 259 | * p2 :: |
| 260 | * The coordinate of the first control point. |
| 261 | * |
| 262 | * p3 :: |
| 263 | * The coordinate of the second control point. |
| 264 | * |
| 265 | * p4 :: |
| 266 | * The end coordinate. |
| 267 | * |
| 268 | * @InOut: |
| 269 | * min :: |
| 270 | * The address of the current minimum. |
| 271 | * |
| 272 | * max :: |
| 273 | * The address of the current maximum. |
| 274 | */ |
| 275 | static FT_Pos |
| 276 | cubic_peak( FT_Pos q1, |
| 277 | FT_Pos q2, |
| 278 | FT_Pos q3, |
| 279 | FT_Pos q4 ) |
| 280 | { |
| 281 | FT_Pos peak = 0; |
| 282 | FT_Int shift; |
| 283 | |
| 284 | |
| 285 | /* This function finds a peak of a cubic segment if it is above 0 */ |
| 286 | /* using iterative bisection of the segment, or returns 0. */ |
| 287 | /* The fixed-point arithmetic of bisection is inherently stable */ |
| 288 | /* but may loose accuracy in the two lowest bits. To compensate, */ |
| 289 | /* we upscale the segment if there is room. Large values may need */ |
| 290 | /* to be downscaled to avoid overflows during bisection. */ |
| 291 | /* It is called with either q2 or q3 positive, which is necessary */ |
| 292 | /* for the peak to exist and avoids undefined FT_MSB. */ |
| 293 | |
| 294 | shift = 27 - FT_MSB( (FT_UInt32)( FT_ABS( q1 ) | |
| 295 | FT_ABS( q2 ) | |
| 296 | FT_ABS( q3 ) | |
| 297 | FT_ABS( q4 ) ) ); |
| 298 | |
| 299 | if ( shift > 0 ) |
| 300 | { |
| 301 | /* upscaling too much just wastes time */ |
| 302 | if ( shift > 2 ) |
| 303 | shift = 2; |
| 304 | |
| 305 | q1 *= 1 << shift; |
| 306 | q2 *= 1 << shift; |
| 307 | q3 *= 1 << shift; |
| 308 | q4 *= 1 << shift; |
| 309 | } |
| 310 | else |
| 311 | { |
| 312 | q1 >>= -shift; |
| 313 | q2 >>= -shift; |
| 314 | q3 >>= -shift; |
| 315 | q4 >>= -shift; |
| 316 | } |
| 317 | |
| 318 | /* for a peak to exist above 0, the cubic segment must have */ |
| 319 | /* at least one of its control off-points above 0. */ |
| 320 | while ( q2 > 0 || q3 > 0 ) |
| 321 | { |
| 322 | /* determine which half contains the maximum and split */ |
| 323 | if ( q1 + q2 > q3 + q4 ) /* first half */ |
| 324 | { |
| 325 | q4 = q4 + q3; |
| 326 | q3 = q3 + q2; |
| 327 | q2 = q2 + q1; |
| 328 | q4 = q4 + q3; |
| 329 | q3 = q3 + q2; |
| 330 | q4 = ( q4 + q3 ) >> 3; |
| 331 | q3 = q3 >> 2; |
| 332 | q2 = q2 >> 1; |
| 333 | } |
| 334 | else /* second half */ |
| 335 | { |
| 336 | q1 = q1 + q2; |
| 337 | q2 = q2 + q3; |
| 338 | q3 = q3 + q4; |
| 339 | q1 = q1 + q2; |
| 340 | q2 = q2 + q3; |
| 341 | q1 = ( q1 + q2 ) >> 3; |
| 342 | q2 = q2 >> 2; |
| 343 | q3 = q3 >> 1; |
| 344 | } |
| 345 | |
| 346 | /* check whether either end reached the maximum */ |
| 347 | if ( q1 == q2 && q1 >= q3 ) |
| 348 | { |
| 349 | peak = q1; |
| 350 | break; |
| 351 | } |
| 352 | if ( q3 == q4 && q2 <= q4 ) |
| 353 | { |
| 354 | peak = q4; |
| 355 | break; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | if ( shift > 0 ) |
| 360 | peak >>= shift; |
| 361 | else |
| 362 | peak <<= -shift; |
| 363 | |
| 364 | return peak; |
| 365 | } |
| 366 | |
| 367 | |
| 368 | static void |
| 369 | BBox_Cubic_Check( FT_Pos p1, |
| 370 | FT_Pos p2, |
| 371 | FT_Pos p3, |
| 372 | FT_Pos p4, |
| 373 | FT_Pos* min, |
| 374 | FT_Pos* max ) |
| 375 | { |
| 376 | /* This function is only called when a control off-point is outside */ |
| 377 | /* the bbox that contains all on-points. So at least one of the */ |
| 378 | /* conditions below holds and cubic_peak is called with at least one */ |
| 379 | /* non-zero argument. */ |
| 380 | |
| 381 | if ( p2 > *max || p3 > *max ) |
| 382 | *max += cubic_peak( p1 - *max, p2 - *max, p3 - *max, p4 - *max ); |
| 383 | |
| 384 | /* now flip the signs to update the minimum */ |
| 385 | if ( p2 < *min || p3 < *min ) |
| 386 | *min -= cubic_peak( *min - p1, *min - p2, *min - p3, *min - p4 ); |
| 387 | } |
| 388 | |
| 389 | |
| 390 | /************************************************************************** |
| 391 | * |
| 392 | * @Function: |
| 393 | * BBox_Cubic_To |
| 394 | * |
| 395 | * @Description: |
| 396 | * This function is used as a `cubic_to' emitter during |
| 397 | * FT_Outline_Decompose(). It checks a cubic Bezier curve with the |
| 398 | * current bounding box, and computes its extrema if necessary to |
| 399 | * update it. |
| 400 | * |
| 401 | * @Input: |
| 402 | * control1 :: |
| 403 | * A pointer to the first control point. |
| 404 | * |
| 405 | * control2 :: |
| 406 | * A pointer to the second control point. |
| 407 | * |
| 408 | * to :: |
| 409 | * A pointer to the destination vector. |
| 410 | * |
| 411 | * @InOut: |
| 412 | * user :: |
| 413 | * The address of the current walk context. |
| 414 | * |
| 415 | * @Return: |
| 416 | * Always 0. Needed for the interface only. |
| 417 | * |
| 418 | * @Note: |
| 419 | * In the case of a non-monotonous arc, we don't compute directly |
| 420 | * extremum coordinates, we subdivide instead. |
| 421 | */ |
| 422 | FT_CALLBACK_DEF( int ) |
| 423 | BBox_Cubic_To( const FT_Vector* control1, |
| 424 | const FT_Vector* control2, |
| 425 | const FT_Vector* to, |
| 426 | void* user_ ) |
| 427 | { |
| 428 | TBBox_Rec* user = (TBBox_Rec*)user_; |
| 429 | |
| 430 | |
| 431 | /* We don't need to check `to' since it is always an on-point, */ |
| 432 | /* thus within the bbox. Only segments with an off-point outside */ |
| 433 | /* the bbox can possibly reach new extreme values. */ |
| 434 | |
| 435 | if ( CHECK_X( control1, user->bbox ) || |
| 436 | CHECK_X( control2, user->bbox ) ) |
| 437 | BBox_Cubic_Check( user->last.x, |
| 438 | control1->x, |
| 439 | control2->x, |
| 440 | to->x, |
| 441 | &user->bbox.xMin, |
| 442 | &user->bbox.xMax ); |
| 443 | |
| 444 | if ( CHECK_Y( control1, user->bbox ) || |
| 445 | CHECK_Y( control2, user->bbox ) ) |
| 446 | BBox_Cubic_Check( user->last.y, |
| 447 | control1->y, |
| 448 | control2->y, |
| 449 | to->y, |
| 450 | &user->bbox.yMin, |
| 451 | &user->bbox.yMax ); |
| 452 | |
| 453 | user->last = *to; |
| 454 | |
| 455 | return 0; |
| 456 | } |
| 457 | |
| 458 | |
| 459 | FT_DEFINE_OUTLINE_FUNCS( |
| 460 | bbox_interface, |
| 461 | |
| 462 | (FT_Outline_MoveTo_Func) BBox_Move_To, /* move_to */ |
| 463 | (FT_Outline_LineTo_Func) BBox_Line_To, /* line_to */ |
| 464 | (FT_Outline_ConicTo_Func)BBox_Conic_To, /* conic_to */ |
| 465 | (FT_Outline_CubicTo_Func)BBox_Cubic_To, /* cubic_to */ |
| 466 | 0, /* shift */ |
| 467 | 0 /* delta */ |
| 468 | ) |
| 469 | |
| 470 | |
| 471 | /* documentation is in ftbbox.h */ |
| 472 | |
| 473 | FT_EXPORT_DEF( FT_Error ) |
| 474 | FT_Outline_Get_BBox( FT_Outline* outline, |
| 475 | FT_BBox *abbox ) |
| 476 | { |
| 477 | FT_BBox cbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
| 478 | -0x7FFFFFFFL, -0x7FFFFFFFL }; |
| 479 | FT_BBox bbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
| 480 | -0x7FFFFFFFL, -0x7FFFFFFFL }; |
| 481 | FT_Vector* vec; |
| 482 | FT_UShort n; |
| 483 | |
| 484 | |
| 485 | if ( !abbox ) |
| 486 | return FT_THROW( Invalid_Argument ); |
| 487 | |
| 488 | if ( !outline ) |
| 489 | return FT_THROW( Invalid_Outline ); |
| 490 | |
| 491 | /* if outline is empty, return (0,0,0,0) */ |
| 492 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| 493 | { |
| 494 | abbox->xMin = abbox->xMax = 0; |
| 495 | abbox->yMin = abbox->yMax = 0; |
| 496 | |
| 497 | return 0; |
| 498 | } |
| 499 | |
| 500 | /* We compute the control box as well as the bounding box of */ |
| 501 | /* all `on' points in the outline. Then, if the two boxes */ |
| 502 | /* coincide, we exit immediately. */ |
| 503 | |
| 504 | vec = outline->points; |
| 505 | |
| 506 | for ( n = 0; n < outline->n_points; n++ ) |
| 507 | { |
| 508 | FT_UPDATE_BBOX( vec, cbox ); |
| 509 | |
| 510 | if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON ) |
| 511 | FT_UPDATE_BBOX( vec, bbox ); |
| 512 | |
| 513 | vec++; |
| 514 | } |
| 515 | |
| 516 | /* test two boxes for equality */ |
| 517 | if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || |
| 518 | cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) |
| 519 | { |
| 520 | /* the two boxes are different, now walk over the outline to */ |
| 521 | /* get the Bezier arc extrema. */ |
| 522 | |
| 523 | FT_Error error; |
| 524 | TBBox_Rec user; |
| 525 | |
| 526 | |
| 527 | user.bbox = bbox; |
| 528 | |
| 529 | error = FT_Outline_Decompose( outline, &bbox_interface, &user ); |
| 530 | if ( error ) |
| 531 | return error; |
| 532 | |
| 533 | *abbox = user.bbox; |
| 534 | } |
| 535 | else |
| 536 | *abbox = bbox; |
| 537 | |
| 538 | return FT_Err_Ok; |
| 539 | } |
| 540 | |
| 541 | |
| 542 | /* END */ |
| 543 | |