| 1 | /**************************************************************************** |
| 2 | * |
| 3 | * ftcalc.c |
| 4 | * |
| 5 | * Arithmetic computations (body). |
| 6 | * |
| 7 | * Copyright (C) 1996-2023 by |
| 8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
| 9 | * |
| 10 | * This file is part of the FreeType project, and may only be used, |
| 11 | * modified, and distributed under the terms of the FreeType project |
| 12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| 13 | * this file you indicate that you have read the license and |
| 14 | * understand and accept it fully. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | /************************************************************************** |
| 19 | * |
| 20 | * Support for 1-complement arithmetic has been totally dropped in this |
| 21 | * release. You can still write your own code if you need it. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | /************************************************************************** |
| 26 | * |
| 27 | * Implementing basic computation routines. |
| 28 | * |
| 29 | * FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(), |
| 30 | * and FT_FloorFix() are declared in freetype.h. |
| 31 | * |
| 32 | */ |
| 33 | |
| 34 | |
| 35 | #include <freetype/ftglyph.h> |
| 36 | #include <freetype/fttrigon.h> |
| 37 | #include <freetype/internal/ftcalc.h> |
| 38 | #include <freetype/internal/ftdebug.h> |
| 39 | #include <freetype/internal/ftobjs.h> |
| 40 | |
| 41 | |
| 42 | #ifdef FT_MULFIX_ASSEMBLER |
| 43 | #undef FT_MulFix |
| 44 | #endif |
| 45 | |
| 46 | /* we need to emulate a 64-bit data type if a real one isn't available */ |
| 47 | |
| 48 | #ifndef FT_INT64 |
| 49 | |
| 50 | typedef struct FT_Int64_ |
| 51 | { |
| 52 | FT_UInt32 lo; |
| 53 | FT_UInt32 hi; |
| 54 | |
| 55 | } FT_Int64; |
| 56 | |
| 57 | #endif /* !FT_INT64 */ |
| 58 | |
| 59 | |
| 60 | /************************************************************************** |
| 61 | * |
| 62 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| 63 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| 64 | * messages during execution. |
| 65 | */ |
| 66 | #undef FT_COMPONENT |
| 67 | #define FT_COMPONENT calc |
| 68 | |
| 69 | |
| 70 | /* transfer sign, leaving a positive number; */ |
| 71 | /* we need an unsigned value to safely negate INT_MIN (or LONG_MIN) */ |
| 72 | #define FT_MOVE_SIGN( x, x_unsigned, s ) \ |
| 73 | FT_BEGIN_STMNT \ |
| 74 | if ( x < 0 ) \ |
| 75 | { \ |
| 76 | x_unsigned = 0U - (x_unsigned); \ |
| 77 | s = -s; \ |
| 78 | } \ |
| 79 | FT_END_STMNT |
| 80 | |
| 81 | /* The following three functions are available regardless of whether */ |
| 82 | /* FT_INT64 is defined. */ |
| 83 | |
| 84 | /* documentation is in freetype.h */ |
| 85 | |
| 86 | FT_EXPORT_DEF( FT_Fixed ) |
| 87 | FT_RoundFix( FT_Fixed a ) |
| 88 | { |
| 89 | return ( ADD_LONG( a, 0x8000L - ( a < 0 ) ) ) & ~0xFFFFL; |
| 90 | } |
| 91 | |
| 92 | |
| 93 | /* documentation is in freetype.h */ |
| 94 | |
| 95 | FT_EXPORT_DEF( FT_Fixed ) |
| 96 | FT_CeilFix( FT_Fixed a ) |
| 97 | { |
| 98 | return ( ADD_LONG( a, 0xFFFFL ) ) & ~0xFFFFL; |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /* documentation is in freetype.h */ |
| 103 | |
| 104 | FT_EXPORT_DEF( FT_Fixed ) |
| 105 | FT_FloorFix( FT_Fixed a ) |
| 106 | { |
| 107 | return a & ~0xFFFFL; |
| 108 | } |
| 109 | |
| 110 | #ifndef FT_MSB |
| 111 | |
| 112 | FT_BASE_DEF( FT_Int ) |
| 113 | FT_MSB( FT_UInt32 z ) |
| 114 | { |
| 115 | FT_Int shift = 0; |
| 116 | |
| 117 | |
| 118 | /* determine msb bit index in `shift' */ |
| 119 | if ( z & 0xFFFF0000UL ) |
| 120 | { |
| 121 | z >>= 16; |
| 122 | shift += 16; |
| 123 | } |
| 124 | if ( z & 0x0000FF00UL ) |
| 125 | { |
| 126 | z >>= 8; |
| 127 | shift += 8; |
| 128 | } |
| 129 | if ( z & 0x000000F0UL ) |
| 130 | { |
| 131 | z >>= 4; |
| 132 | shift += 4; |
| 133 | } |
| 134 | if ( z & 0x0000000CUL ) |
| 135 | { |
| 136 | z >>= 2; |
| 137 | shift += 2; |
| 138 | } |
| 139 | if ( z & 0x00000002UL ) |
| 140 | { |
| 141 | /* z >>= 1; */ |
| 142 | shift += 1; |
| 143 | } |
| 144 | |
| 145 | return shift; |
| 146 | } |
| 147 | |
| 148 | #endif /* !FT_MSB */ |
| 149 | |
| 150 | |
| 151 | /* documentation is in ftcalc.h */ |
| 152 | |
| 153 | FT_BASE_DEF( FT_Fixed ) |
| 154 | FT_Hypot( FT_Fixed x, |
| 155 | FT_Fixed y ) |
| 156 | { |
| 157 | FT_Vector v; |
| 158 | |
| 159 | |
| 160 | v.x = x; |
| 161 | v.y = y; |
| 162 | |
| 163 | return FT_Vector_Length( &v ); |
| 164 | } |
| 165 | |
| 166 | |
| 167 | #ifdef FT_INT64 |
| 168 | |
| 169 | |
| 170 | /* documentation is in freetype.h */ |
| 171 | |
| 172 | FT_EXPORT_DEF( FT_Long ) |
| 173 | FT_MulDiv( FT_Long a_, |
| 174 | FT_Long b_, |
| 175 | FT_Long c_ ) |
| 176 | { |
| 177 | FT_Int s = 1; |
| 178 | FT_UInt64 a, b, c, d; |
| 179 | FT_Long d_; |
| 180 | |
| 181 | |
| 182 | a = (FT_UInt64)a_; |
| 183 | b = (FT_UInt64)b_; |
| 184 | c = (FT_UInt64)c_; |
| 185 | |
| 186 | FT_MOVE_SIGN( a_, a, s ); |
| 187 | FT_MOVE_SIGN( b_, b, s ); |
| 188 | FT_MOVE_SIGN( c_, c, s ); |
| 189 | |
| 190 | d = c > 0 ? ( a * b + ( c >> 1 ) ) / c |
| 191 | : 0x7FFFFFFFUL; |
| 192 | |
| 193 | d_ = (FT_Long)d; |
| 194 | |
| 195 | return s < 0 ? NEG_LONG( d_ ) : d_; |
| 196 | } |
| 197 | |
| 198 | |
| 199 | /* documentation is in ftcalc.h */ |
| 200 | |
| 201 | FT_BASE_DEF( FT_Long ) |
| 202 | FT_MulDiv_No_Round( FT_Long a_, |
| 203 | FT_Long b_, |
| 204 | FT_Long c_ ) |
| 205 | { |
| 206 | FT_Int s = 1; |
| 207 | FT_UInt64 a, b, c, d; |
| 208 | FT_Long d_; |
| 209 | |
| 210 | |
| 211 | a = (FT_UInt64)a_; |
| 212 | b = (FT_UInt64)b_; |
| 213 | c = (FT_UInt64)c_; |
| 214 | |
| 215 | FT_MOVE_SIGN( a_, a, s ); |
| 216 | FT_MOVE_SIGN( b_, b, s ); |
| 217 | FT_MOVE_SIGN( c_, c, s ); |
| 218 | |
| 219 | d = c > 0 ? a * b / c |
| 220 | : 0x7FFFFFFFUL; |
| 221 | |
| 222 | d_ = (FT_Long)d; |
| 223 | |
| 224 | return s < 0 ? NEG_LONG( d_ ) : d_; |
| 225 | } |
| 226 | |
| 227 | |
| 228 | /* documentation is in freetype.h */ |
| 229 | |
| 230 | FT_EXPORT_DEF( FT_Long ) |
| 231 | FT_MulFix( FT_Long a_, |
| 232 | FT_Long b_ ) |
| 233 | { |
| 234 | #ifdef FT_MULFIX_ASSEMBLER |
| 235 | |
| 236 | return FT_MULFIX_ASSEMBLER( (FT_Int32)a_, (FT_Int32)b_ ); |
| 237 | |
| 238 | #else |
| 239 | |
| 240 | FT_Int64 ab = (FT_Int64)a_ * (FT_Int64)b_; |
| 241 | |
| 242 | /* this requires arithmetic right shift of signed numbers */ |
| 243 | return (FT_Long)( ( ab + 0x8000L - ( ab < 0 ) ) >> 16 ); |
| 244 | |
| 245 | #endif /* FT_MULFIX_ASSEMBLER */ |
| 246 | } |
| 247 | |
| 248 | |
| 249 | /* documentation is in freetype.h */ |
| 250 | |
| 251 | FT_EXPORT_DEF( FT_Long ) |
| 252 | FT_DivFix( FT_Long a_, |
| 253 | FT_Long b_ ) |
| 254 | { |
| 255 | FT_Int s = 1; |
| 256 | FT_UInt64 a, b, q; |
| 257 | FT_Long q_; |
| 258 | |
| 259 | |
| 260 | a = (FT_UInt64)a_; |
| 261 | b = (FT_UInt64)b_; |
| 262 | |
| 263 | FT_MOVE_SIGN( a_, a, s ); |
| 264 | FT_MOVE_SIGN( b_, b, s ); |
| 265 | |
| 266 | q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b |
| 267 | : 0x7FFFFFFFUL; |
| 268 | |
| 269 | q_ = (FT_Long)q; |
| 270 | |
| 271 | return s < 0 ? NEG_LONG( q_ ) : q_; |
| 272 | } |
| 273 | |
| 274 | |
| 275 | #else /* !FT_INT64 */ |
| 276 | |
| 277 | |
| 278 | static void |
| 279 | ft_multo64( FT_UInt32 x, |
| 280 | FT_UInt32 y, |
| 281 | FT_Int64 *z ) |
| 282 | { |
| 283 | FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2; |
| 284 | |
| 285 | |
| 286 | lo1 = x & 0x0000FFFFU; hi1 = x >> 16; |
| 287 | lo2 = y & 0x0000FFFFU; hi2 = y >> 16; |
| 288 | |
| 289 | lo = lo1 * lo2; |
| 290 | i1 = lo1 * hi2; |
| 291 | i2 = lo2 * hi1; |
| 292 | hi = hi1 * hi2; |
| 293 | |
| 294 | /* Check carry overflow of i1 + i2 */ |
| 295 | i1 += i2; |
| 296 | hi += (FT_UInt32)( i1 < i2 ) << 16; |
| 297 | |
| 298 | hi += i1 >> 16; |
| 299 | i1 = i1 << 16; |
| 300 | |
| 301 | /* Check carry overflow of i1 + lo */ |
| 302 | lo += i1; |
| 303 | hi += ( lo < i1 ); |
| 304 | |
| 305 | z->lo = lo; |
| 306 | z->hi = hi; |
| 307 | } |
| 308 | |
| 309 | |
| 310 | static FT_UInt32 |
| 311 | ft_div64by32( FT_UInt32 hi, |
| 312 | FT_UInt32 lo, |
| 313 | FT_UInt32 y ) |
| 314 | { |
| 315 | FT_UInt32 r, q; |
| 316 | FT_Int i; |
| 317 | |
| 318 | |
| 319 | if ( hi >= y ) |
| 320 | return (FT_UInt32)0x7FFFFFFFL; |
| 321 | |
| 322 | /* We shift as many bits as we can into the high register, perform */ |
| 323 | /* 32-bit division with modulo there, then work through the remaining */ |
| 324 | /* bits with long division. This optimization is especially noticeable */ |
| 325 | /* for smaller dividends that barely use the high register. */ |
| 326 | |
| 327 | i = 31 - FT_MSB( hi ); |
| 328 | r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */ |
| 329 | q = r / y; |
| 330 | r -= q * y; /* remainder */ |
| 331 | |
| 332 | i = 32 - i; /* bits remaining in low register */ |
| 333 | do |
| 334 | { |
| 335 | q <<= 1; |
| 336 | r = ( r << 1 ) | ( lo >> 31 ); lo <<= 1; |
| 337 | |
| 338 | if ( r >= y ) |
| 339 | { |
| 340 | r -= y; |
| 341 | q |= 1; |
| 342 | } |
| 343 | } while ( --i ); |
| 344 | |
| 345 | return q; |
| 346 | } |
| 347 | |
| 348 | |
| 349 | static void |
| 350 | FT_Add64( FT_Int64* x, |
| 351 | FT_Int64* y, |
| 352 | FT_Int64 *z ) |
| 353 | { |
| 354 | FT_UInt32 lo, hi; |
| 355 | |
| 356 | |
| 357 | lo = x->lo + y->lo; |
| 358 | hi = x->hi + y->hi + ( lo < x->lo ); |
| 359 | |
| 360 | z->lo = lo; |
| 361 | z->hi = hi; |
| 362 | } |
| 363 | |
| 364 | |
| 365 | /* The FT_MulDiv function has been optimized thanks to ideas from */ |
| 366 | /* Graham Asher and Alexei Podtelezhnikov. The trick is to optimize */ |
| 367 | /* a rather common case when everything fits within 32-bits. */ |
| 368 | /* */ |
| 369 | /* We compute 'a*b+c/2', then divide it by 'c' (all positive values). */ |
| 370 | /* */ |
| 371 | /* The product of two positive numbers never exceeds the square of */ |
| 372 | /* its mean values. Therefore, we always avoid the overflow by */ |
| 373 | /* imposing */ |
| 374 | /* */ |
| 375 | /* (a + b) / 2 <= sqrt(X - c/2) , */ |
| 376 | /* */ |
| 377 | /* where X = 2^32 - 1, the maximum unsigned 32-bit value, and using */ |
| 378 | /* unsigned arithmetic. Now we replace `sqrt' with a linear function */ |
| 379 | /* that is smaller or equal for all values of c in the interval */ |
| 380 | /* [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the */ |
| 381 | /* endpoints. Substituting the linear solution and explicit numbers */ |
| 382 | /* we get */ |
| 383 | /* */ |
| 384 | /* a + b <= 131071.99 - c / 122291.84 . */ |
| 385 | /* */ |
| 386 | /* In practice, we should use a faster and even stronger inequality */ |
| 387 | /* */ |
| 388 | /* a + b <= 131071 - (c >> 16) */ |
| 389 | /* */ |
| 390 | /* or, alternatively, */ |
| 391 | /* */ |
| 392 | /* a + b <= 129894 - (c >> 17) . */ |
| 393 | /* */ |
| 394 | /* FT_MulFix, on the other hand, is optimized for a small value of */ |
| 395 | /* the first argument, when the second argument can be much larger. */ |
| 396 | /* This can be achieved by scaling the second argument and the limit */ |
| 397 | /* in the above inequalities. For example, */ |
| 398 | /* */ |
| 399 | /* a + (b >> 8) <= (131071 >> 4) */ |
| 400 | /* */ |
| 401 | /* covers the practical range of use. The actual test below is a bit */ |
| 402 | /* tighter to avoid the border case overflows. */ |
| 403 | /* */ |
| 404 | /* In the case of FT_DivFix, the exact overflow check */ |
| 405 | /* */ |
| 406 | /* a << 16 <= X - c/2 */ |
| 407 | /* */ |
| 408 | /* is scaled down by 2^16 and we use */ |
| 409 | /* */ |
| 410 | /* a <= 65535 - (c >> 17) . */ |
| 411 | |
| 412 | /* documentation is in freetype.h */ |
| 413 | |
| 414 | FT_EXPORT_DEF( FT_Long ) |
| 415 | FT_MulDiv( FT_Long a_, |
| 416 | FT_Long b_, |
| 417 | FT_Long c_ ) |
| 418 | { |
| 419 | FT_Int s = 1; |
| 420 | FT_UInt32 a, b, c; |
| 421 | |
| 422 | |
| 423 | /* XXX: this function does not allow 64-bit arguments */ |
| 424 | |
| 425 | a = (FT_UInt32)a_; |
| 426 | b = (FT_UInt32)b_; |
| 427 | c = (FT_UInt32)c_; |
| 428 | |
| 429 | FT_MOVE_SIGN( a_, a, s ); |
| 430 | FT_MOVE_SIGN( b_, b, s ); |
| 431 | FT_MOVE_SIGN( c_, c, s ); |
| 432 | |
| 433 | if ( c == 0 ) |
| 434 | a = 0x7FFFFFFFUL; |
| 435 | |
| 436 | else if ( a + b <= 129894UL - ( c >> 17 ) ) |
| 437 | a = ( a * b + ( c >> 1 ) ) / c; |
| 438 | |
| 439 | else |
| 440 | { |
| 441 | FT_Int64 temp, temp2; |
| 442 | |
| 443 | |
| 444 | ft_multo64( a, b, &temp ); |
| 445 | |
| 446 | temp2.hi = 0; |
| 447 | temp2.lo = c >> 1; |
| 448 | |
| 449 | FT_Add64( &temp, &temp2, &temp ); |
| 450 | |
| 451 | /* last attempt to ditch long division */ |
| 452 | a = ( temp.hi == 0 ) ? temp.lo / c |
| 453 | : ft_div64by32( temp.hi, temp.lo, c ); |
| 454 | } |
| 455 | |
| 456 | a_ = (FT_Long)a; |
| 457 | |
| 458 | return s < 0 ? NEG_LONG( a_ ) : a_; |
| 459 | } |
| 460 | |
| 461 | |
| 462 | FT_BASE_DEF( FT_Long ) |
| 463 | FT_MulDiv_No_Round( FT_Long a_, |
| 464 | FT_Long b_, |
| 465 | FT_Long c_ ) |
| 466 | { |
| 467 | FT_Int s = 1; |
| 468 | FT_UInt32 a, b, c; |
| 469 | |
| 470 | |
| 471 | /* XXX: this function does not allow 64-bit arguments */ |
| 472 | |
| 473 | a = (FT_UInt32)a_; |
| 474 | b = (FT_UInt32)b_; |
| 475 | c = (FT_UInt32)c_; |
| 476 | |
| 477 | FT_MOVE_SIGN( a_, a, s ); |
| 478 | FT_MOVE_SIGN( b_, b, s ); |
| 479 | FT_MOVE_SIGN( c_, c, s ); |
| 480 | |
| 481 | if ( c == 0 ) |
| 482 | a = 0x7FFFFFFFUL; |
| 483 | |
| 484 | else if ( a + b <= 131071UL ) |
| 485 | a = a * b / c; |
| 486 | |
| 487 | else |
| 488 | { |
| 489 | FT_Int64 temp; |
| 490 | |
| 491 | |
| 492 | ft_multo64( a, b, &temp ); |
| 493 | |
| 494 | /* last attempt to ditch long division */ |
| 495 | a = ( temp.hi == 0 ) ? temp.lo / c |
| 496 | : ft_div64by32( temp.hi, temp.lo, c ); |
| 497 | } |
| 498 | |
| 499 | a_ = (FT_Long)a; |
| 500 | |
| 501 | return s < 0 ? NEG_LONG( a_ ) : a_; |
| 502 | } |
| 503 | |
| 504 | |
| 505 | /* documentation is in freetype.h */ |
| 506 | |
| 507 | FT_EXPORT_DEF( FT_Long ) |
| 508 | FT_MulFix( FT_Long a_, |
| 509 | FT_Long b_ ) |
| 510 | { |
| 511 | #ifdef FT_MULFIX_ASSEMBLER |
| 512 | |
| 513 | return FT_MULFIX_ASSEMBLER( a_, b_ ); |
| 514 | |
| 515 | #elif 0 |
| 516 | |
| 517 | /* |
| 518 | * This code is nonportable. See comment below. |
| 519 | * |
| 520 | * However, on a platform where right-shift of a signed quantity fills |
| 521 | * the leftmost bits by copying the sign bit, it might be faster. |
| 522 | */ |
| 523 | |
| 524 | FT_Long sa, sb; |
| 525 | FT_UInt32 a, b; |
| 526 | |
| 527 | |
| 528 | /* |
| 529 | * This is a clever way of converting a signed number `a' into its |
| 530 | * absolute value (stored back into `a') and its sign. The sign is |
| 531 | * stored in `sa'; 0 means `a' was positive or zero, and -1 means `a' |
| 532 | * was negative. (Similarly for `b' and `sb'). |
| 533 | * |
| 534 | * Unfortunately, it doesn't work (at least not portably). |
| 535 | * |
| 536 | * It makes the assumption that right-shift on a negative signed value |
| 537 | * fills the leftmost bits by copying the sign bit. This is wrong. |
| 538 | * According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206, |
| 539 | * the result of right-shift of a negative signed value is |
| 540 | * implementation-defined. At least one implementation fills the |
| 541 | * leftmost bits with 0s (i.e., it is exactly the same as an unsigned |
| 542 | * right shift). This means that when `a' is negative, `sa' ends up |
| 543 | * with the value 1 rather than -1. After that, everything else goes |
| 544 | * wrong. |
| 545 | */ |
| 546 | sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) ); |
| 547 | a = ( a_ ^ sa ) - sa; |
| 548 | sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) ); |
| 549 | b = ( b_ ^ sb ) - sb; |
| 550 | |
| 551 | a = (FT_UInt32)a_; |
| 552 | b = (FT_UInt32)b_; |
| 553 | |
| 554 | if ( a + ( b >> 8 ) <= 8190UL ) |
| 555 | a = ( a * b + 0x8000U ) >> 16; |
| 556 | else |
| 557 | { |
| 558 | FT_UInt32 al = a & 0xFFFFUL; |
| 559 | |
| 560 | |
| 561 | a = ( a >> 16 ) * b + al * ( b >> 16 ) + |
| 562 | ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 ); |
| 563 | } |
| 564 | |
| 565 | sa ^= sb; |
| 566 | a = ( a ^ sa ) - sa; |
| 567 | |
| 568 | return (FT_Long)a; |
| 569 | |
| 570 | #else /* 0 */ |
| 571 | |
| 572 | FT_Int s = 1; |
| 573 | FT_UInt32 a, b; |
| 574 | |
| 575 | |
| 576 | /* XXX: this function does not allow 64-bit arguments */ |
| 577 | |
| 578 | a = (FT_UInt32)a_; |
| 579 | b = (FT_UInt32)b_; |
| 580 | |
| 581 | FT_MOVE_SIGN( a_, a, s ); |
| 582 | FT_MOVE_SIGN( b_, b, s ); |
| 583 | |
| 584 | if ( a + ( b >> 8 ) <= 8190UL ) |
| 585 | a = ( a * b + 0x8000UL ) >> 16; |
| 586 | else |
| 587 | { |
| 588 | FT_UInt32 al = a & 0xFFFFUL; |
| 589 | |
| 590 | |
| 591 | a = ( a >> 16 ) * b + al * ( b >> 16 ) + |
| 592 | ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 ); |
| 593 | } |
| 594 | |
| 595 | a_ = (FT_Long)a; |
| 596 | |
| 597 | return s < 0 ? NEG_LONG( a_ ) : a_; |
| 598 | |
| 599 | #endif /* 0 */ |
| 600 | |
| 601 | } |
| 602 | |
| 603 | |
| 604 | /* documentation is in freetype.h */ |
| 605 | |
| 606 | FT_EXPORT_DEF( FT_Long ) |
| 607 | FT_DivFix( FT_Long a_, |
| 608 | FT_Long b_ ) |
| 609 | { |
| 610 | FT_Int s = 1; |
| 611 | FT_UInt32 a, b, q; |
| 612 | FT_Long q_; |
| 613 | |
| 614 | |
| 615 | /* XXX: this function does not allow 64-bit arguments */ |
| 616 | |
| 617 | a = (FT_UInt32)a_; |
| 618 | b = (FT_UInt32)b_; |
| 619 | |
| 620 | FT_MOVE_SIGN( a_, a, s ); |
| 621 | FT_MOVE_SIGN( b_, b, s ); |
| 622 | |
| 623 | if ( b == 0 ) |
| 624 | { |
| 625 | /* check for division by 0 */ |
| 626 | q = 0x7FFFFFFFUL; |
| 627 | } |
| 628 | else if ( a <= 65535UL - ( b >> 17 ) ) |
| 629 | { |
| 630 | /* compute result directly */ |
| 631 | q = ( ( a << 16 ) + ( b >> 1 ) ) / b; |
| 632 | } |
| 633 | else |
| 634 | { |
| 635 | /* we need more bits; we have to do it by hand */ |
| 636 | FT_Int64 temp, temp2; |
| 637 | |
| 638 | |
| 639 | temp.hi = a >> 16; |
| 640 | temp.lo = a << 16; |
| 641 | temp2.hi = 0; |
| 642 | temp2.lo = b >> 1; |
| 643 | |
| 644 | FT_Add64( &temp, &temp2, &temp ); |
| 645 | q = ft_div64by32( temp.hi, temp.lo, b ); |
| 646 | } |
| 647 | |
| 648 | q_ = (FT_Long)q; |
| 649 | |
| 650 | return s < 0 ? NEG_LONG( q_ ) : q_; |
| 651 | } |
| 652 | |
| 653 | |
| 654 | #endif /* !FT_INT64 */ |
| 655 | |
| 656 | |
| 657 | /* documentation is in ftglyph.h */ |
| 658 | |
| 659 | FT_EXPORT_DEF( void ) |
| 660 | FT_Matrix_Multiply( const FT_Matrix* a, |
| 661 | FT_Matrix *b ) |
| 662 | { |
| 663 | FT_Fixed xx, xy, yx, yy; |
| 664 | |
| 665 | |
| 666 | if ( !a || !b ) |
| 667 | return; |
| 668 | |
| 669 | xx = ADD_LONG( FT_MulFix( a->xx, b->xx ), |
| 670 | FT_MulFix( a->xy, b->yx ) ); |
| 671 | xy = ADD_LONG( FT_MulFix( a->xx, b->xy ), |
| 672 | FT_MulFix( a->xy, b->yy ) ); |
| 673 | yx = ADD_LONG( FT_MulFix( a->yx, b->xx ), |
| 674 | FT_MulFix( a->yy, b->yx ) ); |
| 675 | yy = ADD_LONG( FT_MulFix( a->yx, b->xy ), |
| 676 | FT_MulFix( a->yy, b->yy ) ); |
| 677 | |
| 678 | b->xx = xx; |
| 679 | b->xy = xy; |
| 680 | b->yx = yx; |
| 681 | b->yy = yy; |
| 682 | } |
| 683 | |
| 684 | |
| 685 | /* documentation is in ftglyph.h */ |
| 686 | |
| 687 | FT_EXPORT_DEF( FT_Error ) |
| 688 | FT_Matrix_Invert( FT_Matrix* matrix ) |
| 689 | { |
| 690 | FT_Pos delta, xx, yy; |
| 691 | |
| 692 | |
| 693 | if ( !matrix ) |
| 694 | return FT_THROW( Invalid_Argument ); |
| 695 | |
| 696 | /* compute discriminant */ |
| 697 | delta = FT_MulFix( matrix->xx, matrix->yy ) - |
| 698 | FT_MulFix( matrix->xy, matrix->yx ); |
| 699 | |
| 700 | if ( !delta ) |
| 701 | return FT_THROW( Invalid_Argument ); /* matrix can't be inverted */ |
| 702 | |
| 703 | matrix->xy = -FT_DivFix( matrix->xy, delta ); |
| 704 | matrix->yx = -FT_DivFix( matrix->yx, delta ); |
| 705 | |
| 706 | xx = matrix->xx; |
| 707 | yy = matrix->yy; |
| 708 | |
| 709 | matrix->xx = FT_DivFix( yy, delta ); |
| 710 | matrix->yy = FT_DivFix( xx, delta ); |
| 711 | |
| 712 | return FT_Err_Ok; |
| 713 | } |
| 714 | |
| 715 | |
| 716 | /* documentation is in ftcalc.h */ |
| 717 | |
| 718 | FT_BASE_DEF( void ) |
| 719 | FT_Matrix_Multiply_Scaled( const FT_Matrix* a, |
| 720 | FT_Matrix *b, |
| 721 | FT_Long scaling ) |
| 722 | { |
| 723 | FT_Fixed xx, xy, yx, yy; |
| 724 | |
| 725 | FT_Long val = 0x10000L * scaling; |
| 726 | |
| 727 | |
| 728 | if ( !a || !b ) |
| 729 | return; |
| 730 | |
| 731 | xx = ADD_LONG( FT_MulDiv( a->xx, b->xx, val ), |
| 732 | FT_MulDiv( a->xy, b->yx, val ) ); |
| 733 | xy = ADD_LONG( FT_MulDiv( a->xx, b->xy, val ), |
| 734 | FT_MulDiv( a->xy, b->yy, val ) ); |
| 735 | yx = ADD_LONG( FT_MulDiv( a->yx, b->xx, val ), |
| 736 | FT_MulDiv( a->yy, b->yx, val ) ); |
| 737 | yy = ADD_LONG( FT_MulDiv( a->yx, b->xy, val ), |
| 738 | FT_MulDiv( a->yy, b->yy, val ) ); |
| 739 | |
| 740 | b->xx = xx; |
| 741 | b->xy = xy; |
| 742 | b->yx = yx; |
| 743 | b->yy = yy; |
| 744 | } |
| 745 | |
| 746 | |
| 747 | /* documentation is in ftcalc.h */ |
| 748 | |
| 749 | FT_BASE_DEF( FT_Bool ) |
| 750 | FT_Matrix_Check( const FT_Matrix* matrix ) |
| 751 | { |
| 752 | FT_Fixed xx, xy, yx, yy; |
| 753 | FT_Fixed val; |
| 754 | FT_Int shift; |
| 755 | FT_ULong temp1, temp2; |
| 756 | |
| 757 | |
| 758 | if ( !matrix ) |
| 759 | return 0; |
| 760 | |
| 761 | xx = matrix->xx; |
| 762 | xy = matrix->xy; |
| 763 | yx = matrix->yx; |
| 764 | yy = matrix->yy; |
| 765 | val = FT_ABS( xx ) | FT_ABS( xy ) | FT_ABS( yx ) | FT_ABS( yy ); |
| 766 | |
| 767 | /* we only handle non-zero 32-bit values */ |
| 768 | if ( !val || val > 0x7FFFFFFFL ) |
| 769 | return 0; |
| 770 | |
| 771 | /* Scale matrix to avoid the temp1 overflow, which is */ |
| 772 | /* more stringent than avoiding the temp2 overflow. */ |
| 773 | |
| 774 | shift = FT_MSB( val ) - 12; |
| 775 | |
| 776 | if ( shift > 0 ) |
| 777 | { |
| 778 | xx >>= shift; |
| 779 | xy >>= shift; |
| 780 | yx >>= shift; |
| 781 | yy >>= shift; |
| 782 | } |
| 783 | |
| 784 | temp1 = 32U * (FT_ULong)FT_ABS( xx * yy - xy * yx ); |
| 785 | temp2 = (FT_ULong)( xx * xx ) + (FT_ULong)( xy * xy ) + |
| 786 | (FT_ULong)( yx * yx ) + (FT_ULong)( yy * yy ); |
| 787 | |
| 788 | if ( temp1 <= temp2 ) |
| 789 | return 0; |
| 790 | |
| 791 | return 1; |
| 792 | } |
| 793 | |
| 794 | |
| 795 | /* documentation is in ftcalc.h */ |
| 796 | |
| 797 | FT_BASE_DEF( void ) |
| 798 | FT_Vector_Transform_Scaled( FT_Vector* vector, |
| 799 | const FT_Matrix* matrix, |
| 800 | FT_Long scaling ) |
| 801 | { |
| 802 | FT_Pos xz, yz; |
| 803 | |
| 804 | FT_Long val = 0x10000L * scaling; |
| 805 | |
| 806 | |
| 807 | if ( !vector || !matrix ) |
| 808 | return; |
| 809 | |
| 810 | xz = ADD_LONG( FT_MulDiv( vector->x, matrix->xx, val ), |
| 811 | FT_MulDiv( vector->y, matrix->xy, val ) ); |
| 812 | yz = ADD_LONG( FT_MulDiv( vector->x, matrix->yx, val ), |
| 813 | FT_MulDiv( vector->y, matrix->yy, val ) ); |
| 814 | |
| 815 | vector->x = xz; |
| 816 | vector->y = yz; |
| 817 | } |
| 818 | |
| 819 | |
| 820 | /* documentation is in ftcalc.h */ |
| 821 | |
| 822 | FT_BASE_DEF( FT_UInt32 ) |
| 823 | FT_Vector_NormLen( FT_Vector* vector ) |
| 824 | { |
| 825 | FT_Int32 x_ = vector->x; |
| 826 | FT_Int32 y_ = vector->y; |
| 827 | FT_Int32 b, z; |
| 828 | FT_UInt32 x, y, u, v, l; |
| 829 | FT_Int sx = 1, sy = 1, shift; |
| 830 | |
| 831 | |
| 832 | x = (FT_UInt32)x_; |
| 833 | y = (FT_UInt32)y_; |
| 834 | |
| 835 | FT_MOVE_SIGN( x_, x, sx ); |
| 836 | FT_MOVE_SIGN( y_, y, sy ); |
| 837 | |
| 838 | /* trivial cases */ |
| 839 | if ( x == 0 ) |
| 840 | { |
| 841 | if ( y > 0 ) |
| 842 | vector->y = sy * 0x10000; |
| 843 | return y; |
| 844 | } |
| 845 | else if ( y == 0 ) |
| 846 | { |
| 847 | if ( x > 0 ) |
| 848 | vector->x = sx * 0x10000; |
| 849 | return x; |
| 850 | } |
| 851 | |
| 852 | /* Estimate length and prenormalize by shifting so that */ |
| 853 | /* the new approximate length is between 2/3 and 4/3. */ |
| 854 | /* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps */ |
| 855 | /* achieve this in 16.16 fixed-point representation. */ |
| 856 | l = x > y ? x + ( y >> 1 ) |
| 857 | : y + ( x >> 1 ); |
| 858 | |
| 859 | shift = 31 - FT_MSB( l ); |
| 860 | shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) ); |
| 861 | |
| 862 | if ( shift > 0 ) |
| 863 | { |
| 864 | x <<= shift; |
| 865 | y <<= shift; |
| 866 | |
| 867 | /* re-estimate length for tiny vectors */ |
| 868 | l = x > y ? x + ( y >> 1 ) |
| 869 | : y + ( x >> 1 ); |
| 870 | } |
| 871 | else |
| 872 | { |
| 873 | x >>= -shift; |
| 874 | y >>= -shift; |
| 875 | l >>= -shift; |
| 876 | } |
| 877 | |
| 878 | /* lower linear approximation for reciprocal length minus one */ |
| 879 | b = 0x10000 - (FT_Int32)l; |
| 880 | |
| 881 | x_ = (FT_Int32)x; |
| 882 | y_ = (FT_Int32)y; |
| 883 | |
| 884 | /* Newton's iterations */ |
| 885 | do |
| 886 | { |
| 887 | u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) ); |
| 888 | v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) ); |
| 889 | |
| 890 | /* Normalized squared length in the parentheses approaches 2^32. */ |
| 891 | /* On two's complement systems, converting to signed gives the */ |
| 892 | /* difference with 2^32 even if the expression wraps around. */ |
| 893 | z = -(FT_Int32)( u * u + v * v ) / 0x200; |
| 894 | z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000; |
| 895 | |
| 896 | b += z; |
| 897 | |
| 898 | } while ( z > 0 ); |
| 899 | |
| 900 | vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u; |
| 901 | vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v; |
| 902 | |
| 903 | /* Conversion to signed helps to recover from likely wrap around */ |
| 904 | /* in calculating the prenormalized length, because it gives the */ |
| 905 | /* correct difference with 2^32 on two's complement systems. */ |
| 906 | l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 ); |
| 907 | if ( shift > 0 ) |
| 908 | l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift; |
| 909 | else |
| 910 | l <<= -shift; |
| 911 | |
| 912 | return l; |
| 913 | } |
| 914 | |
| 915 | |
| 916 | #if 0 |
| 917 | |
| 918 | /* documentation is in ftcalc.h */ |
| 919 | |
| 920 | FT_BASE_DEF( FT_Int32 ) |
| 921 | FT_SqrtFixed( FT_Int32 x ) |
| 922 | { |
| 923 | FT_UInt32 root, rem_hi, rem_lo, test_div; |
| 924 | FT_Int count; |
| 925 | |
| 926 | |
| 927 | root = 0; |
| 928 | |
| 929 | if ( x > 0 ) |
| 930 | { |
| 931 | rem_hi = 0; |
| 932 | rem_lo = (FT_UInt32)x; |
| 933 | count = 24; |
| 934 | do |
| 935 | { |
| 936 | rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 ); |
| 937 | rem_lo <<= 2; |
| 938 | root <<= 1; |
| 939 | test_div = ( root << 1 ) + 1; |
| 940 | |
| 941 | if ( rem_hi >= test_div ) |
| 942 | { |
| 943 | rem_hi -= test_div; |
| 944 | root += 1; |
| 945 | } |
| 946 | } while ( --count ); |
| 947 | } |
| 948 | |
| 949 | return (FT_Int32)root; |
| 950 | } |
| 951 | |
| 952 | #endif /* 0 */ |
| 953 | |
| 954 | |
| 955 | /* documentation is in ftcalc.h */ |
| 956 | |
| 957 | FT_BASE_DEF( FT_Int ) |
| 958 | ft_corner_orientation( FT_Pos in_x, |
| 959 | FT_Pos in_y, |
| 960 | FT_Pos out_x, |
| 961 | FT_Pos out_y ) |
| 962 | { |
| 963 | /* we silently ignore overflow errors since such large values */ |
| 964 | /* lead to even more (harmless) rendering errors later on */ |
| 965 | |
| 966 | #ifdef FT_INT64 |
| 967 | |
| 968 | FT_Int64 delta = SUB_INT64( MUL_INT64( in_x, out_y ), |
| 969 | MUL_INT64( in_y, out_x ) ); |
| 970 | |
| 971 | |
| 972 | return ( delta > 0 ) - ( delta < 0 ); |
| 973 | |
| 974 | #else |
| 975 | |
| 976 | FT_Int result; |
| 977 | |
| 978 | |
| 979 | if ( ADD_LONG( FT_ABS( in_x ), FT_ABS( out_y ) ) <= 131071L && |
| 980 | ADD_LONG( FT_ABS( in_y ), FT_ABS( out_x ) ) <= 131071L ) |
| 981 | { |
| 982 | FT_Long z1 = MUL_LONG( in_x, out_y ); |
| 983 | FT_Long z2 = MUL_LONG( in_y, out_x ); |
| 984 | |
| 985 | |
| 986 | if ( z1 > z2 ) |
| 987 | result = +1; |
| 988 | else if ( z1 < z2 ) |
| 989 | result = -1; |
| 990 | else |
| 991 | result = 0; |
| 992 | } |
| 993 | else /* products might overflow 32 bits */ |
| 994 | { |
| 995 | FT_Int64 z1, z2; |
| 996 | |
| 997 | |
| 998 | /* XXX: this function does not allow 64-bit arguments */ |
| 999 | ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 ); |
| 1000 | ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 ); |
| 1001 | |
| 1002 | if ( z1.hi > z2.hi ) |
| 1003 | result = +1; |
| 1004 | else if ( z1.hi < z2.hi ) |
| 1005 | result = -1; |
| 1006 | else if ( z1.lo > z2.lo ) |
| 1007 | result = +1; |
| 1008 | else if ( z1.lo < z2.lo ) |
| 1009 | result = -1; |
| 1010 | else |
| 1011 | result = 0; |
| 1012 | } |
| 1013 | |
| 1014 | /* XXX: only the sign of return value, +1/0/-1 must be used */ |
| 1015 | return result; |
| 1016 | |
| 1017 | #endif |
| 1018 | } |
| 1019 | |
| 1020 | |
| 1021 | /* documentation is in ftcalc.h */ |
| 1022 | |
| 1023 | FT_BASE_DEF( FT_Int ) |
| 1024 | ft_corner_is_flat( FT_Pos in_x, |
| 1025 | FT_Pos in_y, |
| 1026 | FT_Pos out_x, |
| 1027 | FT_Pos out_y ) |
| 1028 | { |
| 1029 | FT_Pos ax = in_x + out_x; |
| 1030 | FT_Pos ay = in_y + out_y; |
| 1031 | |
| 1032 | FT_Pos d_in, d_out, d_hypot; |
| 1033 | |
| 1034 | |
| 1035 | /* The idea of this function is to compare the length of the */ |
| 1036 | /* hypotenuse with the `in' and `out' length. The `corner' */ |
| 1037 | /* represented by `in' and `out' is flat if the hypotenuse's */ |
| 1038 | /* length isn't too large. */ |
| 1039 | /* */ |
| 1040 | /* This approach has the advantage that the angle between */ |
| 1041 | /* `in' and `out' is not checked. In case one of the two */ |
| 1042 | /* vectors is `dominant', that is, much larger than the */ |
| 1043 | /* other vector, we thus always have a flat corner. */ |
| 1044 | /* */ |
| 1045 | /* hypotenuse */ |
| 1046 | /* x---------------------------x */ |
| 1047 | /* \ / */ |
| 1048 | /* \ / */ |
| 1049 | /* in \ / out */ |
| 1050 | /* \ / */ |
| 1051 | /* o */ |
| 1052 | /* Point */ |
| 1053 | |
| 1054 | d_in = FT_HYPOT( in_x, in_y ); |
| 1055 | d_out = FT_HYPOT( out_x, out_y ); |
| 1056 | d_hypot = FT_HYPOT( ax, ay ); |
| 1057 | |
| 1058 | /* now do a simple length comparison: */ |
| 1059 | /* */ |
| 1060 | /* d_in + d_out < 17/16 d_hypot */ |
| 1061 | |
| 1062 | return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 ); |
| 1063 | } |
| 1064 | |
| 1065 | |
| 1066 | FT_BASE_DEF( FT_Int32 ) |
| 1067 | FT_MulAddFix( FT_Fixed* s, |
| 1068 | FT_Int32* f, |
| 1069 | FT_UInt count ) |
| 1070 | { |
| 1071 | FT_UInt i; |
| 1072 | FT_Int64 temp; |
| 1073 | |
| 1074 | |
| 1075 | #ifdef FT_INT64 |
| 1076 | temp = 0; |
| 1077 | |
| 1078 | for ( i = 0; i < count; ++i ) |
| 1079 | temp += (FT_Int64)s[i] * f[i]; |
| 1080 | |
| 1081 | return (FT_Int32)( ( temp + 0x8000 ) >> 16 ); |
| 1082 | #else |
| 1083 | temp.hi = 0; |
| 1084 | temp.lo = 0; |
| 1085 | |
| 1086 | for ( i = 0; i < count; ++i ) |
| 1087 | { |
| 1088 | FT_Int64 multResult; |
| 1089 | |
| 1090 | FT_Int sign = 1; |
| 1091 | FT_UInt32 carry = 0; |
| 1092 | |
| 1093 | FT_UInt32 scalar; |
| 1094 | FT_UInt32 factor; |
| 1095 | |
| 1096 | |
| 1097 | scalar = (FT_UInt32)s[i]; |
| 1098 | factor = (FT_UInt32)f[i]; |
| 1099 | |
| 1100 | FT_MOVE_SIGN( s[i], scalar, sign ); |
| 1101 | FT_MOVE_SIGN( f[i], factor, sign ); |
| 1102 | |
| 1103 | ft_multo64( scalar, factor, &multResult ); |
| 1104 | |
| 1105 | if ( sign < 0 ) |
| 1106 | { |
| 1107 | /* Emulated `FT_Int64` negation. */ |
| 1108 | carry = ( multResult.lo == 0 ); |
| 1109 | |
| 1110 | multResult.lo = ~multResult.lo + 1; |
| 1111 | multResult.hi = ~multResult.hi + carry; |
| 1112 | } |
| 1113 | |
| 1114 | FT_Add64( &temp, &multResult, &temp ); |
| 1115 | } |
| 1116 | |
| 1117 | /* Shift and round value. */ |
| 1118 | return (FT_Int32)( ( ( temp.hi << 16 ) | ( temp.lo >> 16 ) ) |
| 1119 | + ( 1 & ( temp.lo >> 15 ) ) ); |
| 1120 | |
| 1121 | |
| 1122 | #endif /* !FT_INT64 */ |
| 1123 | |
| 1124 | } |
| 1125 | |
| 1126 | |
| 1127 | /* END */ |
| 1128 | |