1 | /**************************************************************************** |
2 | * |
3 | * ftraster.c |
4 | * |
5 | * The FreeType glyph rasterizer (body). |
6 | * |
7 | * Copyright (C) 1996-2023 by |
8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
9 | * |
10 | * This file is part of the FreeType project, and may only be used, |
11 | * modified, and distributed under the terms of the FreeType project |
12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
13 | * this file you indicate that you have read the license and |
14 | * understand and accept it fully. |
15 | * |
16 | */ |
17 | |
18 | /************************************************************************** |
19 | * |
20 | * This file can be compiled without the rest of the FreeType engine, by |
21 | * defining the STANDALONE_ macro when compiling it. You also need to |
22 | * put the files `ftimage.h' and `ftmisc.h' into the $(incdir) |
23 | * directory. Typically, you should do something like |
24 | * |
25 | * - copy `src/raster/ftraster.c' (this file) to your current directory |
26 | * |
27 | * - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' to your |
28 | * current directory |
29 | * |
30 | * - compile `ftraster' with the STANDALONE_ macro defined, as in |
31 | * |
32 | * cc -c -DSTANDALONE_ ftraster.c |
33 | * |
34 | * The renderer can be initialized with a call to |
35 | * `ft_standard_raster.raster_new'; a bitmap can be generated |
36 | * with a call to `ft_standard_raster.raster_render'. |
37 | * |
38 | * See the comments and documentation in the file `ftimage.h' for more |
39 | * details on how the raster works. |
40 | * |
41 | */ |
42 | |
43 | |
44 | /************************************************************************** |
45 | * |
46 | * This is a rewrite of the FreeType 1.x scan-line converter |
47 | * |
48 | */ |
49 | |
50 | #ifdef STANDALONE_ |
51 | |
52 | /* The size in bytes of the render pool used by the scan-line converter */ |
53 | /* to do all of its work. */ |
54 | #define FT_RENDER_POOL_SIZE 16384L |
55 | |
56 | #define FT_CONFIG_STANDARD_LIBRARY_H <stdlib.h> |
57 | |
58 | #include <string.h> /* for memset */ |
59 | |
60 | #include "ftmisc.h" |
61 | #include "ftimage.h" |
62 | |
63 | #else /* !STANDALONE_ */ |
64 | |
65 | #include "ftraster.h" |
66 | #include <freetype/internal/ftcalc.h> /* for FT_MulDiv and FT_MulDiv_No_Round */ |
67 | #include <freetype/ftoutln.h> /* for FT_Outline_Get_CBox */ |
68 | |
69 | #endif /* !STANDALONE_ */ |
70 | |
71 | |
72 | /************************************************************************** |
73 | * |
74 | * A simple technical note on how the raster works |
75 | * ----------------------------------------------- |
76 | * |
77 | * Converting an outline into a bitmap is achieved in several steps: |
78 | * |
79 | * 1 - Decomposing the outline into successive `profiles'. Each |
80 | * profile is simply an array of scanline intersections on a given |
81 | * dimension. A profile's main attributes are |
82 | * |
83 | * o its scanline position boundaries, i.e. `Ymin' and `Ymax' |
84 | * |
85 | * o an array of intersection coordinates for each scanline |
86 | * between `Ymin' and `Ymax' |
87 | * |
88 | * o a direction, indicating whether it was built going `up' or |
89 | * `down', as this is very important for filling rules |
90 | * |
91 | * o its drop-out mode |
92 | * |
93 | * 2 - Sweeping the target map's scanlines in order to compute segment |
94 | * `spans' which are then filled. Additionally, this pass |
95 | * performs drop-out control. |
96 | * |
97 | * The outline data is parsed during step 1 only. The profiles are |
98 | * built from the bottom of the render pool, used as a stack. The |
99 | * following graphics shows the profile list under construction: |
100 | * |
101 | * __________________________________________________________ _ _ |
102 | * | | | | | |
103 | * | profile | coordinates for | profile | coordinates for |--> |
104 | * | 1 | profile 1 | 2 | profile 2 |--> |
105 | * |_________|_________________|_________|_________________|__ _ _ |
106 | * |
107 | * ^ ^ |
108 | * | | |
109 | * start of render pool top |
110 | * |
111 | * The top of the profile stack is kept in the `top' variable. |
112 | * |
113 | * As you can see, a profile record is pushed on top of the render |
114 | * pool, which is then followed by its coordinates/intersections. If |
115 | * a change of direction is detected in the outline, a new profile is |
116 | * generated until the end of the outline. |
117 | * |
118 | * Note that when all profiles have been generated, the function |
119 | * Finalize_Profile_Table() is used to record, for each profile, its |
120 | * bottom-most scanline as well as the scanline above its upmost |
121 | * boundary. These positions are called `y-turns' because they (sort |
122 | * of) correspond to local extrema. They are stored in a sorted list |
123 | * built from the top of the render pool as a downwards stack: |
124 | * |
125 | * _ _ _______________________________________ |
126 | * | | |
127 | * <--| sorted list of | |
128 | * <--| extrema scanlines | |
129 | * _ _ __________________|____________________| |
130 | * |
131 | * ^ ^ |
132 | * | | |
133 | * maxBuff sizeBuff = end of pool |
134 | * |
135 | * This list is later used during the sweep phase in order to |
136 | * optimize performance (see technical note on the sweep below). |
137 | * |
138 | * Of course, the raster detects whether the two stacks collide and |
139 | * handles the situation properly. |
140 | * |
141 | */ |
142 | |
143 | |
144 | /*************************************************************************/ |
145 | /*************************************************************************/ |
146 | /** **/ |
147 | /** CONFIGURATION MACROS **/ |
148 | /** **/ |
149 | /*************************************************************************/ |
150 | /*************************************************************************/ |
151 | |
152 | |
153 | /*************************************************************************/ |
154 | /*************************************************************************/ |
155 | /** **/ |
156 | /** OTHER MACROS (do not change) **/ |
157 | /** **/ |
158 | /*************************************************************************/ |
159 | /*************************************************************************/ |
160 | |
161 | /************************************************************************** |
162 | * |
163 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
164 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
165 | * messages during execution. |
166 | */ |
167 | #undef FT_COMPONENT |
168 | #define FT_COMPONENT raster |
169 | |
170 | |
171 | #ifdef STANDALONE_ |
172 | |
173 | /* Auxiliary macros for token concatenation. */ |
174 | #define FT_ERR_XCAT( x, y ) x ## y |
175 | #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y ) |
176 | |
177 | /* This macro is used to indicate that a function parameter is unused. */ |
178 | /* Its purpose is simply to reduce compiler warnings. Note also that */ |
179 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ |
180 | /* ANSI compilers (e.g. LCC). */ |
181 | #define FT_UNUSED( x ) (x) = (x) |
182 | |
183 | /* Disable the tracing mechanism for simplicity -- developers can */ |
184 | /* activate it easily by redefining these macros. */ |
185 | #ifndef FT_ERROR |
186 | #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
187 | #endif |
188 | |
189 | #ifndef FT_TRACE |
190 | #define FT_TRACE( x ) do { } while ( 0 ) /* nothing */ |
191 | #define FT_TRACE1( x ) do { } while ( 0 ) /* nothing */ |
192 | #define FT_TRACE6( x ) do { } while ( 0 ) /* nothing */ |
193 | #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
194 | #endif |
195 | |
196 | #ifndef FT_THROW |
197 | #define FT_THROW( e ) FT_ERR_CAT( Raster_Err_, e ) |
198 | #endif |
199 | |
200 | #define Raster_Err_Ok 0 |
201 | #define Raster_Err_Invalid_Outline -1 |
202 | #define Raster_Err_Cannot_Render_Glyph -2 |
203 | #define Raster_Err_Invalid_Argument -3 |
204 | #define Raster_Err_Raster_Overflow -4 |
205 | #define Raster_Err_Raster_Uninitialized -5 |
206 | #define Raster_Err_Raster_Negative_Height -6 |
207 | |
208 | #define ft_memset memset |
209 | |
210 | #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, \ |
211 | raster_reset_, raster_set_mode_, \ |
212 | raster_render_, raster_done_ ) \ |
213 | const FT_Raster_Funcs class_ = \ |
214 | { \ |
215 | glyph_format_, \ |
216 | raster_new_, \ |
217 | raster_reset_, \ |
218 | raster_set_mode_, \ |
219 | raster_render_, \ |
220 | raster_done_ \ |
221 | }; |
222 | |
223 | #else /* !STANDALONE_ */ |
224 | |
225 | |
226 | #include <freetype/internal/ftobjs.h> |
227 | #include <freetype/internal/ftdebug.h> /* for FT_TRACE, FT_ERROR, and FT_THROW */ |
228 | |
229 | #include "rasterrs.h" |
230 | |
231 | |
232 | #endif /* !STANDALONE_ */ |
233 | |
234 | |
235 | #ifndef FT_MEM_SET |
236 | #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c ) |
237 | #endif |
238 | |
239 | #ifndef FT_MEM_ZERO |
240 | #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count ) |
241 | #endif |
242 | |
243 | #ifndef FT_ZERO |
244 | #define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) ) |
245 | #endif |
246 | |
247 | /* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */ |
248 | /* typically a small value and the result of a*b is known to fit into */ |
249 | /* 32 bits. */ |
250 | #define FMulDiv( a, b, c ) ( (a) * (b) / (c) ) |
251 | |
252 | /* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */ |
253 | /* for clipping computations. It simply uses the FT_MulDiv() function */ |
254 | /* defined in `ftcalc.h'. */ |
255 | #define SMulDiv FT_MulDiv |
256 | #define SMulDiv_No_Round FT_MulDiv_No_Round |
257 | |
258 | /* The rasterizer is a very general purpose component; please leave */ |
259 | /* the following redefinitions there (you never know your target */ |
260 | /* environment). */ |
261 | |
262 | #ifndef TRUE |
263 | #define TRUE 1 |
264 | #endif |
265 | |
266 | #ifndef FALSE |
267 | #define FALSE 0 |
268 | #endif |
269 | |
270 | #ifndef NULL |
271 | #define NULL (void*)0 |
272 | #endif |
273 | |
274 | #ifndef SUCCESS |
275 | #define SUCCESS 0 |
276 | #endif |
277 | |
278 | #ifndef FAILURE |
279 | #define FAILURE 1 |
280 | #endif |
281 | |
282 | |
283 | #define MaxBezier 32 /* The maximum number of stacked Bezier curves. */ |
284 | /* Setting this constant to more than 32 is a */ |
285 | /* pure waste of space. */ |
286 | |
287 | #define Pixel_Bits 6 /* fractional bits of *input* coordinates */ |
288 | |
289 | |
290 | /*************************************************************************/ |
291 | /*************************************************************************/ |
292 | /** **/ |
293 | /** SIMPLE TYPE DECLARATIONS **/ |
294 | /** **/ |
295 | /*************************************************************************/ |
296 | /*************************************************************************/ |
297 | |
298 | typedef int Int; |
299 | typedef unsigned int UInt; |
300 | typedef short Short; |
301 | typedef unsigned short UShort, *PUShort; |
302 | typedef long Long, *PLong; |
303 | typedef unsigned long ULong; |
304 | |
305 | typedef unsigned char Byte, *PByte; |
306 | typedef char Bool; |
307 | |
308 | |
309 | typedef union Alignment_ |
310 | { |
311 | Long l; |
312 | void* p; |
313 | void (*f)(void); |
314 | |
315 | } Alignment, *PAlignment; |
316 | |
317 | |
318 | typedef struct TPoint_ |
319 | { |
320 | Long x; |
321 | Long y; |
322 | |
323 | } TPoint; |
324 | |
325 | |
326 | /* values for the `flags' bit field */ |
327 | #define Flow_Up 0x08U |
328 | #define Overshoot_Top 0x10U |
329 | #define Overshoot_Bottom 0x20U |
330 | |
331 | |
332 | /* States of each line, arc, and profile */ |
333 | typedef enum TStates_ |
334 | { |
335 | Unknown_State, |
336 | Ascending_State, |
337 | Descending_State, |
338 | Flat_State |
339 | |
340 | } TStates; |
341 | |
342 | |
343 | typedef struct TProfile_ TProfile; |
344 | typedef TProfile* PProfile; |
345 | |
346 | struct TProfile_ |
347 | { |
348 | FT_F26Dot6 X; /* current coordinate during sweep */ |
349 | PProfile link; /* link to next profile (various purposes) */ |
350 | PLong offset; /* start of profile's data in render pool */ |
351 | UShort flags; /* Bit 0-2: drop-out mode */ |
352 | /* Bit 3: profile orientation (up/down) */ |
353 | /* Bit 4: is top profile? */ |
354 | /* Bit 5: is bottom profile? */ |
355 | Long height; /* profile's height in scanlines */ |
356 | Long start; /* profile's starting scanline */ |
357 | |
358 | Int countL; /* number of lines to step before this */ |
359 | /* profile becomes drawable */ |
360 | |
361 | PProfile next; /* next profile in same contour, used */ |
362 | /* during drop-out control */ |
363 | }; |
364 | |
365 | typedef PProfile TProfileList; |
366 | typedef PProfile* PProfileList; |
367 | |
368 | |
369 | #define AlignProfileSize \ |
370 | ( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( Long ) ) |
371 | |
372 | |
373 | #undef RAS_ARG |
374 | #undef RAS_ARGS |
375 | #undef RAS_VAR |
376 | #undef RAS_VARS |
377 | |
378 | #ifdef FT_STATIC_RASTER |
379 | |
380 | |
381 | #define RAS_ARGS /* void */ |
382 | #define RAS_ARG void |
383 | |
384 | #define RAS_VARS /* void */ |
385 | #define RAS_VAR /* void */ |
386 | |
387 | #define FT_UNUSED_RASTER do { } while ( 0 ) |
388 | |
389 | |
390 | #else /* !FT_STATIC_RASTER */ |
391 | |
392 | |
393 | #define RAS_ARGS black_PWorker worker, |
394 | #define RAS_ARG black_PWorker worker |
395 | |
396 | #define RAS_VARS worker, |
397 | #define RAS_VAR worker |
398 | |
399 | #define FT_UNUSED_RASTER FT_UNUSED( worker ) |
400 | |
401 | |
402 | #endif /* !FT_STATIC_RASTER */ |
403 | |
404 | |
405 | typedef struct black_TWorker_ black_TWorker, *black_PWorker; |
406 | |
407 | |
408 | /* prototypes used for sweep function dispatch */ |
409 | typedef void |
410 | Function_Sweep_Init( RAS_ARGS Short min, |
411 | Short max ); |
412 | |
413 | typedef void |
414 | Function_Sweep_Span( RAS_ARGS Short y, |
415 | FT_F26Dot6 x1, |
416 | FT_F26Dot6 x2, |
417 | PProfile left, |
418 | PProfile right ); |
419 | |
420 | typedef void |
421 | Function_Sweep_Step( RAS_ARG ); |
422 | |
423 | |
424 | /* NOTE: These operations are only valid on 2's complement processors */ |
425 | #undef FLOOR |
426 | #undef CEILING |
427 | #undef TRUNC |
428 | #undef SCALED |
429 | |
430 | #define FLOOR( x ) ( (x) & -ras.precision ) |
431 | #define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision ) |
432 | #define TRUNC( x ) ( (Long)(x) >> ras.precision_bits ) |
433 | #define FRAC( x ) ( (x) & ( ras.precision - 1 ) ) |
434 | |
435 | /* scale and shift grid to pixel centers */ |
436 | #define SCALED( x ) ( (x) * ras.precision_scale - ras.precision_half ) |
437 | |
438 | #define IS_BOTTOM_OVERSHOOT( x ) \ |
439 | (Bool)( CEILING( x ) - x >= ras.precision_half ) |
440 | #define IS_TOP_OVERSHOOT( x ) \ |
441 | (Bool)( x - FLOOR( x ) >= ras.precision_half ) |
442 | |
443 | /* Smart dropout rounding to find which pixel is closer to span ends. */ |
444 | /* To mimick Windows, symmetric cases break down indepenently of the */ |
445 | /* precision. */ |
446 | #define SMART( p, q ) FLOOR( ( (p) + (q) + ras.precision * 63 / 64 ) >> 1 ) |
447 | |
448 | #if FT_RENDER_POOL_SIZE > 2048 |
449 | #define FT_MAX_BLACK_POOL ( FT_RENDER_POOL_SIZE / sizeof ( Long ) ) |
450 | #else |
451 | #define FT_MAX_BLACK_POOL ( 2048 / sizeof ( Long ) ) |
452 | #endif |
453 | |
454 | /* The most used variables are positioned at the top of the structure. */ |
455 | /* Thus, their offset can be coded with less opcodes, resulting in a */ |
456 | /* smaller executable. */ |
457 | |
458 | struct black_TWorker_ |
459 | { |
460 | Int precision_bits; /* precision related variables */ |
461 | Int precision; |
462 | Int precision_half; |
463 | Int precision_scale; |
464 | Int precision_step; |
465 | Int precision_jitter; |
466 | |
467 | PLong buff; /* The profiles buffer */ |
468 | PLong sizeBuff; /* Render pool size */ |
469 | PLong maxBuff; /* Profiles buffer size */ |
470 | PLong top; /* Current cursor in buffer */ |
471 | |
472 | FT_Error error; |
473 | |
474 | Int numTurns; /* number of Y-turns in outline */ |
475 | |
476 | Byte dropOutControl; /* current drop_out control method */ |
477 | |
478 | UShort bWidth; /* target bitmap width */ |
479 | PByte bOrigin; /* target bitmap bottom-left origin */ |
480 | PByte bLine; /* target bitmap current line */ |
481 | |
482 | Long lastX, lastY; |
483 | Long minY, maxY; |
484 | |
485 | UShort num_Profs; /* current number of profiles */ |
486 | |
487 | Bool fresh; /* signals a fresh new profile which */ |
488 | /* `start' field must be completed */ |
489 | Bool joint; /* signals that the last arc ended */ |
490 | /* exactly on a scanline. Allows */ |
491 | /* removal of doublets */ |
492 | PProfile cProfile; /* current profile */ |
493 | PProfile fProfile; /* head of linked list of profiles */ |
494 | PProfile gProfile; /* contour's first profile in case */ |
495 | /* of impact */ |
496 | |
497 | TStates state; /* rendering state */ |
498 | |
499 | FT_Bitmap target; /* description of target bit/pixmap */ |
500 | FT_Outline outline; |
501 | |
502 | /* dispatch variables */ |
503 | |
504 | Function_Sweep_Init* Proc_Sweep_Init; |
505 | Function_Sweep_Span* Proc_Sweep_Span; |
506 | Function_Sweep_Span* Proc_Sweep_Drop; |
507 | Function_Sweep_Step* Proc_Sweep_Step; |
508 | |
509 | }; |
510 | |
511 | |
512 | typedef struct black_TRaster_ |
513 | { |
514 | void* memory; |
515 | |
516 | } black_TRaster, *black_PRaster; |
517 | |
518 | #ifdef FT_STATIC_RASTER |
519 | |
520 | static black_TWorker ras; |
521 | |
522 | #else /* !FT_STATIC_RASTER */ |
523 | |
524 | #define ras (*worker) |
525 | |
526 | #endif /* !FT_STATIC_RASTER */ |
527 | |
528 | |
529 | /*************************************************************************/ |
530 | /*************************************************************************/ |
531 | /** **/ |
532 | /** PROFILES COMPUTATION **/ |
533 | /** **/ |
534 | /*************************************************************************/ |
535 | /*************************************************************************/ |
536 | |
537 | |
538 | /************************************************************************** |
539 | * |
540 | * @Function: |
541 | * Set_High_Precision |
542 | * |
543 | * @Description: |
544 | * Set precision variables according to param flag. |
545 | * |
546 | * @Input: |
547 | * High :: |
548 | * Set to True for high precision (typically for ppem < 24), |
549 | * false otherwise. |
550 | */ |
551 | static void |
552 | Set_High_Precision( RAS_ARGS Int High ) |
553 | { |
554 | /* |
555 | * `precision_step' is used in `Bezier_Up' to decide when to split a |
556 | * given y-monotonous Bezier arc that crosses a scanline before |
557 | * approximating it as a straight segment. The default value of 32 (for |
558 | * low accuracy) corresponds to |
559 | * |
560 | * 32 / 64 == 0.5 pixels, |
561 | * |
562 | * while for the high accuracy case we have |
563 | * |
564 | * 256 / (1 << 12) = 0.0625 pixels. |
565 | * |
566 | * `precision_jitter' is an epsilon threshold used in |
567 | * `Vertical_Sweep_Span' to deal with small imperfections in the Bezier |
568 | * decomposition (after all, we are working with approximations only); |
569 | * it avoids switching on additional pixels which would cause artifacts |
570 | * otherwise. |
571 | * |
572 | * The value of `precision_jitter' has been determined heuristically. |
573 | * |
574 | */ |
575 | |
576 | if ( High ) |
577 | { |
578 | ras.precision_bits = 12; |
579 | ras.precision_step = 256; |
580 | ras.precision_jitter = 30; |
581 | } |
582 | else |
583 | { |
584 | ras.precision_bits = 6; |
585 | ras.precision_step = 32; |
586 | ras.precision_jitter = 2; |
587 | } |
588 | |
589 | FT_TRACE6(( "Set_High_Precision(%s)\n" , High ? "true" : "false" )); |
590 | |
591 | ras.precision = 1 << ras.precision_bits; |
592 | ras.precision_half = ras.precision >> 1; |
593 | ras.precision_scale = ras.precision >> Pixel_Bits; |
594 | } |
595 | |
596 | |
597 | /************************************************************************** |
598 | * |
599 | * @Function: |
600 | * New_Profile |
601 | * |
602 | * @Description: |
603 | * Create a new profile in the render pool. |
604 | * |
605 | * @Input: |
606 | * aState :: |
607 | * The state/orientation of the new profile. |
608 | * |
609 | * overshoot :: |
610 | * Whether the profile's unrounded start position |
611 | * differs by at least a half pixel. |
612 | * |
613 | * @Return: |
614 | * SUCCESS on success. FAILURE in case of overflow or of incoherent |
615 | * profile. |
616 | */ |
617 | static Bool |
618 | New_Profile( RAS_ARGS TStates aState, |
619 | Bool overshoot ) |
620 | { |
621 | if ( !ras.fProfile ) |
622 | { |
623 | ras.cProfile = (PProfile)ras.top; |
624 | ras.fProfile = ras.cProfile; |
625 | ras.top += AlignProfileSize; |
626 | } |
627 | |
628 | if ( ras.top >= ras.maxBuff ) |
629 | { |
630 | ras.error = FT_THROW( Raster_Overflow ); |
631 | return FAILURE; |
632 | } |
633 | |
634 | ras.cProfile->start = 0; |
635 | ras.cProfile->height = 0; |
636 | ras.cProfile->offset = ras.top; |
637 | ras.cProfile->link = (PProfile)0; |
638 | ras.cProfile->next = (PProfile)0; |
639 | ras.cProfile->flags = ras.dropOutControl; |
640 | |
641 | switch ( aState ) |
642 | { |
643 | case Ascending_State: |
644 | ras.cProfile->flags |= Flow_Up; |
645 | if ( overshoot ) |
646 | ras.cProfile->flags |= Overshoot_Bottom; |
647 | |
648 | FT_TRACE6(( " new ascending profile = %p\n" , (void *)ras.cProfile )); |
649 | break; |
650 | |
651 | case Descending_State: |
652 | if ( overshoot ) |
653 | ras.cProfile->flags |= Overshoot_Top; |
654 | FT_TRACE6(( " new descending profile = %p\n" , (void *)ras.cProfile )); |
655 | break; |
656 | |
657 | default: |
658 | FT_ERROR(( "New_Profile: invalid profile direction\n" )); |
659 | ras.error = FT_THROW( Invalid_Outline ); |
660 | return FAILURE; |
661 | } |
662 | |
663 | if ( !ras.gProfile ) |
664 | ras.gProfile = ras.cProfile; |
665 | |
666 | ras.state = aState; |
667 | ras.fresh = TRUE; |
668 | ras.joint = FALSE; |
669 | |
670 | return SUCCESS; |
671 | } |
672 | |
673 | |
674 | /************************************************************************** |
675 | * |
676 | * @Function: |
677 | * End_Profile |
678 | * |
679 | * @Description: |
680 | * Finalize the current profile. |
681 | * |
682 | * @Input: |
683 | * overshoot :: |
684 | * Whether the profile's unrounded end position differs |
685 | * by at least a half pixel. |
686 | * |
687 | * @Return: |
688 | * SUCCESS on success. FAILURE in case of overflow or incoherency. |
689 | */ |
690 | static Bool |
691 | End_Profile( RAS_ARGS Bool overshoot ) |
692 | { |
693 | Long h; |
694 | |
695 | |
696 | h = (Long)( ras.top - ras.cProfile->offset ); |
697 | |
698 | if ( h < 0 ) |
699 | { |
700 | FT_ERROR(( "End_Profile: negative height encountered\n" )); |
701 | ras.error = FT_THROW( Raster_Negative_Height ); |
702 | return FAILURE; |
703 | } |
704 | |
705 | if ( h > 0 ) |
706 | { |
707 | PProfile oldProfile; |
708 | |
709 | |
710 | FT_TRACE6(( " ending profile %p, start = %ld, height = %ld\n" , |
711 | (void *)ras.cProfile, ras.cProfile->start, h )); |
712 | |
713 | ras.cProfile->height = h; |
714 | if ( overshoot ) |
715 | { |
716 | if ( ras.cProfile->flags & Flow_Up ) |
717 | ras.cProfile->flags |= Overshoot_Top; |
718 | else |
719 | ras.cProfile->flags |= Overshoot_Bottom; |
720 | } |
721 | |
722 | oldProfile = ras.cProfile; |
723 | ras.cProfile = (PProfile)ras.top; |
724 | |
725 | ras.top += AlignProfileSize; |
726 | |
727 | ras.cProfile->height = 0; |
728 | ras.cProfile->offset = ras.top; |
729 | |
730 | oldProfile->next = ras.cProfile; |
731 | ras.num_Profs++; |
732 | } |
733 | |
734 | if ( ras.top >= ras.maxBuff ) |
735 | { |
736 | FT_TRACE1(( "overflow in End_Profile\n" )); |
737 | ras.error = FT_THROW( Raster_Overflow ); |
738 | return FAILURE; |
739 | } |
740 | |
741 | ras.joint = FALSE; |
742 | |
743 | return SUCCESS; |
744 | } |
745 | |
746 | |
747 | /************************************************************************** |
748 | * |
749 | * @Function: |
750 | * Insert_Y_Turn |
751 | * |
752 | * @Description: |
753 | * Insert a salient into the sorted list placed on top of the render |
754 | * pool. |
755 | * |
756 | * @Input: |
757 | * New y scanline position. |
758 | * |
759 | * @Return: |
760 | * SUCCESS on success. FAILURE in case of overflow. |
761 | */ |
762 | static Bool |
763 | Insert_Y_Turn( RAS_ARGS Int y ) |
764 | { |
765 | PLong y_turns; |
766 | Int n; |
767 | |
768 | |
769 | n = ras.numTurns - 1; |
770 | y_turns = ras.sizeBuff - ras.numTurns; |
771 | |
772 | /* look for first y value that is <= */ |
773 | while ( n >= 0 && y < y_turns[n] ) |
774 | n--; |
775 | |
776 | /* if it is <, simply insert it, ignore if == */ |
777 | if ( n >= 0 && y > y_turns[n] ) |
778 | do |
779 | { |
780 | Int y2 = (Int)y_turns[n]; |
781 | |
782 | |
783 | y_turns[n] = y; |
784 | y = y2; |
785 | } while ( --n >= 0 ); |
786 | |
787 | if ( n < 0 ) |
788 | { |
789 | ras.maxBuff--; |
790 | if ( ras.maxBuff <= ras.top ) |
791 | { |
792 | ras.error = FT_THROW( Raster_Overflow ); |
793 | return FAILURE; |
794 | } |
795 | ras.numTurns++; |
796 | ras.sizeBuff[-ras.numTurns] = y; |
797 | } |
798 | |
799 | return SUCCESS; |
800 | } |
801 | |
802 | |
803 | /************************************************************************** |
804 | * |
805 | * @Function: |
806 | * Finalize_Profile_Table |
807 | * |
808 | * @Description: |
809 | * Adjust all links in the profiles list. |
810 | * |
811 | * @Return: |
812 | * SUCCESS on success. FAILURE in case of overflow. |
813 | */ |
814 | static Bool |
815 | Finalize_Profile_Table( RAS_ARG ) |
816 | { |
817 | UShort n; |
818 | PProfile p; |
819 | |
820 | |
821 | n = ras.num_Profs; |
822 | p = ras.fProfile; |
823 | |
824 | if ( n > 1 && p ) |
825 | { |
826 | do |
827 | { |
828 | Int bottom, top; |
829 | |
830 | |
831 | if ( n > 1 ) |
832 | p->link = (PProfile)( p->offset + p->height ); |
833 | else |
834 | p->link = NULL; |
835 | |
836 | if ( p->flags & Flow_Up ) |
837 | { |
838 | bottom = (Int)p->start; |
839 | top = (Int)( p->start + p->height - 1 ); |
840 | } |
841 | else |
842 | { |
843 | bottom = (Int)( p->start - p->height + 1 ); |
844 | top = (Int)p->start; |
845 | p->start = bottom; |
846 | p->offset += p->height - 1; |
847 | } |
848 | |
849 | if ( Insert_Y_Turn( RAS_VARS bottom ) || |
850 | Insert_Y_Turn( RAS_VARS top + 1 ) ) |
851 | return FAILURE; |
852 | |
853 | p = p->link; |
854 | } while ( --n ); |
855 | } |
856 | else |
857 | ras.fProfile = NULL; |
858 | |
859 | return SUCCESS; |
860 | } |
861 | |
862 | |
863 | /************************************************************************** |
864 | * |
865 | * @Function: |
866 | * Split_Conic |
867 | * |
868 | * @Description: |
869 | * Subdivide one conic Bezier into two joint sub-arcs in the Bezier |
870 | * stack. |
871 | * |
872 | * @Input: |
873 | * None (subdivided Bezier is taken from the top of the stack). |
874 | * |
875 | * @Note: |
876 | * This routine is the `beef' of this component. It is _the_ inner |
877 | * loop that should be optimized to hell to get the best performance. |
878 | */ |
879 | static void |
880 | Split_Conic( TPoint* base ) |
881 | { |
882 | Long a, b; |
883 | |
884 | |
885 | base[4].x = base[2].x; |
886 | a = base[0].x + base[1].x; |
887 | b = base[1].x + base[2].x; |
888 | base[3].x = b >> 1; |
889 | base[2].x = ( a + b ) >> 2; |
890 | base[1].x = a >> 1; |
891 | |
892 | base[4].y = base[2].y; |
893 | a = base[0].y + base[1].y; |
894 | b = base[1].y + base[2].y; |
895 | base[3].y = b >> 1; |
896 | base[2].y = ( a + b ) >> 2; |
897 | base[1].y = a >> 1; |
898 | |
899 | /* hand optimized. gcc doesn't seem to be too good at common */ |
900 | /* expression substitution and instruction scheduling ;-) */ |
901 | } |
902 | |
903 | |
904 | /************************************************************************** |
905 | * |
906 | * @Function: |
907 | * Split_Cubic |
908 | * |
909 | * @Description: |
910 | * Subdivide a third-order Bezier arc into two joint sub-arcs in the |
911 | * Bezier stack. |
912 | * |
913 | * @Note: |
914 | * This routine is the `beef' of the component. It is one of _the_ |
915 | * inner loops that should be optimized like hell to get the best |
916 | * performance. |
917 | */ |
918 | static void |
919 | Split_Cubic( TPoint* base ) |
920 | { |
921 | Long a, b, c; |
922 | |
923 | |
924 | base[6].x = base[3].x; |
925 | a = base[0].x + base[1].x; |
926 | b = base[1].x + base[2].x; |
927 | c = base[2].x + base[3].x; |
928 | base[5].x = c >> 1; |
929 | c += b; |
930 | base[4].x = c >> 2; |
931 | base[1].x = a >> 1; |
932 | a += b; |
933 | base[2].x = a >> 2; |
934 | base[3].x = ( a + c ) >> 3; |
935 | |
936 | base[6].y = base[3].y; |
937 | a = base[0].y + base[1].y; |
938 | b = base[1].y + base[2].y; |
939 | c = base[2].y + base[3].y; |
940 | base[5].y = c >> 1; |
941 | c += b; |
942 | base[4].y = c >> 2; |
943 | base[1].y = a >> 1; |
944 | a += b; |
945 | base[2].y = a >> 2; |
946 | base[3].y = ( a + c ) >> 3; |
947 | } |
948 | |
949 | |
950 | /************************************************************************** |
951 | * |
952 | * @Function: |
953 | * Line_Up |
954 | * |
955 | * @Description: |
956 | * Compute the x-coordinates of an ascending line segment and store |
957 | * them in the render pool. |
958 | * |
959 | * @Input: |
960 | * x1 :: |
961 | * The x-coordinate of the segment's start point. |
962 | * |
963 | * y1 :: |
964 | * The y-coordinate of the segment's start point. |
965 | * |
966 | * x2 :: |
967 | * The x-coordinate of the segment's end point. |
968 | * |
969 | * y2 :: |
970 | * The y-coordinate of the segment's end point. |
971 | * |
972 | * miny :: |
973 | * A lower vertical clipping bound value. |
974 | * |
975 | * maxy :: |
976 | * An upper vertical clipping bound value. |
977 | * |
978 | * @Return: |
979 | * SUCCESS on success, FAILURE on render pool overflow. |
980 | */ |
981 | static Bool |
982 | Line_Up( RAS_ARGS Long x1, |
983 | Long y1, |
984 | Long x2, |
985 | Long y2, |
986 | Long miny, |
987 | Long maxy ) |
988 | { |
989 | Long Dx, Dy; |
990 | Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */ |
991 | Long Ix, Rx, Ax; |
992 | |
993 | PLong top; |
994 | |
995 | |
996 | Dx = x2 - x1; |
997 | Dy = y2 - y1; |
998 | |
999 | if ( Dy <= 0 || y2 < miny || y1 > maxy ) |
1000 | return SUCCESS; |
1001 | |
1002 | if ( y1 < miny ) |
1003 | { |
1004 | /* Take care: miny-y1 can be a very large value; we use */ |
1005 | /* a slow MulDiv function to avoid clipping bugs */ |
1006 | x1 += SMulDiv( Dx, miny - y1, Dy ); |
1007 | e1 = (Int)TRUNC( miny ); |
1008 | f1 = 0; |
1009 | } |
1010 | else |
1011 | { |
1012 | e1 = (Int)TRUNC( y1 ); |
1013 | f1 = (Int)FRAC( y1 ); |
1014 | } |
1015 | |
1016 | if ( y2 > maxy ) |
1017 | { |
1018 | /* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */ |
1019 | e2 = (Int)TRUNC( maxy ); |
1020 | f2 = 0; |
1021 | } |
1022 | else |
1023 | { |
1024 | e2 = (Int)TRUNC( y2 ); |
1025 | f2 = (Int)FRAC( y2 ); |
1026 | } |
1027 | |
1028 | if ( f1 > 0 ) |
1029 | { |
1030 | if ( e1 == e2 ) |
1031 | return SUCCESS; |
1032 | else |
1033 | { |
1034 | x1 += SMulDiv( Dx, ras.precision - f1, Dy ); |
1035 | e1 += 1; |
1036 | } |
1037 | } |
1038 | else |
1039 | if ( ras.joint ) |
1040 | { |
1041 | ras.top--; |
1042 | ras.joint = FALSE; |
1043 | } |
1044 | |
1045 | ras.joint = (char)( f2 == 0 ); |
1046 | |
1047 | if ( ras.fresh ) |
1048 | { |
1049 | ras.cProfile->start = e1; |
1050 | ras.fresh = FALSE; |
1051 | } |
1052 | |
1053 | size = e2 - e1 + 1; |
1054 | if ( ras.top + size >= ras.maxBuff ) |
1055 | { |
1056 | ras.error = FT_THROW( Raster_Overflow ); |
1057 | return FAILURE; |
1058 | } |
1059 | |
1060 | if ( Dx > 0 ) |
1061 | { |
1062 | Ix = SMulDiv_No_Round( ras.precision, Dx, Dy ); |
1063 | Rx = ( ras.precision * Dx ) % Dy; |
1064 | Dx = 1; |
1065 | } |
1066 | else |
1067 | { |
1068 | Ix = -SMulDiv_No_Round( ras.precision, -Dx, Dy ); |
1069 | Rx = ( ras.precision * -Dx ) % Dy; |
1070 | Dx = -1; |
1071 | } |
1072 | |
1073 | Ax = -Dy; |
1074 | top = ras.top; |
1075 | |
1076 | while ( size > 0 ) |
1077 | { |
1078 | *top++ = x1; |
1079 | |
1080 | x1 += Ix; |
1081 | Ax += Rx; |
1082 | if ( Ax >= 0 ) |
1083 | { |
1084 | Ax -= Dy; |
1085 | x1 += Dx; |
1086 | } |
1087 | size--; |
1088 | } |
1089 | |
1090 | ras.top = top; |
1091 | return SUCCESS; |
1092 | } |
1093 | |
1094 | |
1095 | /************************************************************************** |
1096 | * |
1097 | * @Function: |
1098 | * Line_Down |
1099 | * |
1100 | * @Description: |
1101 | * Compute the x-coordinates of an descending line segment and store |
1102 | * them in the render pool. |
1103 | * |
1104 | * @Input: |
1105 | * x1 :: |
1106 | * The x-coordinate of the segment's start point. |
1107 | * |
1108 | * y1 :: |
1109 | * The y-coordinate of the segment's start point. |
1110 | * |
1111 | * x2 :: |
1112 | * The x-coordinate of the segment's end point. |
1113 | * |
1114 | * y2 :: |
1115 | * The y-coordinate of the segment's end point. |
1116 | * |
1117 | * miny :: |
1118 | * A lower vertical clipping bound value. |
1119 | * |
1120 | * maxy :: |
1121 | * An upper vertical clipping bound value. |
1122 | * |
1123 | * @Return: |
1124 | * SUCCESS on success, FAILURE on render pool overflow. |
1125 | */ |
1126 | static Bool |
1127 | Line_Down( RAS_ARGS Long x1, |
1128 | Long y1, |
1129 | Long x2, |
1130 | Long y2, |
1131 | Long miny, |
1132 | Long maxy ) |
1133 | { |
1134 | Bool result, fresh; |
1135 | |
1136 | |
1137 | fresh = ras.fresh; |
1138 | |
1139 | result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny ); |
1140 | |
1141 | if ( fresh && !ras.fresh ) |
1142 | ras.cProfile->start = -ras.cProfile->start; |
1143 | |
1144 | return result; |
1145 | } |
1146 | |
1147 | |
1148 | /* A function type describing the functions used to split Bezier arcs */ |
1149 | typedef void (*TSplitter)( TPoint* base ); |
1150 | |
1151 | |
1152 | /************************************************************************** |
1153 | * |
1154 | * @Function: |
1155 | * Bezier_Up |
1156 | * |
1157 | * @Description: |
1158 | * Compute the x-coordinates of an ascending Bezier arc and store |
1159 | * them in the render pool. |
1160 | * |
1161 | * @Input: |
1162 | * degree :: |
1163 | * The degree of the Bezier arc (either 2 or 3). |
1164 | * |
1165 | * splitter :: |
1166 | * The function to split Bezier arcs. |
1167 | * |
1168 | * miny :: |
1169 | * A lower vertical clipping bound value. |
1170 | * |
1171 | * maxy :: |
1172 | * An upper vertical clipping bound value. |
1173 | * |
1174 | * @Return: |
1175 | * SUCCESS on success, FAILURE on render pool overflow. |
1176 | */ |
1177 | static Bool |
1178 | Bezier_Up( RAS_ARGS Int degree, |
1179 | TPoint* arc, |
1180 | TSplitter splitter, |
1181 | Long miny, |
1182 | Long maxy ) |
1183 | { |
1184 | Long y1, y2, e, e2, e0; |
1185 | Short f1; |
1186 | |
1187 | TPoint* start_arc; |
1188 | |
1189 | PLong top; |
1190 | |
1191 | |
1192 | y1 = arc[degree].y; |
1193 | y2 = arc[0].y; |
1194 | top = ras.top; |
1195 | |
1196 | if ( y2 < miny || y1 > maxy ) |
1197 | goto Fin; |
1198 | |
1199 | e2 = FLOOR( y2 ); |
1200 | |
1201 | if ( e2 > maxy ) |
1202 | e2 = maxy; |
1203 | |
1204 | e0 = miny; |
1205 | |
1206 | if ( y1 < miny ) |
1207 | e = miny; |
1208 | else |
1209 | { |
1210 | e = CEILING( y1 ); |
1211 | f1 = (Short)( FRAC( y1 ) ); |
1212 | e0 = e; |
1213 | |
1214 | if ( f1 == 0 ) |
1215 | { |
1216 | if ( ras.joint ) |
1217 | { |
1218 | top--; |
1219 | ras.joint = FALSE; |
1220 | } |
1221 | |
1222 | *top++ = arc[degree].x; |
1223 | |
1224 | e += ras.precision; |
1225 | } |
1226 | } |
1227 | |
1228 | if ( ras.fresh ) |
1229 | { |
1230 | ras.cProfile->start = TRUNC( e0 ); |
1231 | ras.fresh = FALSE; |
1232 | } |
1233 | |
1234 | if ( e2 < e ) |
1235 | goto Fin; |
1236 | |
1237 | if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff ) |
1238 | { |
1239 | ras.top = top; |
1240 | ras.error = FT_THROW( Raster_Overflow ); |
1241 | return FAILURE; |
1242 | } |
1243 | |
1244 | start_arc = arc; |
1245 | |
1246 | do |
1247 | { |
1248 | ras.joint = FALSE; |
1249 | |
1250 | y2 = arc[0].y; |
1251 | |
1252 | if ( y2 > e ) |
1253 | { |
1254 | y1 = arc[degree].y; |
1255 | if ( y2 - y1 >= ras.precision_step ) |
1256 | { |
1257 | splitter( arc ); |
1258 | arc += degree; |
1259 | } |
1260 | else |
1261 | { |
1262 | *top++ = arc[degree].x + FMulDiv( arc[0].x - arc[degree].x, |
1263 | e - y1, y2 - y1 ); |
1264 | arc -= degree; |
1265 | e += ras.precision; |
1266 | } |
1267 | } |
1268 | else |
1269 | { |
1270 | if ( y2 == e ) |
1271 | { |
1272 | ras.joint = TRUE; |
1273 | *top++ = arc[0].x; |
1274 | |
1275 | e += ras.precision; |
1276 | } |
1277 | arc -= degree; |
1278 | } |
1279 | } while ( arc >= start_arc && e <= e2 ); |
1280 | |
1281 | Fin: |
1282 | ras.top = top; |
1283 | return SUCCESS; |
1284 | } |
1285 | |
1286 | |
1287 | /************************************************************************** |
1288 | * |
1289 | * @Function: |
1290 | * Bezier_Down |
1291 | * |
1292 | * @Description: |
1293 | * Compute the x-coordinates of an descending Bezier arc and store |
1294 | * them in the render pool. |
1295 | * |
1296 | * @Input: |
1297 | * degree :: |
1298 | * The degree of the Bezier arc (either 2 or 3). |
1299 | * |
1300 | * splitter :: |
1301 | * The function to split Bezier arcs. |
1302 | * |
1303 | * miny :: |
1304 | * A lower vertical clipping bound value. |
1305 | * |
1306 | * maxy :: |
1307 | * An upper vertical clipping bound value. |
1308 | * |
1309 | * @Return: |
1310 | * SUCCESS on success, FAILURE on render pool overflow. |
1311 | */ |
1312 | static Bool |
1313 | Bezier_Down( RAS_ARGS Int degree, |
1314 | TPoint* arc, |
1315 | TSplitter splitter, |
1316 | Long miny, |
1317 | Long maxy ) |
1318 | { |
1319 | Bool result, fresh; |
1320 | |
1321 | |
1322 | arc[0].y = -arc[0].y; |
1323 | arc[1].y = -arc[1].y; |
1324 | arc[2].y = -arc[2].y; |
1325 | if ( degree > 2 ) |
1326 | arc[3].y = -arc[3].y; |
1327 | |
1328 | fresh = ras.fresh; |
1329 | |
1330 | result = Bezier_Up( RAS_VARS degree, arc, splitter, -maxy, -miny ); |
1331 | |
1332 | if ( fresh && !ras.fresh ) |
1333 | ras.cProfile->start = -ras.cProfile->start; |
1334 | |
1335 | arc[0].y = -arc[0].y; |
1336 | return result; |
1337 | } |
1338 | |
1339 | |
1340 | /************************************************************************** |
1341 | * |
1342 | * @Function: |
1343 | * Line_To |
1344 | * |
1345 | * @Description: |
1346 | * Inject a new line segment and adjust the Profiles list. |
1347 | * |
1348 | * @Input: |
1349 | * x :: |
1350 | * The x-coordinate of the segment's end point (its start point |
1351 | * is stored in `lastX'). |
1352 | * |
1353 | * y :: |
1354 | * The y-coordinate of the segment's end point (its start point |
1355 | * is stored in `lastY'). |
1356 | * |
1357 | * @Return: |
1358 | * SUCCESS on success, FAILURE on render pool overflow or incorrect |
1359 | * profile. |
1360 | */ |
1361 | static Bool |
1362 | Line_To( RAS_ARGS Long x, |
1363 | Long y ) |
1364 | { |
1365 | /* First, detect a change of direction */ |
1366 | |
1367 | switch ( ras.state ) |
1368 | { |
1369 | case Unknown_State: |
1370 | if ( y > ras.lastY ) |
1371 | { |
1372 | if ( New_Profile( RAS_VARS Ascending_State, |
1373 | IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ) |
1374 | return FAILURE; |
1375 | } |
1376 | else |
1377 | { |
1378 | if ( y < ras.lastY ) |
1379 | if ( New_Profile( RAS_VARS Descending_State, |
1380 | IS_TOP_OVERSHOOT( ras.lastY ) ) ) |
1381 | return FAILURE; |
1382 | } |
1383 | break; |
1384 | |
1385 | case Ascending_State: |
1386 | if ( y < ras.lastY ) |
1387 | { |
1388 | if ( End_Profile( RAS_VARS IS_TOP_OVERSHOOT( ras.lastY ) ) || |
1389 | New_Profile( RAS_VARS Descending_State, |
1390 | IS_TOP_OVERSHOOT( ras.lastY ) ) ) |
1391 | return FAILURE; |
1392 | } |
1393 | break; |
1394 | |
1395 | case Descending_State: |
1396 | if ( y > ras.lastY ) |
1397 | { |
1398 | if ( End_Profile( RAS_VARS IS_BOTTOM_OVERSHOOT( ras.lastY ) ) || |
1399 | New_Profile( RAS_VARS Ascending_State, |
1400 | IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ) |
1401 | return FAILURE; |
1402 | } |
1403 | break; |
1404 | |
1405 | default: |
1406 | ; |
1407 | } |
1408 | |
1409 | /* Then compute the lines */ |
1410 | |
1411 | switch ( ras.state ) |
1412 | { |
1413 | case Ascending_State: |
1414 | if ( Line_Up( RAS_VARS ras.lastX, ras.lastY, |
1415 | x, y, ras.minY, ras.maxY ) ) |
1416 | return FAILURE; |
1417 | break; |
1418 | |
1419 | case Descending_State: |
1420 | if ( Line_Down( RAS_VARS ras.lastX, ras.lastY, |
1421 | x, y, ras.minY, ras.maxY ) ) |
1422 | return FAILURE; |
1423 | break; |
1424 | |
1425 | default: |
1426 | ; |
1427 | } |
1428 | |
1429 | ras.lastX = x; |
1430 | ras.lastY = y; |
1431 | |
1432 | return SUCCESS; |
1433 | } |
1434 | |
1435 | |
1436 | /************************************************************************** |
1437 | * |
1438 | * @Function: |
1439 | * Conic_To |
1440 | * |
1441 | * @Description: |
1442 | * Inject a new conic arc and adjust the profile list. |
1443 | * |
1444 | * @Input: |
1445 | * cx :: |
1446 | * The x-coordinate of the arc's new control point. |
1447 | * |
1448 | * cy :: |
1449 | * The y-coordinate of the arc's new control point. |
1450 | * |
1451 | * x :: |
1452 | * The x-coordinate of the arc's end point (its start point is |
1453 | * stored in `lastX'). |
1454 | * |
1455 | * y :: |
1456 | * The y-coordinate of the arc's end point (its start point is |
1457 | * stored in `lastY'). |
1458 | * |
1459 | * @Return: |
1460 | * SUCCESS on success, FAILURE on render pool overflow or incorrect |
1461 | * profile. |
1462 | */ |
1463 | static Bool |
1464 | Conic_To( RAS_ARGS Long cx, |
1465 | Long cy, |
1466 | Long x, |
1467 | Long y ) |
1468 | { |
1469 | Long y1, y2, y3, x3, ymin, ymax; |
1470 | TStates state_bez; |
1471 | TPoint arcs[2 * MaxBezier + 1]; /* The Bezier stack */ |
1472 | TPoint* arc; /* current Bezier arc pointer */ |
1473 | |
1474 | |
1475 | arc = arcs; |
1476 | arc[2].x = ras.lastX; |
1477 | arc[2].y = ras.lastY; |
1478 | arc[1].x = cx; |
1479 | arc[1].y = cy; |
1480 | arc[0].x = x; |
1481 | arc[0].y = y; |
1482 | |
1483 | do |
1484 | { |
1485 | y1 = arc[2].y; |
1486 | y2 = arc[1].y; |
1487 | y3 = arc[0].y; |
1488 | x3 = arc[0].x; |
1489 | |
1490 | /* first, categorize the Bezier arc */ |
1491 | |
1492 | if ( y1 <= y3 ) |
1493 | { |
1494 | ymin = y1; |
1495 | ymax = y3; |
1496 | } |
1497 | else |
1498 | { |
1499 | ymin = y3; |
1500 | ymax = y1; |
1501 | } |
1502 | |
1503 | if ( y2 < ymin || y2 > ymax ) |
1504 | { |
1505 | /* this arc has no given direction, split it! */ |
1506 | Split_Conic( arc ); |
1507 | arc += 2; |
1508 | } |
1509 | else if ( y1 == y3 ) |
1510 | { |
1511 | /* this arc is flat, ignore it and pop it from the Bezier stack */ |
1512 | arc -= 2; |
1513 | } |
1514 | else |
1515 | { |
1516 | /* the arc is y-monotonous, either ascending or descending */ |
1517 | /* detect a change of direction */ |
1518 | state_bez = y1 < y3 ? Ascending_State : Descending_State; |
1519 | if ( ras.state != state_bez ) |
1520 | { |
1521 | Bool o = ( state_bez == Ascending_State ) |
1522 | ? IS_BOTTOM_OVERSHOOT( y1 ) |
1523 | : IS_TOP_OVERSHOOT( y1 ); |
1524 | |
1525 | |
1526 | /* finalize current profile if any */ |
1527 | if ( ras.state != Unknown_State && |
1528 | End_Profile( RAS_VARS o ) ) |
1529 | goto Fail; |
1530 | |
1531 | /* create a new profile */ |
1532 | if ( New_Profile( RAS_VARS state_bez, o ) ) |
1533 | goto Fail; |
1534 | } |
1535 | |
1536 | /* now call the appropriate routine */ |
1537 | if ( state_bez == Ascending_State ) |
1538 | { |
1539 | if ( Bezier_Up( RAS_VARS 2, arc, Split_Conic, |
1540 | ras.minY, ras.maxY ) ) |
1541 | goto Fail; |
1542 | } |
1543 | else |
1544 | if ( Bezier_Down( RAS_VARS 2, arc, Split_Conic, |
1545 | ras.minY, ras.maxY ) ) |
1546 | goto Fail; |
1547 | arc -= 2; |
1548 | } |
1549 | |
1550 | } while ( arc >= arcs ); |
1551 | |
1552 | ras.lastX = x3; |
1553 | ras.lastY = y3; |
1554 | |
1555 | return SUCCESS; |
1556 | |
1557 | Fail: |
1558 | return FAILURE; |
1559 | } |
1560 | |
1561 | |
1562 | /************************************************************************** |
1563 | * |
1564 | * @Function: |
1565 | * Cubic_To |
1566 | * |
1567 | * @Description: |
1568 | * Inject a new cubic arc and adjust the profile list. |
1569 | * |
1570 | * @Input: |
1571 | * cx1 :: |
1572 | * The x-coordinate of the arc's first new control point. |
1573 | * |
1574 | * cy1 :: |
1575 | * The y-coordinate of the arc's first new control point. |
1576 | * |
1577 | * cx2 :: |
1578 | * The x-coordinate of the arc's second new control point. |
1579 | * |
1580 | * cy2 :: |
1581 | * The y-coordinate of the arc's second new control point. |
1582 | * |
1583 | * x :: |
1584 | * The x-coordinate of the arc's end point (its start point is |
1585 | * stored in `lastX'). |
1586 | * |
1587 | * y :: |
1588 | * The y-coordinate of the arc's end point (its start point is |
1589 | * stored in `lastY'). |
1590 | * |
1591 | * @Return: |
1592 | * SUCCESS on success, FAILURE on render pool overflow or incorrect |
1593 | * profile. |
1594 | */ |
1595 | static Bool |
1596 | Cubic_To( RAS_ARGS Long cx1, |
1597 | Long cy1, |
1598 | Long cx2, |
1599 | Long cy2, |
1600 | Long x, |
1601 | Long y ) |
1602 | { |
1603 | Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2; |
1604 | TStates state_bez; |
1605 | TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */ |
1606 | TPoint* arc; /* current Bezier arc pointer */ |
1607 | |
1608 | |
1609 | arc = arcs; |
1610 | arc[3].x = ras.lastX; |
1611 | arc[3].y = ras.lastY; |
1612 | arc[2].x = cx1; |
1613 | arc[2].y = cy1; |
1614 | arc[1].x = cx2; |
1615 | arc[1].y = cy2; |
1616 | arc[0].x = x; |
1617 | arc[0].y = y; |
1618 | |
1619 | do |
1620 | { |
1621 | y1 = arc[3].y; |
1622 | y2 = arc[2].y; |
1623 | y3 = arc[1].y; |
1624 | y4 = arc[0].y; |
1625 | x4 = arc[0].x; |
1626 | |
1627 | /* first, categorize the Bezier arc */ |
1628 | |
1629 | if ( y1 <= y4 ) |
1630 | { |
1631 | ymin1 = y1; |
1632 | ymax1 = y4; |
1633 | } |
1634 | else |
1635 | { |
1636 | ymin1 = y4; |
1637 | ymax1 = y1; |
1638 | } |
1639 | |
1640 | if ( y2 <= y3 ) |
1641 | { |
1642 | ymin2 = y2; |
1643 | ymax2 = y3; |
1644 | } |
1645 | else |
1646 | { |
1647 | ymin2 = y3; |
1648 | ymax2 = y2; |
1649 | } |
1650 | |
1651 | if ( ymin2 < ymin1 || ymax2 > ymax1 ) |
1652 | { |
1653 | /* this arc has no given direction, split it! */ |
1654 | Split_Cubic( arc ); |
1655 | arc += 3; |
1656 | } |
1657 | else if ( y1 == y4 ) |
1658 | { |
1659 | /* this arc is flat, ignore it and pop it from the Bezier stack */ |
1660 | arc -= 3; |
1661 | } |
1662 | else |
1663 | { |
1664 | state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State; |
1665 | |
1666 | /* detect a change of direction */ |
1667 | if ( ras.state != state_bez ) |
1668 | { |
1669 | Bool o = ( state_bez == Ascending_State ) |
1670 | ? IS_BOTTOM_OVERSHOOT( y1 ) |
1671 | : IS_TOP_OVERSHOOT( y1 ); |
1672 | |
1673 | |
1674 | /* finalize current profile if any */ |
1675 | if ( ras.state != Unknown_State && |
1676 | End_Profile( RAS_VARS o ) ) |
1677 | goto Fail; |
1678 | |
1679 | if ( New_Profile( RAS_VARS state_bez, o ) ) |
1680 | goto Fail; |
1681 | } |
1682 | |
1683 | /* compute intersections */ |
1684 | if ( state_bez == Ascending_State ) |
1685 | { |
1686 | if ( Bezier_Up( RAS_VARS 3, arc, Split_Cubic, |
1687 | ras.minY, ras.maxY ) ) |
1688 | goto Fail; |
1689 | } |
1690 | else |
1691 | if ( Bezier_Down( RAS_VARS 3, arc, Split_Cubic, |
1692 | ras.minY, ras.maxY ) ) |
1693 | goto Fail; |
1694 | arc -= 3; |
1695 | } |
1696 | |
1697 | } while ( arc >= arcs ); |
1698 | |
1699 | ras.lastX = x4; |
1700 | ras.lastY = y4; |
1701 | |
1702 | return SUCCESS; |
1703 | |
1704 | Fail: |
1705 | return FAILURE; |
1706 | } |
1707 | |
1708 | |
1709 | #undef SWAP_ |
1710 | #define SWAP_( x, y ) do \ |
1711 | { \ |
1712 | Long swap = x; \ |
1713 | \ |
1714 | \ |
1715 | x = y; \ |
1716 | y = swap; \ |
1717 | } while ( 0 ) |
1718 | |
1719 | |
1720 | /************************************************************************** |
1721 | * |
1722 | * @Function: |
1723 | * Decompose_Curve |
1724 | * |
1725 | * @Description: |
1726 | * Scan the outline arrays in order to emit individual segments and |
1727 | * Beziers by calling Line_To() and Bezier_To(). It handles all |
1728 | * weird cases, like when the first point is off the curve, or when |
1729 | * there are simply no `on' points in the contour! |
1730 | * |
1731 | * @Input: |
1732 | * first :: |
1733 | * The index of the first point in the contour. |
1734 | * |
1735 | * last :: |
1736 | * The index of the last point in the contour. |
1737 | * |
1738 | * flipped :: |
1739 | * If set, flip the direction of the curve. |
1740 | * |
1741 | * @Return: |
1742 | * SUCCESS on success, FAILURE on error. |
1743 | */ |
1744 | static Bool |
1745 | Decompose_Curve( RAS_ARGS Int first, |
1746 | Int last, |
1747 | Int flipped ) |
1748 | { |
1749 | FT_Vector v_last; |
1750 | FT_Vector v_control; |
1751 | FT_Vector v_start; |
1752 | |
1753 | FT_Vector* points; |
1754 | FT_Vector* point; |
1755 | FT_Vector* limit; |
1756 | char* tags; |
1757 | |
1758 | UInt tag; /* current point's state */ |
1759 | |
1760 | |
1761 | points = ras.outline.points; |
1762 | limit = points + last; |
1763 | |
1764 | v_start.x = SCALED( points[first].x ); |
1765 | v_start.y = SCALED( points[first].y ); |
1766 | v_last.x = SCALED( points[last].x ); |
1767 | v_last.y = SCALED( points[last].y ); |
1768 | |
1769 | if ( flipped ) |
1770 | { |
1771 | SWAP_( v_start.x, v_start.y ); |
1772 | SWAP_( v_last.x, v_last.y ); |
1773 | } |
1774 | |
1775 | v_control = v_start; |
1776 | |
1777 | point = points + first; |
1778 | tags = ras.outline.tags + first; |
1779 | |
1780 | /* set scan mode if necessary */ |
1781 | if ( tags[0] & FT_CURVE_TAG_HAS_SCANMODE ) |
1782 | ras.dropOutControl = (Byte)tags[0] >> 5; |
1783 | |
1784 | tag = FT_CURVE_TAG( tags[0] ); |
1785 | |
1786 | /* A contour cannot start with a cubic control point! */ |
1787 | if ( tag == FT_CURVE_TAG_CUBIC ) |
1788 | goto Invalid_Outline; |
1789 | |
1790 | /* check first point to determine origin */ |
1791 | if ( tag == FT_CURVE_TAG_CONIC ) |
1792 | { |
1793 | /* first point is conic control. Yes, this happens. */ |
1794 | if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON ) |
1795 | { |
1796 | /* start at last point if it is on the curve */ |
1797 | v_start = v_last; |
1798 | limit--; |
1799 | } |
1800 | else |
1801 | { |
1802 | /* if both first and last points are conic, */ |
1803 | /* start at their middle and record its position */ |
1804 | /* for closure */ |
1805 | v_start.x = ( v_start.x + v_last.x ) / 2; |
1806 | v_start.y = ( v_start.y + v_last.y ) / 2; |
1807 | |
1808 | /* v_last = v_start; */ |
1809 | } |
1810 | point--; |
1811 | tags--; |
1812 | } |
1813 | |
1814 | ras.lastX = v_start.x; |
1815 | ras.lastY = v_start.y; |
1816 | |
1817 | while ( point < limit ) |
1818 | { |
1819 | point++; |
1820 | tags++; |
1821 | |
1822 | tag = FT_CURVE_TAG( tags[0] ); |
1823 | |
1824 | switch ( tag ) |
1825 | { |
1826 | case FT_CURVE_TAG_ON: /* emit a single line_to */ |
1827 | { |
1828 | Long x, y; |
1829 | |
1830 | |
1831 | x = SCALED( point->x ); |
1832 | y = SCALED( point->y ); |
1833 | if ( flipped ) |
1834 | SWAP_( x, y ); |
1835 | |
1836 | if ( Line_To( RAS_VARS x, y ) ) |
1837 | goto Fail; |
1838 | continue; |
1839 | } |
1840 | |
1841 | case FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
1842 | v_control.x = SCALED( point[0].x ); |
1843 | v_control.y = SCALED( point[0].y ); |
1844 | |
1845 | if ( flipped ) |
1846 | SWAP_( v_control.x, v_control.y ); |
1847 | |
1848 | Do_Conic: |
1849 | if ( point < limit ) |
1850 | { |
1851 | FT_Vector v_middle; |
1852 | Long x, y; |
1853 | |
1854 | |
1855 | point++; |
1856 | tags++; |
1857 | tag = FT_CURVE_TAG( tags[0] ); |
1858 | |
1859 | x = SCALED( point[0].x ); |
1860 | y = SCALED( point[0].y ); |
1861 | |
1862 | if ( flipped ) |
1863 | SWAP_( x, y ); |
1864 | |
1865 | if ( tag == FT_CURVE_TAG_ON ) |
1866 | { |
1867 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) ) |
1868 | goto Fail; |
1869 | continue; |
1870 | } |
1871 | |
1872 | if ( tag != FT_CURVE_TAG_CONIC ) |
1873 | goto Invalid_Outline; |
1874 | |
1875 | v_middle.x = ( v_control.x + x ) / 2; |
1876 | v_middle.y = ( v_control.y + y ) / 2; |
1877 | |
1878 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, |
1879 | v_middle.x, v_middle.y ) ) |
1880 | goto Fail; |
1881 | |
1882 | v_control.x = x; |
1883 | v_control.y = y; |
1884 | |
1885 | goto Do_Conic; |
1886 | } |
1887 | |
1888 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, |
1889 | v_start.x, v_start.y ) ) |
1890 | goto Fail; |
1891 | |
1892 | goto Close; |
1893 | |
1894 | default: /* FT_CURVE_TAG_CUBIC */ |
1895 | { |
1896 | Long x1, y1, x2, y2, x3, y3; |
1897 | |
1898 | |
1899 | if ( point + 1 > limit || |
1900 | FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC ) |
1901 | goto Invalid_Outline; |
1902 | |
1903 | point += 2; |
1904 | tags += 2; |
1905 | |
1906 | x1 = SCALED( point[-2].x ); |
1907 | y1 = SCALED( point[-2].y ); |
1908 | x2 = SCALED( point[-1].x ); |
1909 | y2 = SCALED( point[-1].y ); |
1910 | |
1911 | if ( flipped ) |
1912 | { |
1913 | SWAP_( x1, y1 ); |
1914 | SWAP_( x2, y2 ); |
1915 | } |
1916 | |
1917 | if ( point <= limit ) |
1918 | { |
1919 | x3 = SCALED( point[0].x ); |
1920 | y3 = SCALED( point[0].y ); |
1921 | |
1922 | if ( flipped ) |
1923 | SWAP_( x3, y3 ); |
1924 | |
1925 | if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) ) |
1926 | goto Fail; |
1927 | continue; |
1928 | } |
1929 | |
1930 | if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) ) |
1931 | goto Fail; |
1932 | goto Close; |
1933 | } |
1934 | } |
1935 | } |
1936 | |
1937 | /* close the contour with a line segment */ |
1938 | if ( Line_To( RAS_VARS v_start.x, v_start.y ) ) |
1939 | goto Fail; |
1940 | |
1941 | Close: |
1942 | return SUCCESS; |
1943 | |
1944 | Invalid_Outline: |
1945 | ras.error = FT_THROW( Invalid_Outline ); |
1946 | |
1947 | Fail: |
1948 | return FAILURE; |
1949 | } |
1950 | |
1951 | |
1952 | /************************************************************************** |
1953 | * |
1954 | * @Function: |
1955 | * Convert_Glyph |
1956 | * |
1957 | * @Description: |
1958 | * Convert a glyph into a series of segments and arcs and make a |
1959 | * profiles list with them. |
1960 | * |
1961 | * @Input: |
1962 | * flipped :: |
1963 | * If set, flip the direction of curve. |
1964 | * |
1965 | * @Return: |
1966 | * SUCCESS on success, FAILURE if any error was encountered during |
1967 | * rendering. |
1968 | */ |
1969 | static Bool |
1970 | Convert_Glyph( RAS_ARGS Int flipped ) |
1971 | { |
1972 | Int i; |
1973 | Int first, last; |
1974 | |
1975 | |
1976 | ras.fProfile = NULL; |
1977 | ras.joint = FALSE; |
1978 | ras.fresh = FALSE; |
1979 | |
1980 | ras.maxBuff = ras.sizeBuff - AlignProfileSize; |
1981 | |
1982 | ras.numTurns = 0; |
1983 | |
1984 | ras.cProfile = (PProfile)ras.top; |
1985 | ras.cProfile->offset = ras.top; |
1986 | ras.num_Profs = 0; |
1987 | |
1988 | last = -1; |
1989 | for ( i = 0; i < ras.outline.n_contours; i++ ) |
1990 | { |
1991 | PProfile lastProfile; |
1992 | Bool o; |
1993 | |
1994 | |
1995 | ras.state = Unknown_State; |
1996 | ras.gProfile = NULL; |
1997 | |
1998 | first = last + 1; |
1999 | last = ras.outline.contours[i]; |
2000 | |
2001 | if ( Decompose_Curve( RAS_VARS first, last, flipped ) ) |
2002 | return FAILURE; |
2003 | |
2004 | /* we must now check whether the extreme arcs join or not */ |
2005 | if ( FRAC( ras.lastY ) == 0 && |
2006 | ras.lastY >= ras.minY && |
2007 | ras.lastY <= ras.maxY ) |
2008 | if ( ras.gProfile && |
2009 | ( ras.gProfile->flags & Flow_Up ) == |
2010 | ( ras.cProfile->flags & Flow_Up ) ) |
2011 | ras.top--; |
2012 | /* Note that ras.gProfile can be nil if the contour was too small */ |
2013 | /* to be drawn. */ |
2014 | |
2015 | lastProfile = ras.cProfile; |
2016 | if ( ras.top != ras.cProfile->offset && |
2017 | ( ras.cProfile->flags & Flow_Up ) ) |
2018 | o = IS_TOP_OVERSHOOT( ras.lastY ); |
2019 | else |
2020 | o = IS_BOTTOM_OVERSHOOT( ras.lastY ); |
2021 | if ( End_Profile( RAS_VARS o ) ) |
2022 | return FAILURE; |
2023 | |
2024 | /* close the `next profile in contour' linked list */ |
2025 | if ( ras.gProfile ) |
2026 | lastProfile->next = ras.gProfile; |
2027 | } |
2028 | |
2029 | if ( Finalize_Profile_Table( RAS_VAR ) ) |
2030 | return FAILURE; |
2031 | |
2032 | return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE ); |
2033 | } |
2034 | |
2035 | |
2036 | /*************************************************************************/ |
2037 | /*************************************************************************/ |
2038 | /** **/ |
2039 | /** SCAN-LINE SWEEPS AND DRAWING **/ |
2040 | /** **/ |
2041 | /*************************************************************************/ |
2042 | /*************************************************************************/ |
2043 | |
2044 | |
2045 | /************************************************************************** |
2046 | * |
2047 | * Init_Linked |
2048 | * |
2049 | * Initializes an empty linked list. |
2050 | */ |
2051 | static void |
2052 | Init_Linked( TProfileList* l ) |
2053 | { |
2054 | *l = NULL; |
2055 | } |
2056 | |
2057 | |
2058 | /************************************************************************** |
2059 | * |
2060 | * InsNew |
2061 | * |
2062 | * Inserts a new profile in a linked list. |
2063 | */ |
2064 | static void |
2065 | InsNew( PProfileList list, |
2066 | PProfile profile ) |
2067 | { |
2068 | PProfile *old, current; |
2069 | Long x; |
2070 | |
2071 | |
2072 | old = list; |
2073 | current = *old; |
2074 | x = profile->X; |
2075 | |
2076 | while ( current ) |
2077 | { |
2078 | if ( x < current->X ) |
2079 | break; |
2080 | old = ¤t->link; |
2081 | current = *old; |
2082 | } |
2083 | |
2084 | profile->link = current; |
2085 | *old = profile; |
2086 | } |
2087 | |
2088 | |
2089 | /************************************************************************** |
2090 | * |
2091 | * DelOld |
2092 | * |
2093 | * Removes an old profile from a linked list. |
2094 | */ |
2095 | static void |
2096 | DelOld( PProfileList list, |
2097 | const PProfile profile ) |
2098 | { |
2099 | PProfile *old, current; |
2100 | |
2101 | |
2102 | old = list; |
2103 | current = *old; |
2104 | |
2105 | while ( current ) |
2106 | { |
2107 | if ( current == profile ) |
2108 | { |
2109 | *old = current->link; |
2110 | return; |
2111 | } |
2112 | |
2113 | old = ¤t->link; |
2114 | current = *old; |
2115 | } |
2116 | |
2117 | /* we should never get there, unless the profile was not part of */ |
2118 | /* the list. */ |
2119 | } |
2120 | |
2121 | |
2122 | /************************************************************************** |
2123 | * |
2124 | * Sort |
2125 | * |
2126 | * Sorts a trace list. In 95%, the list is already sorted. We need |
2127 | * an algorithm which is fast in this case. Bubble sort is enough |
2128 | * and simple. |
2129 | */ |
2130 | static void |
2131 | Sort( PProfileList list ) |
2132 | { |
2133 | PProfile *old, current, next; |
2134 | |
2135 | |
2136 | /* First, set the new X coordinate of each profile */ |
2137 | current = *list; |
2138 | while ( current ) |
2139 | { |
2140 | current->X = *current->offset; |
2141 | current->offset += ( current->flags & Flow_Up ) ? 1 : -1; |
2142 | current->height--; |
2143 | current = current->link; |
2144 | } |
2145 | |
2146 | /* Then sort them */ |
2147 | old = list; |
2148 | current = *old; |
2149 | |
2150 | if ( !current ) |
2151 | return; |
2152 | |
2153 | next = current->link; |
2154 | |
2155 | while ( next ) |
2156 | { |
2157 | if ( current->X <= next->X ) |
2158 | { |
2159 | old = ¤t->link; |
2160 | current = *old; |
2161 | |
2162 | if ( !current ) |
2163 | return; |
2164 | } |
2165 | else |
2166 | { |
2167 | *old = next; |
2168 | current->link = next->link; |
2169 | next->link = current; |
2170 | |
2171 | old = list; |
2172 | current = *old; |
2173 | } |
2174 | |
2175 | next = current->link; |
2176 | } |
2177 | } |
2178 | |
2179 | |
2180 | /************************************************************************** |
2181 | * |
2182 | * Vertical Sweep Procedure Set |
2183 | * |
2184 | * These four routines are used during the vertical black/white sweep |
2185 | * phase by the generic Draw_Sweep() function. |
2186 | * |
2187 | */ |
2188 | |
2189 | static void |
2190 | Vertical_Sweep_Init( RAS_ARGS Short min, |
2191 | Short max ) |
2192 | { |
2193 | FT_UNUSED( max ); |
2194 | |
2195 | |
2196 | ras.bLine = ras.bOrigin - min * ras.target.pitch; |
2197 | } |
2198 | |
2199 | |
2200 | static void |
2201 | Vertical_Sweep_Span( RAS_ARGS Short y, |
2202 | FT_F26Dot6 x1, |
2203 | FT_F26Dot6 x2, |
2204 | PProfile left, |
2205 | PProfile right ) |
2206 | { |
2207 | Long e1, e2; |
2208 | |
2209 | Int dropOutControl = left->flags & 7; |
2210 | |
2211 | FT_UNUSED( y ); |
2212 | FT_UNUSED( left ); |
2213 | FT_UNUSED( right ); |
2214 | |
2215 | |
2216 | /* in high-precision mode, we need 12 digits after the comma to */ |
2217 | /* represent multiples of 1/(1<<12) = 1/4096 */ |
2218 | FT_TRACE7(( " y=%d x=[% .12f;% .12f]" , |
2219 | y, |
2220 | (double)x1 / (double)ras.precision, |
2221 | (double)x2 / (double)ras.precision )); |
2222 | |
2223 | /* Drop-out control */ |
2224 | |
2225 | e1 = CEILING( x1 ); |
2226 | e2 = FLOOR( x2 ); |
2227 | |
2228 | /* take care of the special case where both the left */ |
2229 | /* and right contour lie exactly on pixel centers */ |
2230 | if ( dropOutControl != 2 && |
2231 | x2 - x1 - ras.precision <= ras.precision_jitter && |
2232 | e1 != x1 && e2 != x2 ) |
2233 | e2 = e1; |
2234 | |
2235 | e1 = TRUNC( e1 ); |
2236 | e2 = TRUNC( e2 ); |
2237 | |
2238 | if ( e2 >= 0 && e1 < ras.bWidth ) |
2239 | { |
2240 | Byte* target; |
2241 | |
2242 | Int c1, c2; |
2243 | Byte f1, f2; |
2244 | |
2245 | |
2246 | if ( e1 < 0 ) |
2247 | e1 = 0; |
2248 | if ( e2 >= ras.bWidth ) |
2249 | e2 = ras.bWidth - 1; |
2250 | |
2251 | FT_TRACE7(( " -> x=[%ld;%ld]" , e1, e2 )); |
2252 | |
2253 | c1 = (Short)( e1 >> 3 ); |
2254 | c2 = (Short)( e2 >> 3 ); |
2255 | |
2256 | f1 = (Byte) ( 0xFF >> ( e1 & 7 ) ); |
2257 | f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) ); |
2258 | |
2259 | target = ras.bLine + c1; |
2260 | c2 -= c1; |
2261 | |
2262 | if ( c2 > 0 ) |
2263 | { |
2264 | target[0] |= f1; |
2265 | |
2266 | /* memset() is slower than the following code on many platforms. */ |
2267 | /* This is due to the fact that, in the vast majority of cases, */ |
2268 | /* the span length in bytes is relatively small. */ |
2269 | while ( --c2 > 0 ) |
2270 | *( ++target ) = 0xFF; |
2271 | |
2272 | target[1] |= f2; |
2273 | } |
2274 | else |
2275 | *target |= ( f1 & f2 ); |
2276 | } |
2277 | |
2278 | FT_TRACE7(( "\n" )); |
2279 | } |
2280 | |
2281 | |
2282 | static void |
2283 | Vertical_Sweep_Drop( RAS_ARGS Short y, |
2284 | FT_F26Dot6 x1, |
2285 | FT_F26Dot6 x2, |
2286 | PProfile left, |
2287 | PProfile right ) |
2288 | { |
2289 | Long e1, e2, pxl; |
2290 | Short c1, f1; |
2291 | |
2292 | |
2293 | FT_TRACE7(( " y=%d x=[% .12f;% .12f]" , |
2294 | y, |
2295 | (double)x1 / (double)ras.precision, |
2296 | (double)x2 / (double)ras.precision )); |
2297 | |
2298 | /* Drop-out control */ |
2299 | |
2300 | /* e2 x2 x1 e1 */ |
2301 | /* */ |
2302 | /* ^ | */ |
2303 | /* | | */ |
2304 | /* +-------------+---------------------+------------+ */ |
2305 | /* | | */ |
2306 | /* | v */ |
2307 | /* */ |
2308 | /* pixel contour contour pixel */ |
2309 | /* center center */ |
2310 | |
2311 | /* drop-out mode scan conversion rules (as defined in OpenType) */ |
2312 | /* --------------------------------------------------------------- */ |
2313 | /* 0 1, 2, 3 */ |
2314 | /* 1 1, 2, 4 */ |
2315 | /* 2 1, 2 */ |
2316 | /* 3 same as mode 2 */ |
2317 | /* 4 1, 2, 5 */ |
2318 | /* 5 1, 2, 6 */ |
2319 | /* 6, 7 same as mode 2 */ |
2320 | |
2321 | e1 = CEILING( x1 ); |
2322 | e2 = FLOOR ( x2 ); |
2323 | pxl = e1; |
2324 | |
2325 | if ( e1 > e2 ) |
2326 | { |
2327 | Int dropOutControl = left->flags & 7; |
2328 | |
2329 | |
2330 | if ( e1 == e2 + ras.precision ) |
2331 | { |
2332 | switch ( dropOutControl ) |
2333 | { |
2334 | case 0: /* simple drop-outs including stubs */ |
2335 | pxl = e2; |
2336 | break; |
2337 | |
2338 | case 4: /* smart drop-outs including stubs */ |
2339 | pxl = SMART( x1, x2 ); |
2340 | break; |
2341 | |
2342 | case 1: /* simple drop-outs excluding stubs */ |
2343 | case 5: /* smart drop-outs excluding stubs */ |
2344 | |
2345 | /* Drop-out Control Rules #4 and #6 */ |
2346 | |
2347 | /* The specification neither provides an exact definition */ |
2348 | /* of a `stub' nor gives exact rules to exclude them. */ |
2349 | /* */ |
2350 | /* Here the constraints we use to recognize a stub. */ |
2351 | /* */ |
2352 | /* upper stub: */ |
2353 | /* */ |
2354 | /* - P_Left and P_Right are in the same contour */ |
2355 | /* - P_Right is the successor of P_Left in that contour */ |
2356 | /* - y is the top of P_Left and P_Right */ |
2357 | /* */ |
2358 | /* lower stub: */ |
2359 | /* */ |
2360 | /* - P_Left and P_Right are in the same contour */ |
2361 | /* - P_Left is the successor of P_Right in that contour */ |
2362 | /* - y is the bottom of P_Left */ |
2363 | /* */ |
2364 | /* We draw a stub if the following constraints are met. */ |
2365 | /* */ |
2366 | /* - for an upper or lower stub, there is top or bottom */ |
2367 | /* overshoot, respectively */ |
2368 | /* - the covered interval is greater or equal to a half */ |
2369 | /* pixel */ |
2370 | |
2371 | /* upper stub test */ |
2372 | if ( left->next == right && |
2373 | left->height <= 0 && |
2374 | !( left->flags & Overshoot_Top && |
2375 | x2 - x1 >= ras.precision_half ) ) |
2376 | goto Exit; |
2377 | |
2378 | /* lower stub test */ |
2379 | if ( right->next == left && |
2380 | left->start == y && |
2381 | !( left->flags & Overshoot_Bottom && |
2382 | x2 - x1 >= ras.precision_half ) ) |
2383 | goto Exit; |
2384 | |
2385 | if ( dropOutControl == 1 ) |
2386 | pxl = e2; |
2387 | else |
2388 | pxl = SMART( x1, x2 ); |
2389 | break; |
2390 | |
2391 | default: /* modes 2, 3, 6, 7 */ |
2392 | goto Exit; /* no drop-out control */ |
2393 | } |
2394 | |
2395 | /* undocumented but confirmed: If the drop-out would result in a */ |
2396 | /* pixel outside of the bounding box, use the pixel inside of the */ |
2397 | /* bounding box instead */ |
2398 | if ( pxl < 0 ) |
2399 | pxl = e1; |
2400 | else if ( TRUNC( pxl ) >= ras.bWidth ) |
2401 | pxl = e2; |
2402 | |
2403 | /* check that the other pixel isn't set */ |
2404 | e1 = ( pxl == e1 ) ? e2 : e1; |
2405 | |
2406 | e1 = TRUNC( e1 ); |
2407 | |
2408 | c1 = (Short)( e1 >> 3 ); |
2409 | f1 = (Short)( e1 & 7 ); |
2410 | |
2411 | if ( e1 >= 0 && e1 < ras.bWidth && |
2412 | ras.bLine[c1] & ( 0x80 >> f1 ) ) |
2413 | goto Exit; |
2414 | } |
2415 | else |
2416 | goto Exit; |
2417 | } |
2418 | |
2419 | e1 = TRUNC( pxl ); |
2420 | |
2421 | if ( e1 >= 0 && e1 < ras.bWidth ) |
2422 | { |
2423 | FT_TRACE7(( " -> x=%ld" , e1 )); |
2424 | |
2425 | c1 = (Short)( e1 >> 3 ); |
2426 | f1 = (Short)( e1 & 7 ); |
2427 | |
2428 | ras.bLine[c1] |= (char)( 0x80 >> f1 ); |
2429 | } |
2430 | |
2431 | Exit: |
2432 | FT_TRACE7(( " dropout=%d\n" , left->flags & 7 )); |
2433 | } |
2434 | |
2435 | |
2436 | static void |
2437 | Vertical_Sweep_Step( RAS_ARG ) |
2438 | { |
2439 | ras.bLine -= ras.target.pitch; |
2440 | } |
2441 | |
2442 | |
2443 | /************************************************************************ |
2444 | * |
2445 | * Horizontal Sweep Procedure Set |
2446 | * |
2447 | * These four routines are used during the horizontal black/white |
2448 | * sweep phase by the generic Draw_Sweep() function. |
2449 | * |
2450 | */ |
2451 | |
2452 | static void |
2453 | Horizontal_Sweep_Init( RAS_ARGS Short min, |
2454 | Short max ) |
2455 | { |
2456 | /* nothing, really */ |
2457 | FT_UNUSED_RASTER; |
2458 | FT_UNUSED( min ); |
2459 | FT_UNUSED( max ); |
2460 | } |
2461 | |
2462 | |
2463 | static void |
2464 | Horizontal_Sweep_Span( RAS_ARGS Short y, |
2465 | FT_F26Dot6 x1, |
2466 | FT_F26Dot6 x2, |
2467 | PProfile left, |
2468 | PProfile right ) |
2469 | { |
2470 | Long e1, e2; |
2471 | |
2472 | FT_UNUSED( left ); |
2473 | FT_UNUSED( right ); |
2474 | |
2475 | |
2476 | FT_TRACE7(( " x=%d y=[% .12f;% .12f]" , |
2477 | y, |
2478 | (double)x1 / (double)ras.precision, |
2479 | (double)x2 / (double)ras.precision )); |
2480 | |
2481 | /* We should not need this procedure but the vertical sweep */ |
2482 | /* mishandles horizontal lines through pixel centers. So we */ |
2483 | /* have to check perfectly aligned span edges here. */ |
2484 | /* */ |
2485 | /* XXX: Can we handle horizontal lines better and drop this? */ |
2486 | |
2487 | e1 = CEILING( x1 ); |
2488 | |
2489 | if ( x1 == e1 ) |
2490 | { |
2491 | e1 = TRUNC( e1 ); |
2492 | |
2493 | if ( e1 >= 0 && (ULong)e1 < ras.target.rows ) |
2494 | { |
2495 | Byte f1; |
2496 | PByte bits; |
2497 | |
2498 | |
2499 | bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch; |
2500 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
2501 | |
2502 | FT_TRACE7(( bits[0] & f1 ? " redundant" |
2503 | : " -> y=%ld edge" , e1 )); |
2504 | |
2505 | bits[0] |= f1; |
2506 | } |
2507 | } |
2508 | |
2509 | e2 = FLOOR ( x2 ); |
2510 | |
2511 | if ( x2 == e2 ) |
2512 | { |
2513 | e2 = TRUNC( e2 ); |
2514 | |
2515 | if ( e2 >= 0 && (ULong)e2 < ras.target.rows ) |
2516 | { |
2517 | Byte f1; |
2518 | PByte bits; |
2519 | |
2520 | |
2521 | bits = ras.bOrigin + ( y >> 3 ) - e2 * ras.target.pitch; |
2522 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
2523 | |
2524 | FT_TRACE7(( bits[0] & f1 ? " redundant" |
2525 | : " -> y=%ld edge" , e2 )); |
2526 | |
2527 | bits[0] |= f1; |
2528 | } |
2529 | } |
2530 | |
2531 | FT_TRACE7(( "\n" )); |
2532 | } |
2533 | |
2534 | |
2535 | static void |
2536 | Horizontal_Sweep_Drop( RAS_ARGS Short y, |
2537 | FT_F26Dot6 x1, |
2538 | FT_F26Dot6 x2, |
2539 | PProfile left, |
2540 | PProfile right ) |
2541 | { |
2542 | Long e1, e2, pxl; |
2543 | PByte bits; |
2544 | Byte f1; |
2545 | |
2546 | |
2547 | FT_TRACE7(( " x=%d y=[% .12f;% .12f]" , |
2548 | y, |
2549 | (double)x1 / (double)ras.precision, |
2550 | (double)x2 / (double)ras.precision )); |
2551 | |
2552 | /* During the horizontal sweep, we only take care of drop-outs */ |
2553 | |
2554 | /* e1 + <-- pixel center */ |
2555 | /* | */ |
2556 | /* x1 ---+--> <-- contour */ |
2557 | /* | */ |
2558 | /* | */ |
2559 | /* x2 <--+--- <-- contour */ |
2560 | /* | */ |
2561 | /* | */ |
2562 | /* e2 + <-- pixel center */ |
2563 | |
2564 | e1 = CEILING( x1 ); |
2565 | e2 = FLOOR ( x2 ); |
2566 | pxl = e1; |
2567 | |
2568 | if ( e1 > e2 ) |
2569 | { |
2570 | Int dropOutControl = left->flags & 7; |
2571 | |
2572 | |
2573 | if ( e1 == e2 + ras.precision ) |
2574 | { |
2575 | switch ( dropOutControl ) |
2576 | { |
2577 | case 0: /* simple drop-outs including stubs */ |
2578 | pxl = e2; |
2579 | break; |
2580 | |
2581 | case 4: /* smart drop-outs including stubs */ |
2582 | pxl = SMART( x1, x2 ); |
2583 | break; |
2584 | |
2585 | case 1: /* simple drop-outs excluding stubs */ |
2586 | case 5: /* smart drop-outs excluding stubs */ |
2587 | /* see Vertical_Sweep_Drop for details */ |
2588 | |
2589 | /* rightmost stub test */ |
2590 | if ( left->next == right && |
2591 | left->height <= 0 && |
2592 | !( left->flags & Overshoot_Top && |
2593 | x2 - x1 >= ras.precision_half ) ) |
2594 | goto Exit; |
2595 | |
2596 | /* leftmost stub test */ |
2597 | if ( right->next == left && |
2598 | left->start == y && |
2599 | !( left->flags & Overshoot_Bottom && |
2600 | x2 - x1 >= ras.precision_half ) ) |
2601 | goto Exit; |
2602 | |
2603 | if ( dropOutControl == 1 ) |
2604 | pxl = e2; |
2605 | else |
2606 | pxl = SMART( x1, x2 ); |
2607 | break; |
2608 | |
2609 | default: /* modes 2, 3, 6, 7 */ |
2610 | goto Exit; /* no drop-out control */ |
2611 | } |
2612 | |
2613 | /* undocumented but confirmed: If the drop-out would result in a */ |
2614 | /* pixel outside of the bounding box, use the pixel inside of the */ |
2615 | /* bounding box instead */ |
2616 | if ( pxl < 0 ) |
2617 | pxl = e1; |
2618 | else if ( (ULong)( TRUNC( pxl ) ) >= ras.target.rows ) |
2619 | pxl = e2; |
2620 | |
2621 | /* check that the other pixel isn't set */ |
2622 | e1 = ( pxl == e1 ) ? e2 : e1; |
2623 | |
2624 | e1 = TRUNC( e1 ); |
2625 | |
2626 | bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch; |
2627 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
2628 | |
2629 | if ( e1 >= 0 && |
2630 | (ULong)e1 < ras.target.rows && |
2631 | *bits & f1 ) |
2632 | goto Exit; |
2633 | } |
2634 | else |
2635 | goto Exit; |
2636 | } |
2637 | |
2638 | e1 = TRUNC( pxl ); |
2639 | |
2640 | if ( e1 >= 0 && (ULong)e1 < ras.target.rows ) |
2641 | { |
2642 | FT_TRACE7(( " -> y=%ld" , e1 )); |
2643 | |
2644 | bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch; |
2645 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
2646 | |
2647 | bits[0] |= f1; |
2648 | } |
2649 | |
2650 | Exit: |
2651 | FT_TRACE7(( " dropout=%d\n" , left->flags & 7 )); |
2652 | } |
2653 | |
2654 | |
2655 | static void |
2656 | Horizontal_Sweep_Step( RAS_ARG ) |
2657 | { |
2658 | /* Nothing, really */ |
2659 | FT_UNUSED_RASTER; |
2660 | } |
2661 | |
2662 | |
2663 | /************************************************************************** |
2664 | * |
2665 | * Generic Sweep Drawing routine |
2666 | * |
2667 | */ |
2668 | |
2669 | static Bool |
2670 | Draw_Sweep( RAS_ARG ) |
2671 | { |
2672 | Short y, y_change, y_height; |
2673 | |
2674 | PProfile P, Q, P_Left, P_Right; |
2675 | |
2676 | Short min_Y, max_Y, top, bottom, dropouts; |
2677 | |
2678 | Long x1, x2, xs, e1, e2; |
2679 | |
2680 | TProfileList waiting; |
2681 | TProfileList draw_left, draw_right; |
2682 | |
2683 | |
2684 | /* initialize empty linked lists */ |
2685 | |
2686 | Init_Linked( &waiting ); |
2687 | |
2688 | Init_Linked( &draw_left ); |
2689 | Init_Linked( &draw_right ); |
2690 | |
2691 | /* first, compute min and max Y */ |
2692 | |
2693 | P = ras.fProfile; |
2694 | max_Y = (Short)TRUNC( ras.minY ); |
2695 | min_Y = (Short)TRUNC( ras.maxY ); |
2696 | |
2697 | while ( P ) |
2698 | { |
2699 | Q = P->link; |
2700 | |
2701 | bottom = (Short)P->start; |
2702 | top = (Short)( P->start + P->height - 1 ); |
2703 | |
2704 | if ( min_Y > bottom ) |
2705 | min_Y = bottom; |
2706 | if ( max_Y < top ) |
2707 | max_Y = top; |
2708 | |
2709 | P->X = 0; |
2710 | InsNew( &waiting, P ); |
2711 | |
2712 | P = Q; |
2713 | } |
2714 | |
2715 | /* check the Y-turns */ |
2716 | if ( ras.numTurns == 0 ) |
2717 | { |
2718 | ras.error = FT_THROW( Invalid_Outline ); |
2719 | return FAILURE; |
2720 | } |
2721 | |
2722 | /* now initialize the sweep */ |
2723 | |
2724 | ras.Proc_Sweep_Init( RAS_VARS min_Y, max_Y ); |
2725 | |
2726 | /* then compute the distance of each profile from min_Y */ |
2727 | |
2728 | P = waiting; |
2729 | |
2730 | while ( P ) |
2731 | { |
2732 | P->countL = P->start - min_Y; |
2733 | P = P->link; |
2734 | } |
2735 | |
2736 | /* let's go */ |
2737 | |
2738 | y = min_Y; |
2739 | y_height = 0; |
2740 | |
2741 | if ( ras.numTurns > 0 && |
2742 | ras.sizeBuff[-ras.numTurns] == min_Y ) |
2743 | ras.numTurns--; |
2744 | |
2745 | while ( ras.numTurns > 0 ) |
2746 | { |
2747 | /* check waiting list for new activations */ |
2748 | |
2749 | P = waiting; |
2750 | |
2751 | while ( P ) |
2752 | { |
2753 | Q = P->link; |
2754 | P->countL -= y_height; |
2755 | if ( P->countL == 0 ) |
2756 | { |
2757 | DelOld( &waiting, P ); |
2758 | |
2759 | if ( P->flags & Flow_Up ) |
2760 | InsNew( &draw_left, P ); |
2761 | else |
2762 | InsNew( &draw_right, P ); |
2763 | } |
2764 | |
2765 | P = Q; |
2766 | } |
2767 | |
2768 | /* sort the drawing lists */ |
2769 | |
2770 | Sort( &draw_left ); |
2771 | Sort( &draw_right ); |
2772 | |
2773 | y_change = (Short)ras.sizeBuff[-ras.numTurns--]; |
2774 | y_height = (Short)( y_change - y ); |
2775 | |
2776 | while ( y < y_change ) |
2777 | { |
2778 | /* let's trace */ |
2779 | |
2780 | dropouts = 0; |
2781 | |
2782 | P_Left = draw_left; |
2783 | P_Right = draw_right; |
2784 | |
2785 | while ( P_Left && P_Right ) |
2786 | { |
2787 | x1 = P_Left ->X; |
2788 | x2 = P_Right->X; |
2789 | |
2790 | if ( x1 > x2 ) |
2791 | { |
2792 | xs = x1; |
2793 | x1 = x2; |
2794 | x2 = xs; |
2795 | } |
2796 | |
2797 | e1 = FLOOR( x1 ); |
2798 | e2 = CEILING( x2 ); |
2799 | |
2800 | if ( x2 - x1 <= ras.precision && |
2801 | e1 != x1 && e2 != x2 ) |
2802 | { |
2803 | if ( e1 > e2 || e2 == e1 + ras.precision ) |
2804 | { |
2805 | Int dropOutControl = P_Left->flags & 7; |
2806 | |
2807 | |
2808 | if ( dropOutControl != 2 ) |
2809 | { |
2810 | /* a drop-out was detected */ |
2811 | |
2812 | P_Left ->X = x1; |
2813 | P_Right->X = x2; |
2814 | |
2815 | /* mark profile for drop-out processing */ |
2816 | P_Left->countL = 1; |
2817 | dropouts++; |
2818 | } |
2819 | |
2820 | goto Skip_To_Next; |
2821 | } |
2822 | } |
2823 | |
2824 | ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right ); |
2825 | |
2826 | Skip_To_Next: |
2827 | |
2828 | P_Left = P_Left->link; |
2829 | P_Right = P_Right->link; |
2830 | } |
2831 | |
2832 | /* handle drop-outs _after_ the span drawing -- */ |
2833 | /* drop-out processing has been moved out of the loop */ |
2834 | /* for performance tuning */ |
2835 | if ( dropouts > 0 ) |
2836 | goto Scan_DropOuts; |
2837 | |
2838 | Next_Line: |
2839 | |
2840 | ras.Proc_Sweep_Step( RAS_VAR ); |
2841 | |
2842 | y++; |
2843 | |
2844 | if ( y < y_change ) |
2845 | { |
2846 | Sort( &draw_left ); |
2847 | Sort( &draw_right ); |
2848 | } |
2849 | } |
2850 | |
2851 | /* now finalize the profiles that need it */ |
2852 | |
2853 | P = draw_left; |
2854 | while ( P ) |
2855 | { |
2856 | Q = P->link; |
2857 | if ( P->height == 0 ) |
2858 | DelOld( &draw_left, P ); |
2859 | P = Q; |
2860 | } |
2861 | |
2862 | P = draw_right; |
2863 | while ( P ) |
2864 | { |
2865 | Q = P->link; |
2866 | if ( P->height == 0 ) |
2867 | DelOld( &draw_right, P ); |
2868 | P = Q; |
2869 | } |
2870 | } |
2871 | |
2872 | /* for gray-scaling, flush the bitmap scanline cache */ |
2873 | while ( y <= max_Y ) |
2874 | { |
2875 | ras.Proc_Sweep_Step( RAS_VAR ); |
2876 | y++; |
2877 | } |
2878 | |
2879 | return SUCCESS; |
2880 | |
2881 | Scan_DropOuts: |
2882 | |
2883 | P_Left = draw_left; |
2884 | P_Right = draw_right; |
2885 | |
2886 | while ( P_Left && P_Right ) |
2887 | { |
2888 | if ( P_Left->countL ) |
2889 | { |
2890 | P_Left->countL = 0; |
2891 | #if 0 |
2892 | dropouts--; /* -- this is useful when debugging only */ |
2893 | #endif |
2894 | ras.Proc_Sweep_Drop( RAS_VARS y, |
2895 | P_Left->X, |
2896 | P_Right->X, |
2897 | P_Left, |
2898 | P_Right ); |
2899 | } |
2900 | |
2901 | P_Left = P_Left->link; |
2902 | P_Right = P_Right->link; |
2903 | } |
2904 | |
2905 | goto Next_Line; |
2906 | } |
2907 | |
2908 | |
2909 | #ifdef STANDALONE_ |
2910 | |
2911 | /************************************************************************** |
2912 | * |
2913 | * The following functions should only compile in stand-alone mode, |
2914 | * i.e., when building this component without the rest of FreeType. |
2915 | * |
2916 | */ |
2917 | |
2918 | /************************************************************************** |
2919 | * |
2920 | * @Function: |
2921 | * FT_Outline_Get_CBox |
2922 | * |
2923 | * @Description: |
2924 | * Return an outline's `control box'. The control box encloses all |
2925 | * the outline's points, including Bézier control points. Though it |
2926 | * coincides with the exact bounding box for most glyphs, it can be |
2927 | * slightly larger in some situations (like when rotating an outline |
2928 | * that contains Bézier outside arcs). |
2929 | * |
2930 | * Computing the control box is very fast, while getting the bounding |
2931 | * box can take much more time as it needs to walk over all segments |
2932 | * and arcs in the outline. To get the latter, you can use the |
2933 | * `ftbbox' component, which is dedicated to this single task. |
2934 | * |
2935 | * @Input: |
2936 | * outline :: |
2937 | * A pointer to the source outline descriptor. |
2938 | * |
2939 | * @Output: |
2940 | * acbox :: |
2941 | * The outline's control box. |
2942 | * |
2943 | * @Note: |
2944 | * See @FT_Glyph_Get_CBox for a discussion of tricky fonts. |
2945 | */ |
2946 | |
2947 | static void |
2948 | FT_Outline_Get_CBox( const FT_Outline* outline, |
2949 | FT_BBox *acbox ) |
2950 | { |
2951 | if ( outline && acbox ) |
2952 | { |
2953 | Long xMin, yMin, xMax, yMax; |
2954 | |
2955 | |
2956 | if ( outline->n_points == 0 ) |
2957 | { |
2958 | xMin = 0; |
2959 | yMin = 0; |
2960 | xMax = 0; |
2961 | yMax = 0; |
2962 | } |
2963 | else |
2964 | { |
2965 | FT_Vector* vec = outline->points; |
2966 | FT_Vector* limit = vec + outline->n_points; |
2967 | |
2968 | |
2969 | xMin = xMax = vec->x; |
2970 | yMin = yMax = vec->y; |
2971 | vec++; |
2972 | |
2973 | for ( ; vec < limit; vec++ ) |
2974 | { |
2975 | Long x, y; |
2976 | |
2977 | |
2978 | x = vec->x; |
2979 | if ( x < xMin ) xMin = x; |
2980 | if ( x > xMax ) xMax = x; |
2981 | |
2982 | y = vec->y; |
2983 | if ( y < yMin ) yMin = y; |
2984 | if ( y > yMax ) yMax = y; |
2985 | } |
2986 | } |
2987 | acbox->xMin = xMin; |
2988 | acbox->xMax = xMax; |
2989 | acbox->yMin = yMin; |
2990 | acbox->yMax = yMax; |
2991 | } |
2992 | } |
2993 | |
2994 | #endif /* STANDALONE_ */ |
2995 | |
2996 | |
2997 | /************************************************************************** |
2998 | * |
2999 | * @Function: |
3000 | * Render_Single_Pass |
3001 | * |
3002 | * @Description: |
3003 | * Perform one sweep with sub-banding. |
3004 | * |
3005 | * @Input: |
3006 | * flipped :: |
3007 | * If set, flip the direction of the outline. |
3008 | * |
3009 | * @Return: |
3010 | * Renderer error code. |
3011 | */ |
3012 | static int |
3013 | Render_Single_Pass( RAS_ARGS Bool flipped, |
3014 | Int y_min, |
3015 | Int y_max ) |
3016 | { |
3017 | Int y_mid; |
3018 | Int band_top = 0; |
3019 | Int band_stack[32]; /* enough to bisect 32-bit int bands */ |
3020 | |
3021 | |
3022 | while ( 1 ) |
3023 | { |
3024 | ras.minY = (Long)y_min * ras.precision; |
3025 | ras.maxY = (Long)y_max * ras.precision; |
3026 | |
3027 | ras.top = ras.buff; |
3028 | |
3029 | ras.error = Raster_Err_Ok; |
3030 | |
3031 | if ( Convert_Glyph( RAS_VARS flipped ) ) |
3032 | { |
3033 | if ( ras.error != Raster_Err_Raster_Overflow ) |
3034 | return ras.error; |
3035 | |
3036 | /* sub-banding */ |
3037 | |
3038 | if ( y_min == y_max ) |
3039 | return ras.error; /* still Raster_Overflow */ |
3040 | |
3041 | y_mid = ( y_min + y_max ) >> 1; |
3042 | |
3043 | band_stack[band_top++] = y_min; |
3044 | y_min = y_mid + 1; |
3045 | } |
3046 | else |
3047 | { |
3048 | if ( ras.fProfile ) |
3049 | if ( Draw_Sweep( RAS_VAR ) ) |
3050 | return ras.error; |
3051 | |
3052 | if ( --band_top < 0 ) |
3053 | break; |
3054 | |
3055 | y_max = y_min - 1; |
3056 | y_min = band_stack[band_top]; |
3057 | } |
3058 | } |
3059 | |
3060 | return Raster_Err_Ok; |
3061 | } |
3062 | |
3063 | |
3064 | /************************************************************************** |
3065 | * |
3066 | * @Function: |
3067 | * Render_Glyph |
3068 | * |
3069 | * @Description: |
3070 | * Render a glyph in a bitmap. Sub-banding if needed. |
3071 | * |
3072 | * @Return: |
3073 | * FreeType error code. 0 means success. |
3074 | */ |
3075 | static FT_Error |
3076 | Render_Glyph( RAS_ARG ) |
3077 | { |
3078 | FT_Error error; |
3079 | |
3080 | |
3081 | Set_High_Precision( RAS_VARS ras.outline.flags & |
3082 | FT_OUTLINE_HIGH_PRECISION ); |
3083 | |
3084 | if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS ) |
3085 | ras.dropOutControl = 2; |
3086 | else |
3087 | { |
3088 | if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS ) |
3089 | ras.dropOutControl = 4; |
3090 | else |
3091 | ras.dropOutControl = 0; |
3092 | |
3093 | if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) ) |
3094 | ras.dropOutControl += 1; |
3095 | } |
3096 | |
3097 | /* Vertical Sweep */ |
3098 | FT_TRACE7(( "Vertical pass (ftraster)\n" )); |
3099 | |
3100 | ras.Proc_Sweep_Init = Vertical_Sweep_Init; |
3101 | ras.Proc_Sweep_Span = Vertical_Sweep_Span; |
3102 | ras.Proc_Sweep_Drop = Vertical_Sweep_Drop; |
3103 | ras.Proc_Sweep_Step = Vertical_Sweep_Step; |
3104 | |
3105 | ras.bWidth = (UShort)ras.target.width; |
3106 | ras.bOrigin = (Byte*)ras.target.buffer; |
3107 | |
3108 | if ( ras.target.pitch > 0 ) |
3109 | ras.bOrigin += (Long)( ras.target.rows - 1 ) * ras.target.pitch; |
3110 | |
3111 | error = Render_Single_Pass( RAS_VARS 0, 0, (Int)ras.target.rows - 1 ); |
3112 | if ( error ) |
3113 | return error; |
3114 | |
3115 | /* Horizontal Sweep */ |
3116 | if ( !( ras.outline.flags & FT_OUTLINE_SINGLE_PASS ) ) |
3117 | { |
3118 | FT_TRACE7(( "Horizontal pass (ftraster)\n" )); |
3119 | |
3120 | ras.Proc_Sweep_Init = Horizontal_Sweep_Init; |
3121 | ras.Proc_Sweep_Span = Horizontal_Sweep_Span; |
3122 | ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop; |
3123 | ras.Proc_Sweep_Step = Horizontal_Sweep_Step; |
3124 | |
3125 | error = Render_Single_Pass( RAS_VARS 1, 0, (Int)ras.target.width - 1 ); |
3126 | if ( error ) |
3127 | return error; |
3128 | } |
3129 | |
3130 | return Raster_Err_Ok; |
3131 | } |
3132 | |
3133 | |
3134 | /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ |
3135 | /**** a static object. *****/ |
3136 | |
3137 | |
3138 | #ifdef STANDALONE_ |
3139 | |
3140 | |
3141 | static int |
3142 | ft_black_new( void* memory, |
3143 | FT_Raster *araster ) |
3144 | { |
3145 | static black_TRaster the_raster; |
3146 | FT_UNUSED( memory ); |
3147 | |
3148 | |
3149 | *araster = (FT_Raster)&the_raster; |
3150 | FT_ZERO( &the_raster ); |
3151 | |
3152 | return 0; |
3153 | } |
3154 | |
3155 | |
3156 | static void |
3157 | ft_black_done( FT_Raster raster ) |
3158 | { |
3159 | /* nothing */ |
3160 | FT_UNUSED( raster ); |
3161 | } |
3162 | |
3163 | |
3164 | #else /* !STANDALONE_ */ |
3165 | |
3166 | |
3167 | static int |
3168 | ft_black_new( void* memory_, /* FT_Memory */ |
3169 | FT_Raster *araster_ ) /* black_PRaster */ |
3170 | { |
3171 | FT_Memory memory = (FT_Memory)memory_; |
3172 | black_PRaster *araster = (black_PRaster*)araster_; |
3173 | |
3174 | FT_Error error; |
3175 | black_PRaster raster = NULL; |
3176 | |
3177 | |
3178 | if ( !FT_NEW( raster ) ) |
3179 | raster->memory = memory; |
3180 | |
3181 | *araster = raster; |
3182 | |
3183 | return error; |
3184 | } |
3185 | |
3186 | |
3187 | static void |
3188 | ft_black_done( FT_Raster raster_ ) /* black_PRaster */ |
3189 | { |
3190 | black_PRaster raster = (black_PRaster)raster_; |
3191 | FT_Memory memory = (FT_Memory)raster->memory; |
3192 | |
3193 | |
3194 | FT_FREE( raster ); |
3195 | } |
3196 | |
3197 | |
3198 | #endif /* !STANDALONE_ */ |
3199 | |
3200 | |
3201 | static void |
3202 | ft_black_reset( FT_Raster raster, |
3203 | PByte pool_base, |
3204 | ULong pool_size ) |
3205 | { |
3206 | FT_UNUSED( raster ); |
3207 | FT_UNUSED( pool_base ); |
3208 | FT_UNUSED( pool_size ); |
3209 | } |
3210 | |
3211 | |
3212 | static int |
3213 | ft_black_set_mode( FT_Raster raster, |
3214 | ULong mode, |
3215 | void* args ) |
3216 | { |
3217 | FT_UNUSED( raster ); |
3218 | FT_UNUSED( mode ); |
3219 | FT_UNUSED( args ); |
3220 | |
3221 | return 0; |
3222 | } |
3223 | |
3224 | |
3225 | static int |
3226 | ft_black_render( FT_Raster raster, |
3227 | const FT_Raster_Params* params ) |
3228 | { |
3229 | const FT_Outline* outline = (const FT_Outline*)params->source; |
3230 | const FT_Bitmap* target_map = params->target; |
3231 | |
3232 | #ifndef FT_STATIC_RASTER |
3233 | black_TWorker worker[1]; |
3234 | #endif |
3235 | |
3236 | Long buffer[FT_MAX_BLACK_POOL]; |
3237 | |
3238 | |
3239 | if ( !raster ) |
3240 | return FT_THROW( Raster_Uninitialized ); |
3241 | |
3242 | if ( !outline ) |
3243 | return FT_THROW( Invalid_Outline ); |
3244 | |
3245 | /* return immediately if the outline is empty */ |
3246 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
3247 | return Raster_Err_Ok; |
3248 | |
3249 | if ( !outline->contours || !outline->points ) |
3250 | return FT_THROW( Invalid_Outline ); |
3251 | |
3252 | if ( outline->n_points != |
3253 | outline->contours[outline->n_contours - 1] + 1 ) |
3254 | return FT_THROW( Invalid_Outline ); |
3255 | |
3256 | /* this version of the raster does not support direct rendering, sorry */ |
3257 | if ( params->flags & FT_RASTER_FLAG_DIRECT || |
3258 | params->flags & FT_RASTER_FLAG_AA ) |
3259 | return FT_THROW( Cannot_Render_Glyph ); |
3260 | |
3261 | if ( !target_map ) |
3262 | return FT_THROW( Invalid_Argument ); |
3263 | |
3264 | /* nothing to do */ |
3265 | if ( !target_map->width || !target_map->rows ) |
3266 | return Raster_Err_Ok; |
3267 | |
3268 | if ( !target_map->buffer ) |
3269 | return FT_THROW( Invalid_Argument ); |
3270 | |
3271 | ras.outline = *outline; |
3272 | ras.target = *target_map; |
3273 | |
3274 | ras.buff = buffer; |
3275 | ras.sizeBuff = (&buffer)[1]; /* Points to right after buffer. */ |
3276 | |
3277 | return Render_Glyph( RAS_VAR ); |
3278 | } |
3279 | |
3280 | |
3281 | FT_DEFINE_RASTER_FUNCS( |
3282 | ft_standard_raster, |
3283 | |
3284 | FT_GLYPH_FORMAT_OUTLINE, |
3285 | |
3286 | ft_black_new, /* FT_Raster_New_Func raster_new */ |
3287 | ft_black_reset, /* FT_Raster_Reset_Func raster_reset */ |
3288 | ft_black_set_mode, /* FT_Raster_Set_Mode_Func raster_set_mode */ |
3289 | ft_black_render, /* FT_Raster_Render_Func raster_render */ |
3290 | ft_black_done /* FT_Raster_Done_Func raster_done */ |
3291 | ) |
3292 | |
3293 | |
3294 | /* END */ |
3295 | |