| 1 | /**************************************************************************** |
| 2 | * |
| 3 | * ftraster.c |
| 4 | * |
| 5 | * The FreeType glyph rasterizer (body). |
| 6 | * |
| 7 | * Copyright (C) 1996-2023 by |
| 8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
| 9 | * |
| 10 | * This file is part of the FreeType project, and may only be used, |
| 11 | * modified, and distributed under the terms of the FreeType project |
| 12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| 13 | * this file you indicate that you have read the license and |
| 14 | * understand and accept it fully. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | /************************************************************************** |
| 19 | * |
| 20 | * This file can be compiled without the rest of the FreeType engine, by |
| 21 | * defining the STANDALONE_ macro when compiling it. You also need to |
| 22 | * put the files `ftimage.h' and `ftmisc.h' into the $(incdir) |
| 23 | * directory. Typically, you should do something like |
| 24 | * |
| 25 | * - copy `src/raster/ftraster.c' (this file) to your current directory |
| 26 | * |
| 27 | * - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' to your |
| 28 | * current directory |
| 29 | * |
| 30 | * - compile `ftraster' with the STANDALONE_ macro defined, as in |
| 31 | * |
| 32 | * cc -c -DSTANDALONE_ ftraster.c |
| 33 | * |
| 34 | * The renderer can be initialized with a call to |
| 35 | * `ft_standard_raster.raster_new'; a bitmap can be generated |
| 36 | * with a call to `ft_standard_raster.raster_render'. |
| 37 | * |
| 38 | * See the comments and documentation in the file `ftimage.h' for more |
| 39 | * details on how the raster works. |
| 40 | * |
| 41 | */ |
| 42 | |
| 43 | |
| 44 | /************************************************************************** |
| 45 | * |
| 46 | * This is a rewrite of the FreeType 1.x scan-line converter |
| 47 | * |
| 48 | */ |
| 49 | |
| 50 | #ifdef STANDALONE_ |
| 51 | |
| 52 | /* The size in bytes of the render pool used by the scan-line converter */ |
| 53 | /* to do all of its work. */ |
| 54 | #define FT_RENDER_POOL_SIZE 16384L |
| 55 | |
| 56 | #define FT_CONFIG_STANDARD_LIBRARY_H <stdlib.h> |
| 57 | |
| 58 | #include <string.h> /* for memset */ |
| 59 | |
| 60 | #include "ftmisc.h" |
| 61 | #include "ftimage.h" |
| 62 | |
| 63 | #else /* !STANDALONE_ */ |
| 64 | |
| 65 | #include "ftraster.h" |
| 66 | #include <freetype/internal/ftcalc.h> /* for FT_MulDiv and FT_MulDiv_No_Round */ |
| 67 | #include <freetype/ftoutln.h> /* for FT_Outline_Get_CBox */ |
| 68 | |
| 69 | #endif /* !STANDALONE_ */ |
| 70 | |
| 71 | |
| 72 | /************************************************************************** |
| 73 | * |
| 74 | * A simple technical note on how the raster works |
| 75 | * ----------------------------------------------- |
| 76 | * |
| 77 | * Converting an outline into a bitmap is achieved in several steps: |
| 78 | * |
| 79 | * 1 - Decomposing the outline into successive `profiles'. Each |
| 80 | * profile is simply an array of scanline intersections on a given |
| 81 | * dimension. A profile's main attributes are |
| 82 | * |
| 83 | * o its scanline position boundaries, i.e. `Ymin' and `Ymax' |
| 84 | * |
| 85 | * o an array of intersection coordinates for each scanline |
| 86 | * between `Ymin' and `Ymax' |
| 87 | * |
| 88 | * o a direction, indicating whether it was built going `up' or |
| 89 | * `down', as this is very important for filling rules |
| 90 | * |
| 91 | * o its drop-out mode |
| 92 | * |
| 93 | * 2 - Sweeping the target map's scanlines in order to compute segment |
| 94 | * `spans' which are then filled. Additionally, this pass |
| 95 | * performs drop-out control. |
| 96 | * |
| 97 | * The outline data is parsed during step 1 only. The profiles are |
| 98 | * built from the bottom of the render pool, used as a stack. The |
| 99 | * following graphics shows the profile list under construction: |
| 100 | * |
| 101 | * __________________________________________________________ _ _ |
| 102 | * | | | | | |
| 103 | * | profile | coordinates for | profile | coordinates for |--> |
| 104 | * | 1 | profile 1 | 2 | profile 2 |--> |
| 105 | * |_________|_________________|_________|_________________|__ _ _ |
| 106 | * |
| 107 | * ^ ^ |
| 108 | * | | |
| 109 | * start of render pool top |
| 110 | * |
| 111 | * The top of the profile stack is kept in the `top' variable. |
| 112 | * |
| 113 | * As you can see, a profile record is pushed on top of the render |
| 114 | * pool, which is then followed by its coordinates/intersections. If |
| 115 | * a change of direction is detected in the outline, a new profile is |
| 116 | * generated until the end of the outline. |
| 117 | * |
| 118 | * Note that when all profiles have been generated, the function |
| 119 | * Finalize_Profile_Table() is used to record, for each profile, its |
| 120 | * bottom-most scanline as well as the scanline above its upmost |
| 121 | * boundary. These positions are called `y-turns' because they (sort |
| 122 | * of) correspond to local extrema. They are stored in a sorted list |
| 123 | * built from the top of the render pool as a downwards stack: |
| 124 | * |
| 125 | * _ _ _______________________________________ |
| 126 | * | | |
| 127 | * <--| sorted list of | |
| 128 | * <--| extrema scanlines | |
| 129 | * _ _ __________________|____________________| |
| 130 | * |
| 131 | * ^ ^ |
| 132 | * | | |
| 133 | * maxBuff sizeBuff = end of pool |
| 134 | * |
| 135 | * This list is later used during the sweep phase in order to |
| 136 | * optimize performance (see technical note on the sweep below). |
| 137 | * |
| 138 | * Of course, the raster detects whether the two stacks collide and |
| 139 | * handles the situation properly. |
| 140 | * |
| 141 | */ |
| 142 | |
| 143 | |
| 144 | /*************************************************************************/ |
| 145 | /*************************************************************************/ |
| 146 | /** **/ |
| 147 | /** CONFIGURATION MACROS **/ |
| 148 | /** **/ |
| 149 | /*************************************************************************/ |
| 150 | /*************************************************************************/ |
| 151 | |
| 152 | |
| 153 | /*************************************************************************/ |
| 154 | /*************************************************************************/ |
| 155 | /** **/ |
| 156 | /** OTHER MACROS (do not change) **/ |
| 157 | /** **/ |
| 158 | /*************************************************************************/ |
| 159 | /*************************************************************************/ |
| 160 | |
| 161 | /************************************************************************** |
| 162 | * |
| 163 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| 164 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| 165 | * messages during execution. |
| 166 | */ |
| 167 | #undef FT_COMPONENT |
| 168 | #define FT_COMPONENT raster |
| 169 | |
| 170 | |
| 171 | #ifdef STANDALONE_ |
| 172 | |
| 173 | /* Auxiliary macros for token concatenation. */ |
| 174 | #define FT_ERR_XCAT( x, y ) x ## y |
| 175 | #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y ) |
| 176 | |
| 177 | /* This macro is used to indicate that a function parameter is unused. */ |
| 178 | /* Its purpose is simply to reduce compiler warnings. Note also that */ |
| 179 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ |
| 180 | /* ANSI compilers (e.g. LCC). */ |
| 181 | #define FT_UNUSED( x ) (x) = (x) |
| 182 | |
| 183 | /* Disable the tracing mechanism for simplicity -- developers can */ |
| 184 | /* activate it easily by redefining these macros. */ |
| 185 | #ifndef FT_ERROR |
| 186 | #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
| 187 | #endif |
| 188 | |
| 189 | #ifndef FT_TRACE |
| 190 | #define FT_TRACE( x ) do { } while ( 0 ) /* nothing */ |
| 191 | #define FT_TRACE1( x ) do { } while ( 0 ) /* nothing */ |
| 192 | #define FT_TRACE6( x ) do { } while ( 0 ) /* nothing */ |
| 193 | #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
| 194 | #endif |
| 195 | |
| 196 | #ifndef FT_THROW |
| 197 | #define FT_THROW( e ) FT_ERR_CAT( Raster_Err_, e ) |
| 198 | #endif |
| 199 | |
| 200 | #define Raster_Err_Ok 0 |
| 201 | #define Raster_Err_Invalid_Outline -1 |
| 202 | #define Raster_Err_Cannot_Render_Glyph -2 |
| 203 | #define Raster_Err_Invalid_Argument -3 |
| 204 | #define Raster_Err_Raster_Overflow -4 |
| 205 | #define Raster_Err_Raster_Uninitialized -5 |
| 206 | #define Raster_Err_Raster_Negative_Height -6 |
| 207 | |
| 208 | #define ft_memset memset |
| 209 | |
| 210 | #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, \ |
| 211 | raster_reset_, raster_set_mode_, \ |
| 212 | raster_render_, raster_done_ ) \ |
| 213 | const FT_Raster_Funcs class_ = \ |
| 214 | { \ |
| 215 | glyph_format_, \ |
| 216 | raster_new_, \ |
| 217 | raster_reset_, \ |
| 218 | raster_set_mode_, \ |
| 219 | raster_render_, \ |
| 220 | raster_done_ \ |
| 221 | }; |
| 222 | |
| 223 | #else /* !STANDALONE_ */ |
| 224 | |
| 225 | |
| 226 | #include <freetype/internal/ftobjs.h> |
| 227 | #include <freetype/internal/ftdebug.h> /* for FT_TRACE, FT_ERROR, and FT_THROW */ |
| 228 | |
| 229 | #include "rasterrs.h" |
| 230 | |
| 231 | |
| 232 | #endif /* !STANDALONE_ */ |
| 233 | |
| 234 | |
| 235 | #ifndef FT_MEM_SET |
| 236 | #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c ) |
| 237 | #endif |
| 238 | |
| 239 | #ifndef FT_MEM_ZERO |
| 240 | #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count ) |
| 241 | #endif |
| 242 | |
| 243 | #ifndef FT_ZERO |
| 244 | #define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) ) |
| 245 | #endif |
| 246 | |
| 247 | /* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */ |
| 248 | /* typically a small value and the result of a*b is known to fit into */ |
| 249 | /* 32 bits. */ |
| 250 | #define FMulDiv( a, b, c ) ( (a) * (b) / (c) ) |
| 251 | |
| 252 | /* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */ |
| 253 | /* for clipping computations. It simply uses the FT_MulDiv() function */ |
| 254 | /* defined in `ftcalc.h'. */ |
| 255 | #define SMulDiv FT_MulDiv |
| 256 | #define SMulDiv_No_Round FT_MulDiv_No_Round |
| 257 | |
| 258 | /* The rasterizer is a very general purpose component; please leave */ |
| 259 | /* the following redefinitions there (you never know your target */ |
| 260 | /* environment). */ |
| 261 | |
| 262 | #ifndef TRUE |
| 263 | #define TRUE 1 |
| 264 | #endif |
| 265 | |
| 266 | #ifndef FALSE |
| 267 | #define FALSE 0 |
| 268 | #endif |
| 269 | |
| 270 | #ifndef NULL |
| 271 | #define NULL (void*)0 |
| 272 | #endif |
| 273 | |
| 274 | #ifndef SUCCESS |
| 275 | #define SUCCESS 0 |
| 276 | #endif |
| 277 | |
| 278 | #ifndef FAILURE |
| 279 | #define FAILURE 1 |
| 280 | #endif |
| 281 | |
| 282 | |
| 283 | #define MaxBezier 32 /* The maximum number of stacked Bezier curves. */ |
| 284 | /* Setting this constant to more than 32 is a */ |
| 285 | /* pure waste of space. */ |
| 286 | |
| 287 | #define Pixel_Bits 6 /* fractional bits of *input* coordinates */ |
| 288 | |
| 289 | |
| 290 | /*************************************************************************/ |
| 291 | /*************************************************************************/ |
| 292 | /** **/ |
| 293 | /** SIMPLE TYPE DECLARATIONS **/ |
| 294 | /** **/ |
| 295 | /*************************************************************************/ |
| 296 | /*************************************************************************/ |
| 297 | |
| 298 | typedef int Int; |
| 299 | typedef unsigned int UInt; |
| 300 | typedef short Short; |
| 301 | typedef unsigned short UShort, *PUShort; |
| 302 | typedef long Long, *PLong; |
| 303 | typedef unsigned long ULong; |
| 304 | |
| 305 | typedef unsigned char Byte, *PByte; |
| 306 | typedef char Bool; |
| 307 | |
| 308 | |
| 309 | typedef union Alignment_ |
| 310 | { |
| 311 | Long l; |
| 312 | void* p; |
| 313 | void (*f)(void); |
| 314 | |
| 315 | } Alignment, *PAlignment; |
| 316 | |
| 317 | |
| 318 | typedef struct TPoint_ |
| 319 | { |
| 320 | Long x; |
| 321 | Long y; |
| 322 | |
| 323 | } TPoint; |
| 324 | |
| 325 | |
| 326 | /* values for the `flags' bit field */ |
| 327 | #define Flow_Up 0x08U |
| 328 | #define Overshoot_Top 0x10U |
| 329 | #define Overshoot_Bottom 0x20U |
| 330 | |
| 331 | |
| 332 | /* States of each line, arc, and profile */ |
| 333 | typedef enum TStates_ |
| 334 | { |
| 335 | Unknown_State, |
| 336 | Ascending_State, |
| 337 | Descending_State, |
| 338 | Flat_State |
| 339 | |
| 340 | } TStates; |
| 341 | |
| 342 | |
| 343 | typedef struct TProfile_ TProfile; |
| 344 | typedef TProfile* PProfile; |
| 345 | |
| 346 | struct TProfile_ |
| 347 | { |
| 348 | FT_F26Dot6 X; /* current coordinate during sweep */ |
| 349 | PProfile link; /* link to next profile (various purposes) */ |
| 350 | PLong offset; /* start of profile's data in render pool */ |
| 351 | UShort flags; /* Bit 0-2: drop-out mode */ |
| 352 | /* Bit 3: profile orientation (up/down) */ |
| 353 | /* Bit 4: is top profile? */ |
| 354 | /* Bit 5: is bottom profile? */ |
| 355 | Long height; /* profile's height in scanlines */ |
| 356 | Long start; /* profile's starting scanline */ |
| 357 | |
| 358 | Int countL; /* number of lines to step before this */ |
| 359 | /* profile becomes drawable */ |
| 360 | |
| 361 | PProfile next; /* next profile in same contour, used */ |
| 362 | /* during drop-out control */ |
| 363 | }; |
| 364 | |
| 365 | typedef PProfile TProfileList; |
| 366 | typedef PProfile* PProfileList; |
| 367 | |
| 368 | |
| 369 | #define AlignProfileSize \ |
| 370 | ( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( Long ) ) |
| 371 | |
| 372 | |
| 373 | #undef RAS_ARG |
| 374 | #undef RAS_ARGS |
| 375 | #undef RAS_VAR |
| 376 | #undef RAS_VARS |
| 377 | |
| 378 | #ifdef FT_STATIC_RASTER |
| 379 | |
| 380 | |
| 381 | #define RAS_ARGS /* void */ |
| 382 | #define RAS_ARG void |
| 383 | |
| 384 | #define RAS_VARS /* void */ |
| 385 | #define RAS_VAR /* void */ |
| 386 | |
| 387 | #define FT_UNUSED_RASTER do { } while ( 0 ) |
| 388 | |
| 389 | |
| 390 | #else /* !FT_STATIC_RASTER */ |
| 391 | |
| 392 | |
| 393 | #define RAS_ARGS black_PWorker worker, |
| 394 | #define RAS_ARG black_PWorker worker |
| 395 | |
| 396 | #define RAS_VARS worker, |
| 397 | #define RAS_VAR worker |
| 398 | |
| 399 | #define FT_UNUSED_RASTER FT_UNUSED( worker ) |
| 400 | |
| 401 | |
| 402 | #endif /* !FT_STATIC_RASTER */ |
| 403 | |
| 404 | |
| 405 | typedef struct black_TWorker_ black_TWorker, *black_PWorker; |
| 406 | |
| 407 | |
| 408 | /* prototypes used for sweep function dispatch */ |
| 409 | typedef void |
| 410 | Function_Sweep_Init( RAS_ARGS Short min, |
| 411 | Short max ); |
| 412 | |
| 413 | typedef void |
| 414 | Function_Sweep_Span( RAS_ARGS Short y, |
| 415 | FT_F26Dot6 x1, |
| 416 | FT_F26Dot6 x2, |
| 417 | PProfile left, |
| 418 | PProfile right ); |
| 419 | |
| 420 | typedef void |
| 421 | Function_Sweep_Step( RAS_ARG ); |
| 422 | |
| 423 | |
| 424 | /* NOTE: These operations are only valid on 2's complement processors */ |
| 425 | #undef FLOOR |
| 426 | #undef CEILING |
| 427 | #undef TRUNC |
| 428 | #undef SCALED |
| 429 | |
| 430 | #define FLOOR( x ) ( (x) & -ras.precision ) |
| 431 | #define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision ) |
| 432 | #define TRUNC( x ) ( (Long)(x) >> ras.precision_bits ) |
| 433 | #define FRAC( x ) ( (x) & ( ras.precision - 1 ) ) |
| 434 | |
| 435 | /* scale and shift grid to pixel centers */ |
| 436 | #define SCALED( x ) ( (x) * ras.precision_scale - ras.precision_half ) |
| 437 | |
| 438 | #define IS_BOTTOM_OVERSHOOT( x ) \ |
| 439 | (Bool)( CEILING( x ) - x >= ras.precision_half ) |
| 440 | #define IS_TOP_OVERSHOOT( x ) \ |
| 441 | (Bool)( x - FLOOR( x ) >= ras.precision_half ) |
| 442 | |
| 443 | /* Smart dropout rounding to find which pixel is closer to span ends. */ |
| 444 | /* To mimick Windows, symmetric cases break down indepenently of the */ |
| 445 | /* precision. */ |
| 446 | #define SMART( p, q ) FLOOR( ( (p) + (q) + ras.precision * 63 / 64 ) >> 1 ) |
| 447 | |
| 448 | #if FT_RENDER_POOL_SIZE > 2048 |
| 449 | #define FT_MAX_BLACK_POOL ( FT_RENDER_POOL_SIZE / sizeof ( Long ) ) |
| 450 | #else |
| 451 | #define FT_MAX_BLACK_POOL ( 2048 / sizeof ( Long ) ) |
| 452 | #endif |
| 453 | |
| 454 | /* The most used variables are positioned at the top of the structure. */ |
| 455 | /* Thus, their offset can be coded with less opcodes, resulting in a */ |
| 456 | /* smaller executable. */ |
| 457 | |
| 458 | struct black_TWorker_ |
| 459 | { |
| 460 | Int precision_bits; /* precision related variables */ |
| 461 | Int precision; |
| 462 | Int precision_half; |
| 463 | Int precision_scale; |
| 464 | Int precision_step; |
| 465 | Int precision_jitter; |
| 466 | |
| 467 | PLong buff; /* The profiles buffer */ |
| 468 | PLong sizeBuff; /* Render pool size */ |
| 469 | PLong maxBuff; /* Profiles buffer size */ |
| 470 | PLong top; /* Current cursor in buffer */ |
| 471 | |
| 472 | FT_Error error; |
| 473 | |
| 474 | Int numTurns; /* number of Y-turns in outline */ |
| 475 | |
| 476 | Byte dropOutControl; /* current drop_out control method */ |
| 477 | |
| 478 | UShort bWidth; /* target bitmap width */ |
| 479 | PByte bOrigin; /* target bitmap bottom-left origin */ |
| 480 | PByte bLine; /* target bitmap current line */ |
| 481 | |
| 482 | Long lastX, lastY; |
| 483 | Long minY, maxY; |
| 484 | |
| 485 | UShort num_Profs; /* current number of profiles */ |
| 486 | |
| 487 | Bool fresh; /* signals a fresh new profile which */ |
| 488 | /* `start' field must be completed */ |
| 489 | Bool joint; /* signals that the last arc ended */ |
| 490 | /* exactly on a scanline. Allows */ |
| 491 | /* removal of doublets */ |
| 492 | PProfile cProfile; /* current profile */ |
| 493 | PProfile fProfile; /* head of linked list of profiles */ |
| 494 | PProfile gProfile; /* contour's first profile in case */ |
| 495 | /* of impact */ |
| 496 | |
| 497 | TStates state; /* rendering state */ |
| 498 | |
| 499 | FT_Bitmap target; /* description of target bit/pixmap */ |
| 500 | FT_Outline outline; |
| 501 | |
| 502 | /* dispatch variables */ |
| 503 | |
| 504 | Function_Sweep_Init* Proc_Sweep_Init; |
| 505 | Function_Sweep_Span* Proc_Sweep_Span; |
| 506 | Function_Sweep_Span* Proc_Sweep_Drop; |
| 507 | Function_Sweep_Step* Proc_Sweep_Step; |
| 508 | |
| 509 | }; |
| 510 | |
| 511 | |
| 512 | typedef struct black_TRaster_ |
| 513 | { |
| 514 | void* memory; |
| 515 | |
| 516 | } black_TRaster, *black_PRaster; |
| 517 | |
| 518 | #ifdef FT_STATIC_RASTER |
| 519 | |
| 520 | static black_TWorker ras; |
| 521 | |
| 522 | #else /* !FT_STATIC_RASTER */ |
| 523 | |
| 524 | #define ras (*worker) |
| 525 | |
| 526 | #endif /* !FT_STATIC_RASTER */ |
| 527 | |
| 528 | |
| 529 | /*************************************************************************/ |
| 530 | /*************************************************************************/ |
| 531 | /** **/ |
| 532 | /** PROFILES COMPUTATION **/ |
| 533 | /** **/ |
| 534 | /*************************************************************************/ |
| 535 | /*************************************************************************/ |
| 536 | |
| 537 | |
| 538 | /************************************************************************** |
| 539 | * |
| 540 | * @Function: |
| 541 | * Set_High_Precision |
| 542 | * |
| 543 | * @Description: |
| 544 | * Set precision variables according to param flag. |
| 545 | * |
| 546 | * @Input: |
| 547 | * High :: |
| 548 | * Set to True for high precision (typically for ppem < 24), |
| 549 | * false otherwise. |
| 550 | */ |
| 551 | static void |
| 552 | Set_High_Precision( RAS_ARGS Int High ) |
| 553 | { |
| 554 | /* |
| 555 | * `precision_step' is used in `Bezier_Up' to decide when to split a |
| 556 | * given y-monotonous Bezier arc that crosses a scanline before |
| 557 | * approximating it as a straight segment. The default value of 32 (for |
| 558 | * low accuracy) corresponds to |
| 559 | * |
| 560 | * 32 / 64 == 0.5 pixels, |
| 561 | * |
| 562 | * while for the high accuracy case we have |
| 563 | * |
| 564 | * 256 / (1 << 12) = 0.0625 pixels. |
| 565 | * |
| 566 | * `precision_jitter' is an epsilon threshold used in |
| 567 | * `Vertical_Sweep_Span' to deal with small imperfections in the Bezier |
| 568 | * decomposition (after all, we are working with approximations only); |
| 569 | * it avoids switching on additional pixels which would cause artifacts |
| 570 | * otherwise. |
| 571 | * |
| 572 | * The value of `precision_jitter' has been determined heuristically. |
| 573 | * |
| 574 | */ |
| 575 | |
| 576 | if ( High ) |
| 577 | { |
| 578 | ras.precision_bits = 12; |
| 579 | ras.precision_step = 256; |
| 580 | ras.precision_jitter = 30; |
| 581 | } |
| 582 | else |
| 583 | { |
| 584 | ras.precision_bits = 6; |
| 585 | ras.precision_step = 32; |
| 586 | ras.precision_jitter = 2; |
| 587 | } |
| 588 | |
| 589 | FT_TRACE6(( "Set_High_Precision(%s)\n" , High ? "true" : "false" )); |
| 590 | |
| 591 | ras.precision = 1 << ras.precision_bits; |
| 592 | ras.precision_half = ras.precision >> 1; |
| 593 | ras.precision_scale = ras.precision >> Pixel_Bits; |
| 594 | } |
| 595 | |
| 596 | |
| 597 | /************************************************************************** |
| 598 | * |
| 599 | * @Function: |
| 600 | * New_Profile |
| 601 | * |
| 602 | * @Description: |
| 603 | * Create a new profile in the render pool. |
| 604 | * |
| 605 | * @Input: |
| 606 | * aState :: |
| 607 | * The state/orientation of the new profile. |
| 608 | * |
| 609 | * overshoot :: |
| 610 | * Whether the profile's unrounded start position |
| 611 | * differs by at least a half pixel. |
| 612 | * |
| 613 | * @Return: |
| 614 | * SUCCESS on success. FAILURE in case of overflow or of incoherent |
| 615 | * profile. |
| 616 | */ |
| 617 | static Bool |
| 618 | New_Profile( RAS_ARGS TStates aState, |
| 619 | Bool overshoot ) |
| 620 | { |
| 621 | if ( !ras.fProfile ) |
| 622 | { |
| 623 | ras.cProfile = (PProfile)ras.top; |
| 624 | ras.fProfile = ras.cProfile; |
| 625 | ras.top += AlignProfileSize; |
| 626 | } |
| 627 | |
| 628 | if ( ras.top >= ras.maxBuff ) |
| 629 | { |
| 630 | ras.error = FT_THROW( Raster_Overflow ); |
| 631 | return FAILURE; |
| 632 | } |
| 633 | |
| 634 | ras.cProfile->start = 0; |
| 635 | ras.cProfile->height = 0; |
| 636 | ras.cProfile->offset = ras.top; |
| 637 | ras.cProfile->link = (PProfile)0; |
| 638 | ras.cProfile->next = (PProfile)0; |
| 639 | ras.cProfile->flags = ras.dropOutControl; |
| 640 | |
| 641 | switch ( aState ) |
| 642 | { |
| 643 | case Ascending_State: |
| 644 | ras.cProfile->flags |= Flow_Up; |
| 645 | if ( overshoot ) |
| 646 | ras.cProfile->flags |= Overshoot_Bottom; |
| 647 | |
| 648 | FT_TRACE6(( " new ascending profile = %p\n" , (void *)ras.cProfile )); |
| 649 | break; |
| 650 | |
| 651 | case Descending_State: |
| 652 | if ( overshoot ) |
| 653 | ras.cProfile->flags |= Overshoot_Top; |
| 654 | FT_TRACE6(( " new descending profile = %p\n" , (void *)ras.cProfile )); |
| 655 | break; |
| 656 | |
| 657 | default: |
| 658 | FT_ERROR(( "New_Profile: invalid profile direction\n" )); |
| 659 | ras.error = FT_THROW( Invalid_Outline ); |
| 660 | return FAILURE; |
| 661 | } |
| 662 | |
| 663 | if ( !ras.gProfile ) |
| 664 | ras.gProfile = ras.cProfile; |
| 665 | |
| 666 | ras.state = aState; |
| 667 | ras.fresh = TRUE; |
| 668 | ras.joint = FALSE; |
| 669 | |
| 670 | return SUCCESS; |
| 671 | } |
| 672 | |
| 673 | |
| 674 | /************************************************************************** |
| 675 | * |
| 676 | * @Function: |
| 677 | * End_Profile |
| 678 | * |
| 679 | * @Description: |
| 680 | * Finalize the current profile. |
| 681 | * |
| 682 | * @Input: |
| 683 | * overshoot :: |
| 684 | * Whether the profile's unrounded end position differs |
| 685 | * by at least a half pixel. |
| 686 | * |
| 687 | * @Return: |
| 688 | * SUCCESS on success. FAILURE in case of overflow or incoherency. |
| 689 | */ |
| 690 | static Bool |
| 691 | End_Profile( RAS_ARGS Bool overshoot ) |
| 692 | { |
| 693 | Long h; |
| 694 | |
| 695 | |
| 696 | h = (Long)( ras.top - ras.cProfile->offset ); |
| 697 | |
| 698 | if ( h < 0 ) |
| 699 | { |
| 700 | FT_ERROR(( "End_Profile: negative height encountered\n" )); |
| 701 | ras.error = FT_THROW( Raster_Negative_Height ); |
| 702 | return FAILURE; |
| 703 | } |
| 704 | |
| 705 | if ( h > 0 ) |
| 706 | { |
| 707 | PProfile oldProfile; |
| 708 | |
| 709 | |
| 710 | FT_TRACE6(( " ending profile %p, start = %ld, height = %ld\n" , |
| 711 | (void *)ras.cProfile, ras.cProfile->start, h )); |
| 712 | |
| 713 | ras.cProfile->height = h; |
| 714 | if ( overshoot ) |
| 715 | { |
| 716 | if ( ras.cProfile->flags & Flow_Up ) |
| 717 | ras.cProfile->flags |= Overshoot_Top; |
| 718 | else |
| 719 | ras.cProfile->flags |= Overshoot_Bottom; |
| 720 | } |
| 721 | |
| 722 | oldProfile = ras.cProfile; |
| 723 | ras.cProfile = (PProfile)ras.top; |
| 724 | |
| 725 | ras.top += AlignProfileSize; |
| 726 | |
| 727 | ras.cProfile->height = 0; |
| 728 | ras.cProfile->offset = ras.top; |
| 729 | |
| 730 | oldProfile->next = ras.cProfile; |
| 731 | ras.num_Profs++; |
| 732 | } |
| 733 | |
| 734 | if ( ras.top >= ras.maxBuff ) |
| 735 | { |
| 736 | FT_TRACE1(( "overflow in End_Profile\n" )); |
| 737 | ras.error = FT_THROW( Raster_Overflow ); |
| 738 | return FAILURE; |
| 739 | } |
| 740 | |
| 741 | ras.joint = FALSE; |
| 742 | |
| 743 | return SUCCESS; |
| 744 | } |
| 745 | |
| 746 | |
| 747 | /************************************************************************** |
| 748 | * |
| 749 | * @Function: |
| 750 | * Insert_Y_Turn |
| 751 | * |
| 752 | * @Description: |
| 753 | * Insert a salient into the sorted list placed on top of the render |
| 754 | * pool. |
| 755 | * |
| 756 | * @Input: |
| 757 | * New y scanline position. |
| 758 | * |
| 759 | * @Return: |
| 760 | * SUCCESS on success. FAILURE in case of overflow. |
| 761 | */ |
| 762 | static Bool |
| 763 | Insert_Y_Turn( RAS_ARGS Int y ) |
| 764 | { |
| 765 | PLong y_turns; |
| 766 | Int n; |
| 767 | |
| 768 | |
| 769 | n = ras.numTurns - 1; |
| 770 | y_turns = ras.sizeBuff - ras.numTurns; |
| 771 | |
| 772 | /* look for first y value that is <= */ |
| 773 | while ( n >= 0 && y < y_turns[n] ) |
| 774 | n--; |
| 775 | |
| 776 | /* if it is <, simply insert it, ignore if == */ |
| 777 | if ( n >= 0 && y > y_turns[n] ) |
| 778 | do |
| 779 | { |
| 780 | Int y2 = (Int)y_turns[n]; |
| 781 | |
| 782 | |
| 783 | y_turns[n] = y; |
| 784 | y = y2; |
| 785 | } while ( --n >= 0 ); |
| 786 | |
| 787 | if ( n < 0 ) |
| 788 | { |
| 789 | ras.maxBuff--; |
| 790 | if ( ras.maxBuff <= ras.top ) |
| 791 | { |
| 792 | ras.error = FT_THROW( Raster_Overflow ); |
| 793 | return FAILURE; |
| 794 | } |
| 795 | ras.numTurns++; |
| 796 | ras.sizeBuff[-ras.numTurns] = y; |
| 797 | } |
| 798 | |
| 799 | return SUCCESS; |
| 800 | } |
| 801 | |
| 802 | |
| 803 | /************************************************************************** |
| 804 | * |
| 805 | * @Function: |
| 806 | * Finalize_Profile_Table |
| 807 | * |
| 808 | * @Description: |
| 809 | * Adjust all links in the profiles list. |
| 810 | * |
| 811 | * @Return: |
| 812 | * SUCCESS on success. FAILURE in case of overflow. |
| 813 | */ |
| 814 | static Bool |
| 815 | Finalize_Profile_Table( RAS_ARG ) |
| 816 | { |
| 817 | UShort n; |
| 818 | PProfile p; |
| 819 | |
| 820 | |
| 821 | n = ras.num_Profs; |
| 822 | p = ras.fProfile; |
| 823 | |
| 824 | if ( n > 1 && p ) |
| 825 | { |
| 826 | do |
| 827 | { |
| 828 | Int bottom, top; |
| 829 | |
| 830 | |
| 831 | if ( n > 1 ) |
| 832 | p->link = (PProfile)( p->offset + p->height ); |
| 833 | else |
| 834 | p->link = NULL; |
| 835 | |
| 836 | if ( p->flags & Flow_Up ) |
| 837 | { |
| 838 | bottom = (Int)p->start; |
| 839 | top = (Int)( p->start + p->height - 1 ); |
| 840 | } |
| 841 | else |
| 842 | { |
| 843 | bottom = (Int)( p->start - p->height + 1 ); |
| 844 | top = (Int)p->start; |
| 845 | p->start = bottom; |
| 846 | p->offset += p->height - 1; |
| 847 | } |
| 848 | |
| 849 | if ( Insert_Y_Turn( RAS_VARS bottom ) || |
| 850 | Insert_Y_Turn( RAS_VARS top + 1 ) ) |
| 851 | return FAILURE; |
| 852 | |
| 853 | p = p->link; |
| 854 | } while ( --n ); |
| 855 | } |
| 856 | else |
| 857 | ras.fProfile = NULL; |
| 858 | |
| 859 | return SUCCESS; |
| 860 | } |
| 861 | |
| 862 | |
| 863 | /************************************************************************** |
| 864 | * |
| 865 | * @Function: |
| 866 | * Split_Conic |
| 867 | * |
| 868 | * @Description: |
| 869 | * Subdivide one conic Bezier into two joint sub-arcs in the Bezier |
| 870 | * stack. |
| 871 | * |
| 872 | * @Input: |
| 873 | * None (subdivided Bezier is taken from the top of the stack). |
| 874 | * |
| 875 | * @Note: |
| 876 | * This routine is the `beef' of this component. It is _the_ inner |
| 877 | * loop that should be optimized to hell to get the best performance. |
| 878 | */ |
| 879 | static void |
| 880 | Split_Conic( TPoint* base ) |
| 881 | { |
| 882 | Long a, b; |
| 883 | |
| 884 | |
| 885 | base[4].x = base[2].x; |
| 886 | a = base[0].x + base[1].x; |
| 887 | b = base[1].x + base[2].x; |
| 888 | base[3].x = b >> 1; |
| 889 | base[2].x = ( a + b ) >> 2; |
| 890 | base[1].x = a >> 1; |
| 891 | |
| 892 | base[4].y = base[2].y; |
| 893 | a = base[0].y + base[1].y; |
| 894 | b = base[1].y + base[2].y; |
| 895 | base[3].y = b >> 1; |
| 896 | base[2].y = ( a + b ) >> 2; |
| 897 | base[1].y = a >> 1; |
| 898 | |
| 899 | /* hand optimized. gcc doesn't seem to be too good at common */ |
| 900 | /* expression substitution and instruction scheduling ;-) */ |
| 901 | } |
| 902 | |
| 903 | |
| 904 | /************************************************************************** |
| 905 | * |
| 906 | * @Function: |
| 907 | * Split_Cubic |
| 908 | * |
| 909 | * @Description: |
| 910 | * Subdivide a third-order Bezier arc into two joint sub-arcs in the |
| 911 | * Bezier stack. |
| 912 | * |
| 913 | * @Note: |
| 914 | * This routine is the `beef' of the component. It is one of _the_ |
| 915 | * inner loops that should be optimized like hell to get the best |
| 916 | * performance. |
| 917 | */ |
| 918 | static void |
| 919 | Split_Cubic( TPoint* base ) |
| 920 | { |
| 921 | Long a, b, c; |
| 922 | |
| 923 | |
| 924 | base[6].x = base[3].x; |
| 925 | a = base[0].x + base[1].x; |
| 926 | b = base[1].x + base[2].x; |
| 927 | c = base[2].x + base[3].x; |
| 928 | base[5].x = c >> 1; |
| 929 | c += b; |
| 930 | base[4].x = c >> 2; |
| 931 | base[1].x = a >> 1; |
| 932 | a += b; |
| 933 | base[2].x = a >> 2; |
| 934 | base[3].x = ( a + c ) >> 3; |
| 935 | |
| 936 | base[6].y = base[3].y; |
| 937 | a = base[0].y + base[1].y; |
| 938 | b = base[1].y + base[2].y; |
| 939 | c = base[2].y + base[3].y; |
| 940 | base[5].y = c >> 1; |
| 941 | c += b; |
| 942 | base[4].y = c >> 2; |
| 943 | base[1].y = a >> 1; |
| 944 | a += b; |
| 945 | base[2].y = a >> 2; |
| 946 | base[3].y = ( a + c ) >> 3; |
| 947 | } |
| 948 | |
| 949 | |
| 950 | /************************************************************************** |
| 951 | * |
| 952 | * @Function: |
| 953 | * Line_Up |
| 954 | * |
| 955 | * @Description: |
| 956 | * Compute the x-coordinates of an ascending line segment and store |
| 957 | * them in the render pool. |
| 958 | * |
| 959 | * @Input: |
| 960 | * x1 :: |
| 961 | * The x-coordinate of the segment's start point. |
| 962 | * |
| 963 | * y1 :: |
| 964 | * The y-coordinate of the segment's start point. |
| 965 | * |
| 966 | * x2 :: |
| 967 | * The x-coordinate of the segment's end point. |
| 968 | * |
| 969 | * y2 :: |
| 970 | * The y-coordinate of the segment's end point. |
| 971 | * |
| 972 | * miny :: |
| 973 | * A lower vertical clipping bound value. |
| 974 | * |
| 975 | * maxy :: |
| 976 | * An upper vertical clipping bound value. |
| 977 | * |
| 978 | * @Return: |
| 979 | * SUCCESS on success, FAILURE on render pool overflow. |
| 980 | */ |
| 981 | static Bool |
| 982 | Line_Up( RAS_ARGS Long x1, |
| 983 | Long y1, |
| 984 | Long x2, |
| 985 | Long y2, |
| 986 | Long miny, |
| 987 | Long maxy ) |
| 988 | { |
| 989 | Long Dx, Dy; |
| 990 | Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */ |
| 991 | Long Ix, Rx, Ax; |
| 992 | |
| 993 | PLong top; |
| 994 | |
| 995 | |
| 996 | Dx = x2 - x1; |
| 997 | Dy = y2 - y1; |
| 998 | |
| 999 | if ( Dy <= 0 || y2 < miny || y1 > maxy ) |
| 1000 | return SUCCESS; |
| 1001 | |
| 1002 | if ( y1 < miny ) |
| 1003 | { |
| 1004 | /* Take care: miny-y1 can be a very large value; we use */ |
| 1005 | /* a slow MulDiv function to avoid clipping bugs */ |
| 1006 | x1 += SMulDiv( Dx, miny - y1, Dy ); |
| 1007 | e1 = (Int)TRUNC( miny ); |
| 1008 | f1 = 0; |
| 1009 | } |
| 1010 | else |
| 1011 | { |
| 1012 | e1 = (Int)TRUNC( y1 ); |
| 1013 | f1 = (Int)FRAC( y1 ); |
| 1014 | } |
| 1015 | |
| 1016 | if ( y2 > maxy ) |
| 1017 | { |
| 1018 | /* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */ |
| 1019 | e2 = (Int)TRUNC( maxy ); |
| 1020 | f2 = 0; |
| 1021 | } |
| 1022 | else |
| 1023 | { |
| 1024 | e2 = (Int)TRUNC( y2 ); |
| 1025 | f2 = (Int)FRAC( y2 ); |
| 1026 | } |
| 1027 | |
| 1028 | if ( f1 > 0 ) |
| 1029 | { |
| 1030 | if ( e1 == e2 ) |
| 1031 | return SUCCESS; |
| 1032 | else |
| 1033 | { |
| 1034 | x1 += SMulDiv( Dx, ras.precision - f1, Dy ); |
| 1035 | e1 += 1; |
| 1036 | } |
| 1037 | } |
| 1038 | else |
| 1039 | if ( ras.joint ) |
| 1040 | { |
| 1041 | ras.top--; |
| 1042 | ras.joint = FALSE; |
| 1043 | } |
| 1044 | |
| 1045 | ras.joint = (char)( f2 == 0 ); |
| 1046 | |
| 1047 | if ( ras.fresh ) |
| 1048 | { |
| 1049 | ras.cProfile->start = e1; |
| 1050 | ras.fresh = FALSE; |
| 1051 | } |
| 1052 | |
| 1053 | size = e2 - e1 + 1; |
| 1054 | if ( ras.top + size >= ras.maxBuff ) |
| 1055 | { |
| 1056 | ras.error = FT_THROW( Raster_Overflow ); |
| 1057 | return FAILURE; |
| 1058 | } |
| 1059 | |
| 1060 | if ( Dx > 0 ) |
| 1061 | { |
| 1062 | Ix = SMulDiv_No_Round( ras.precision, Dx, Dy ); |
| 1063 | Rx = ( ras.precision * Dx ) % Dy; |
| 1064 | Dx = 1; |
| 1065 | } |
| 1066 | else |
| 1067 | { |
| 1068 | Ix = -SMulDiv_No_Round( ras.precision, -Dx, Dy ); |
| 1069 | Rx = ( ras.precision * -Dx ) % Dy; |
| 1070 | Dx = -1; |
| 1071 | } |
| 1072 | |
| 1073 | Ax = -Dy; |
| 1074 | top = ras.top; |
| 1075 | |
| 1076 | while ( size > 0 ) |
| 1077 | { |
| 1078 | *top++ = x1; |
| 1079 | |
| 1080 | x1 += Ix; |
| 1081 | Ax += Rx; |
| 1082 | if ( Ax >= 0 ) |
| 1083 | { |
| 1084 | Ax -= Dy; |
| 1085 | x1 += Dx; |
| 1086 | } |
| 1087 | size--; |
| 1088 | } |
| 1089 | |
| 1090 | ras.top = top; |
| 1091 | return SUCCESS; |
| 1092 | } |
| 1093 | |
| 1094 | |
| 1095 | /************************************************************************** |
| 1096 | * |
| 1097 | * @Function: |
| 1098 | * Line_Down |
| 1099 | * |
| 1100 | * @Description: |
| 1101 | * Compute the x-coordinates of an descending line segment and store |
| 1102 | * them in the render pool. |
| 1103 | * |
| 1104 | * @Input: |
| 1105 | * x1 :: |
| 1106 | * The x-coordinate of the segment's start point. |
| 1107 | * |
| 1108 | * y1 :: |
| 1109 | * The y-coordinate of the segment's start point. |
| 1110 | * |
| 1111 | * x2 :: |
| 1112 | * The x-coordinate of the segment's end point. |
| 1113 | * |
| 1114 | * y2 :: |
| 1115 | * The y-coordinate of the segment's end point. |
| 1116 | * |
| 1117 | * miny :: |
| 1118 | * A lower vertical clipping bound value. |
| 1119 | * |
| 1120 | * maxy :: |
| 1121 | * An upper vertical clipping bound value. |
| 1122 | * |
| 1123 | * @Return: |
| 1124 | * SUCCESS on success, FAILURE on render pool overflow. |
| 1125 | */ |
| 1126 | static Bool |
| 1127 | Line_Down( RAS_ARGS Long x1, |
| 1128 | Long y1, |
| 1129 | Long x2, |
| 1130 | Long y2, |
| 1131 | Long miny, |
| 1132 | Long maxy ) |
| 1133 | { |
| 1134 | Bool result, fresh; |
| 1135 | |
| 1136 | |
| 1137 | fresh = ras.fresh; |
| 1138 | |
| 1139 | result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny ); |
| 1140 | |
| 1141 | if ( fresh && !ras.fresh ) |
| 1142 | ras.cProfile->start = -ras.cProfile->start; |
| 1143 | |
| 1144 | return result; |
| 1145 | } |
| 1146 | |
| 1147 | |
| 1148 | /* A function type describing the functions used to split Bezier arcs */ |
| 1149 | typedef void (*TSplitter)( TPoint* base ); |
| 1150 | |
| 1151 | |
| 1152 | /************************************************************************** |
| 1153 | * |
| 1154 | * @Function: |
| 1155 | * Bezier_Up |
| 1156 | * |
| 1157 | * @Description: |
| 1158 | * Compute the x-coordinates of an ascending Bezier arc and store |
| 1159 | * them in the render pool. |
| 1160 | * |
| 1161 | * @Input: |
| 1162 | * degree :: |
| 1163 | * The degree of the Bezier arc (either 2 or 3). |
| 1164 | * |
| 1165 | * splitter :: |
| 1166 | * The function to split Bezier arcs. |
| 1167 | * |
| 1168 | * miny :: |
| 1169 | * A lower vertical clipping bound value. |
| 1170 | * |
| 1171 | * maxy :: |
| 1172 | * An upper vertical clipping bound value. |
| 1173 | * |
| 1174 | * @Return: |
| 1175 | * SUCCESS on success, FAILURE on render pool overflow. |
| 1176 | */ |
| 1177 | static Bool |
| 1178 | Bezier_Up( RAS_ARGS Int degree, |
| 1179 | TPoint* arc, |
| 1180 | TSplitter splitter, |
| 1181 | Long miny, |
| 1182 | Long maxy ) |
| 1183 | { |
| 1184 | Long y1, y2, e, e2, e0; |
| 1185 | Short f1; |
| 1186 | |
| 1187 | TPoint* start_arc; |
| 1188 | |
| 1189 | PLong top; |
| 1190 | |
| 1191 | |
| 1192 | y1 = arc[degree].y; |
| 1193 | y2 = arc[0].y; |
| 1194 | top = ras.top; |
| 1195 | |
| 1196 | if ( y2 < miny || y1 > maxy ) |
| 1197 | goto Fin; |
| 1198 | |
| 1199 | e2 = FLOOR( y2 ); |
| 1200 | |
| 1201 | if ( e2 > maxy ) |
| 1202 | e2 = maxy; |
| 1203 | |
| 1204 | e0 = miny; |
| 1205 | |
| 1206 | if ( y1 < miny ) |
| 1207 | e = miny; |
| 1208 | else |
| 1209 | { |
| 1210 | e = CEILING( y1 ); |
| 1211 | f1 = (Short)( FRAC( y1 ) ); |
| 1212 | e0 = e; |
| 1213 | |
| 1214 | if ( f1 == 0 ) |
| 1215 | { |
| 1216 | if ( ras.joint ) |
| 1217 | { |
| 1218 | top--; |
| 1219 | ras.joint = FALSE; |
| 1220 | } |
| 1221 | |
| 1222 | *top++ = arc[degree].x; |
| 1223 | |
| 1224 | e += ras.precision; |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | if ( ras.fresh ) |
| 1229 | { |
| 1230 | ras.cProfile->start = TRUNC( e0 ); |
| 1231 | ras.fresh = FALSE; |
| 1232 | } |
| 1233 | |
| 1234 | if ( e2 < e ) |
| 1235 | goto Fin; |
| 1236 | |
| 1237 | if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff ) |
| 1238 | { |
| 1239 | ras.top = top; |
| 1240 | ras.error = FT_THROW( Raster_Overflow ); |
| 1241 | return FAILURE; |
| 1242 | } |
| 1243 | |
| 1244 | start_arc = arc; |
| 1245 | |
| 1246 | do |
| 1247 | { |
| 1248 | ras.joint = FALSE; |
| 1249 | |
| 1250 | y2 = arc[0].y; |
| 1251 | |
| 1252 | if ( y2 > e ) |
| 1253 | { |
| 1254 | y1 = arc[degree].y; |
| 1255 | if ( y2 - y1 >= ras.precision_step ) |
| 1256 | { |
| 1257 | splitter( arc ); |
| 1258 | arc += degree; |
| 1259 | } |
| 1260 | else |
| 1261 | { |
| 1262 | *top++ = arc[degree].x + FMulDiv( arc[0].x - arc[degree].x, |
| 1263 | e - y1, y2 - y1 ); |
| 1264 | arc -= degree; |
| 1265 | e += ras.precision; |
| 1266 | } |
| 1267 | } |
| 1268 | else |
| 1269 | { |
| 1270 | if ( y2 == e ) |
| 1271 | { |
| 1272 | ras.joint = TRUE; |
| 1273 | *top++ = arc[0].x; |
| 1274 | |
| 1275 | e += ras.precision; |
| 1276 | } |
| 1277 | arc -= degree; |
| 1278 | } |
| 1279 | } while ( arc >= start_arc && e <= e2 ); |
| 1280 | |
| 1281 | Fin: |
| 1282 | ras.top = top; |
| 1283 | return SUCCESS; |
| 1284 | } |
| 1285 | |
| 1286 | |
| 1287 | /************************************************************************** |
| 1288 | * |
| 1289 | * @Function: |
| 1290 | * Bezier_Down |
| 1291 | * |
| 1292 | * @Description: |
| 1293 | * Compute the x-coordinates of an descending Bezier arc and store |
| 1294 | * them in the render pool. |
| 1295 | * |
| 1296 | * @Input: |
| 1297 | * degree :: |
| 1298 | * The degree of the Bezier arc (either 2 or 3). |
| 1299 | * |
| 1300 | * splitter :: |
| 1301 | * The function to split Bezier arcs. |
| 1302 | * |
| 1303 | * miny :: |
| 1304 | * A lower vertical clipping bound value. |
| 1305 | * |
| 1306 | * maxy :: |
| 1307 | * An upper vertical clipping bound value. |
| 1308 | * |
| 1309 | * @Return: |
| 1310 | * SUCCESS on success, FAILURE on render pool overflow. |
| 1311 | */ |
| 1312 | static Bool |
| 1313 | Bezier_Down( RAS_ARGS Int degree, |
| 1314 | TPoint* arc, |
| 1315 | TSplitter splitter, |
| 1316 | Long miny, |
| 1317 | Long maxy ) |
| 1318 | { |
| 1319 | Bool result, fresh; |
| 1320 | |
| 1321 | |
| 1322 | arc[0].y = -arc[0].y; |
| 1323 | arc[1].y = -arc[1].y; |
| 1324 | arc[2].y = -arc[2].y; |
| 1325 | if ( degree > 2 ) |
| 1326 | arc[3].y = -arc[3].y; |
| 1327 | |
| 1328 | fresh = ras.fresh; |
| 1329 | |
| 1330 | result = Bezier_Up( RAS_VARS degree, arc, splitter, -maxy, -miny ); |
| 1331 | |
| 1332 | if ( fresh && !ras.fresh ) |
| 1333 | ras.cProfile->start = -ras.cProfile->start; |
| 1334 | |
| 1335 | arc[0].y = -arc[0].y; |
| 1336 | return result; |
| 1337 | } |
| 1338 | |
| 1339 | |
| 1340 | /************************************************************************** |
| 1341 | * |
| 1342 | * @Function: |
| 1343 | * Line_To |
| 1344 | * |
| 1345 | * @Description: |
| 1346 | * Inject a new line segment and adjust the Profiles list. |
| 1347 | * |
| 1348 | * @Input: |
| 1349 | * x :: |
| 1350 | * The x-coordinate of the segment's end point (its start point |
| 1351 | * is stored in `lastX'). |
| 1352 | * |
| 1353 | * y :: |
| 1354 | * The y-coordinate of the segment's end point (its start point |
| 1355 | * is stored in `lastY'). |
| 1356 | * |
| 1357 | * @Return: |
| 1358 | * SUCCESS on success, FAILURE on render pool overflow or incorrect |
| 1359 | * profile. |
| 1360 | */ |
| 1361 | static Bool |
| 1362 | Line_To( RAS_ARGS Long x, |
| 1363 | Long y ) |
| 1364 | { |
| 1365 | /* First, detect a change of direction */ |
| 1366 | |
| 1367 | switch ( ras.state ) |
| 1368 | { |
| 1369 | case Unknown_State: |
| 1370 | if ( y > ras.lastY ) |
| 1371 | { |
| 1372 | if ( New_Profile( RAS_VARS Ascending_State, |
| 1373 | IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ) |
| 1374 | return FAILURE; |
| 1375 | } |
| 1376 | else |
| 1377 | { |
| 1378 | if ( y < ras.lastY ) |
| 1379 | if ( New_Profile( RAS_VARS Descending_State, |
| 1380 | IS_TOP_OVERSHOOT( ras.lastY ) ) ) |
| 1381 | return FAILURE; |
| 1382 | } |
| 1383 | break; |
| 1384 | |
| 1385 | case Ascending_State: |
| 1386 | if ( y < ras.lastY ) |
| 1387 | { |
| 1388 | if ( End_Profile( RAS_VARS IS_TOP_OVERSHOOT( ras.lastY ) ) || |
| 1389 | New_Profile( RAS_VARS Descending_State, |
| 1390 | IS_TOP_OVERSHOOT( ras.lastY ) ) ) |
| 1391 | return FAILURE; |
| 1392 | } |
| 1393 | break; |
| 1394 | |
| 1395 | case Descending_State: |
| 1396 | if ( y > ras.lastY ) |
| 1397 | { |
| 1398 | if ( End_Profile( RAS_VARS IS_BOTTOM_OVERSHOOT( ras.lastY ) ) || |
| 1399 | New_Profile( RAS_VARS Ascending_State, |
| 1400 | IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ) |
| 1401 | return FAILURE; |
| 1402 | } |
| 1403 | break; |
| 1404 | |
| 1405 | default: |
| 1406 | ; |
| 1407 | } |
| 1408 | |
| 1409 | /* Then compute the lines */ |
| 1410 | |
| 1411 | switch ( ras.state ) |
| 1412 | { |
| 1413 | case Ascending_State: |
| 1414 | if ( Line_Up( RAS_VARS ras.lastX, ras.lastY, |
| 1415 | x, y, ras.minY, ras.maxY ) ) |
| 1416 | return FAILURE; |
| 1417 | break; |
| 1418 | |
| 1419 | case Descending_State: |
| 1420 | if ( Line_Down( RAS_VARS ras.lastX, ras.lastY, |
| 1421 | x, y, ras.minY, ras.maxY ) ) |
| 1422 | return FAILURE; |
| 1423 | break; |
| 1424 | |
| 1425 | default: |
| 1426 | ; |
| 1427 | } |
| 1428 | |
| 1429 | ras.lastX = x; |
| 1430 | ras.lastY = y; |
| 1431 | |
| 1432 | return SUCCESS; |
| 1433 | } |
| 1434 | |
| 1435 | |
| 1436 | /************************************************************************** |
| 1437 | * |
| 1438 | * @Function: |
| 1439 | * Conic_To |
| 1440 | * |
| 1441 | * @Description: |
| 1442 | * Inject a new conic arc and adjust the profile list. |
| 1443 | * |
| 1444 | * @Input: |
| 1445 | * cx :: |
| 1446 | * The x-coordinate of the arc's new control point. |
| 1447 | * |
| 1448 | * cy :: |
| 1449 | * The y-coordinate of the arc's new control point. |
| 1450 | * |
| 1451 | * x :: |
| 1452 | * The x-coordinate of the arc's end point (its start point is |
| 1453 | * stored in `lastX'). |
| 1454 | * |
| 1455 | * y :: |
| 1456 | * The y-coordinate of the arc's end point (its start point is |
| 1457 | * stored in `lastY'). |
| 1458 | * |
| 1459 | * @Return: |
| 1460 | * SUCCESS on success, FAILURE on render pool overflow or incorrect |
| 1461 | * profile. |
| 1462 | */ |
| 1463 | static Bool |
| 1464 | Conic_To( RAS_ARGS Long cx, |
| 1465 | Long cy, |
| 1466 | Long x, |
| 1467 | Long y ) |
| 1468 | { |
| 1469 | Long y1, y2, y3, x3, ymin, ymax; |
| 1470 | TStates state_bez; |
| 1471 | TPoint arcs[2 * MaxBezier + 1]; /* The Bezier stack */ |
| 1472 | TPoint* arc; /* current Bezier arc pointer */ |
| 1473 | |
| 1474 | |
| 1475 | arc = arcs; |
| 1476 | arc[2].x = ras.lastX; |
| 1477 | arc[2].y = ras.lastY; |
| 1478 | arc[1].x = cx; |
| 1479 | arc[1].y = cy; |
| 1480 | arc[0].x = x; |
| 1481 | arc[0].y = y; |
| 1482 | |
| 1483 | do |
| 1484 | { |
| 1485 | y1 = arc[2].y; |
| 1486 | y2 = arc[1].y; |
| 1487 | y3 = arc[0].y; |
| 1488 | x3 = arc[0].x; |
| 1489 | |
| 1490 | /* first, categorize the Bezier arc */ |
| 1491 | |
| 1492 | if ( y1 <= y3 ) |
| 1493 | { |
| 1494 | ymin = y1; |
| 1495 | ymax = y3; |
| 1496 | } |
| 1497 | else |
| 1498 | { |
| 1499 | ymin = y3; |
| 1500 | ymax = y1; |
| 1501 | } |
| 1502 | |
| 1503 | if ( y2 < ymin || y2 > ymax ) |
| 1504 | { |
| 1505 | /* this arc has no given direction, split it! */ |
| 1506 | Split_Conic( arc ); |
| 1507 | arc += 2; |
| 1508 | } |
| 1509 | else if ( y1 == y3 ) |
| 1510 | { |
| 1511 | /* this arc is flat, ignore it and pop it from the Bezier stack */ |
| 1512 | arc -= 2; |
| 1513 | } |
| 1514 | else |
| 1515 | { |
| 1516 | /* the arc is y-monotonous, either ascending or descending */ |
| 1517 | /* detect a change of direction */ |
| 1518 | state_bez = y1 < y3 ? Ascending_State : Descending_State; |
| 1519 | if ( ras.state != state_bez ) |
| 1520 | { |
| 1521 | Bool o = ( state_bez == Ascending_State ) |
| 1522 | ? IS_BOTTOM_OVERSHOOT( y1 ) |
| 1523 | : IS_TOP_OVERSHOOT( y1 ); |
| 1524 | |
| 1525 | |
| 1526 | /* finalize current profile if any */ |
| 1527 | if ( ras.state != Unknown_State && |
| 1528 | End_Profile( RAS_VARS o ) ) |
| 1529 | goto Fail; |
| 1530 | |
| 1531 | /* create a new profile */ |
| 1532 | if ( New_Profile( RAS_VARS state_bez, o ) ) |
| 1533 | goto Fail; |
| 1534 | } |
| 1535 | |
| 1536 | /* now call the appropriate routine */ |
| 1537 | if ( state_bez == Ascending_State ) |
| 1538 | { |
| 1539 | if ( Bezier_Up( RAS_VARS 2, arc, Split_Conic, |
| 1540 | ras.minY, ras.maxY ) ) |
| 1541 | goto Fail; |
| 1542 | } |
| 1543 | else |
| 1544 | if ( Bezier_Down( RAS_VARS 2, arc, Split_Conic, |
| 1545 | ras.minY, ras.maxY ) ) |
| 1546 | goto Fail; |
| 1547 | arc -= 2; |
| 1548 | } |
| 1549 | |
| 1550 | } while ( arc >= arcs ); |
| 1551 | |
| 1552 | ras.lastX = x3; |
| 1553 | ras.lastY = y3; |
| 1554 | |
| 1555 | return SUCCESS; |
| 1556 | |
| 1557 | Fail: |
| 1558 | return FAILURE; |
| 1559 | } |
| 1560 | |
| 1561 | |
| 1562 | /************************************************************************** |
| 1563 | * |
| 1564 | * @Function: |
| 1565 | * Cubic_To |
| 1566 | * |
| 1567 | * @Description: |
| 1568 | * Inject a new cubic arc and adjust the profile list. |
| 1569 | * |
| 1570 | * @Input: |
| 1571 | * cx1 :: |
| 1572 | * The x-coordinate of the arc's first new control point. |
| 1573 | * |
| 1574 | * cy1 :: |
| 1575 | * The y-coordinate of the arc's first new control point. |
| 1576 | * |
| 1577 | * cx2 :: |
| 1578 | * The x-coordinate of the arc's second new control point. |
| 1579 | * |
| 1580 | * cy2 :: |
| 1581 | * The y-coordinate of the arc's second new control point. |
| 1582 | * |
| 1583 | * x :: |
| 1584 | * The x-coordinate of the arc's end point (its start point is |
| 1585 | * stored in `lastX'). |
| 1586 | * |
| 1587 | * y :: |
| 1588 | * The y-coordinate of the arc's end point (its start point is |
| 1589 | * stored in `lastY'). |
| 1590 | * |
| 1591 | * @Return: |
| 1592 | * SUCCESS on success, FAILURE on render pool overflow or incorrect |
| 1593 | * profile. |
| 1594 | */ |
| 1595 | static Bool |
| 1596 | Cubic_To( RAS_ARGS Long cx1, |
| 1597 | Long cy1, |
| 1598 | Long cx2, |
| 1599 | Long cy2, |
| 1600 | Long x, |
| 1601 | Long y ) |
| 1602 | { |
| 1603 | Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2; |
| 1604 | TStates state_bez; |
| 1605 | TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */ |
| 1606 | TPoint* arc; /* current Bezier arc pointer */ |
| 1607 | |
| 1608 | |
| 1609 | arc = arcs; |
| 1610 | arc[3].x = ras.lastX; |
| 1611 | arc[3].y = ras.lastY; |
| 1612 | arc[2].x = cx1; |
| 1613 | arc[2].y = cy1; |
| 1614 | arc[1].x = cx2; |
| 1615 | arc[1].y = cy2; |
| 1616 | arc[0].x = x; |
| 1617 | arc[0].y = y; |
| 1618 | |
| 1619 | do |
| 1620 | { |
| 1621 | y1 = arc[3].y; |
| 1622 | y2 = arc[2].y; |
| 1623 | y3 = arc[1].y; |
| 1624 | y4 = arc[0].y; |
| 1625 | x4 = arc[0].x; |
| 1626 | |
| 1627 | /* first, categorize the Bezier arc */ |
| 1628 | |
| 1629 | if ( y1 <= y4 ) |
| 1630 | { |
| 1631 | ymin1 = y1; |
| 1632 | ymax1 = y4; |
| 1633 | } |
| 1634 | else |
| 1635 | { |
| 1636 | ymin1 = y4; |
| 1637 | ymax1 = y1; |
| 1638 | } |
| 1639 | |
| 1640 | if ( y2 <= y3 ) |
| 1641 | { |
| 1642 | ymin2 = y2; |
| 1643 | ymax2 = y3; |
| 1644 | } |
| 1645 | else |
| 1646 | { |
| 1647 | ymin2 = y3; |
| 1648 | ymax2 = y2; |
| 1649 | } |
| 1650 | |
| 1651 | if ( ymin2 < ymin1 || ymax2 > ymax1 ) |
| 1652 | { |
| 1653 | /* this arc has no given direction, split it! */ |
| 1654 | Split_Cubic( arc ); |
| 1655 | arc += 3; |
| 1656 | } |
| 1657 | else if ( y1 == y4 ) |
| 1658 | { |
| 1659 | /* this arc is flat, ignore it and pop it from the Bezier stack */ |
| 1660 | arc -= 3; |
| 1661 | } |
| 1662 | else |
| 1663 | { |
| 1664 | state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State; |
| 1665 | |
| 1666 | /* detect a change of direction */ |
| 1667 | if ( ras.state != state_bez ) |
| 1668 | { |
| 1669 | Bool o = ( state_bez == Ascending_State ) |
| 1670 | ? IS_BOTTOM_OVERSHOOT( y1 ) |
| 1671 | : IS_TOP_OVERSHOOT( y1 ); |
| 1672 | |
| 1673 | |
| 1674 | /* finalize current profile if any */ |
| 1675 | if ( ras.state != Unknown_State && |
| 1676 | End_Profile( RAS_VARS o ) ) |
| 1677 | goto Fail; |
| 1678 | |
| 1679 | if ( New_Profile( RAS_VARS state_bez, o ) ) |
| 1680 | goto Fail; |
| 1681 | } |
| 1682 | |
| 1683 | /* compute intersections */ |
| 1684 | if ( state_bez == Ascending_State ) |
| 1685 | { |
| 1686 | if ( Bezier_Up( RAS_VARS 3, arc, Split_Cubic, |
| 1687 | ras.minY, ras.maxY ) ) |
| 1688 | goto Fail; |
| 1689 | } |
| 1690 | else |
| 1691 | if ( Bezier_Down( RAS_VARS 3, arc, Split_Cubic, |
| 1692 | ras.minY, ras.maxY ) ) |
| 1693 | goto Fail; |
| 1694 | arc -= 3; |
| 1695 | } |
| 1696 | |
| 1697 | } while ( arc >= arcs ); |
| 1698 | |
| 1699 | ras.lastX = x4; |
| 1700 | ras.lastY = y4; |
| 1701 | |
| 1702 | return SUCCESS; |
| 1703 | |
| 1704 | Fail: |
| 1705 | return FAILURE; |
| 1706 | } |
| 1707 | |
| 1708 | |
| 1709 | #undef SWAP_ |
| 1710 | #define SWAP_( x, y ) do \ |
| 1711 | { \ |
| 1712 | Long swap = x; \ |
| 1713 | \ |
| 1714 | \ |
| 1715 | x = y; \ |
| 1716 | y = swap; \ |
| 1717 | } while ( 0 ) |
| 1718 | |
| 1719 | |
| 1720 | /************************************************************************** |
| 1721 | * |
| 1722 | * @Function: |
| 1723 | * Decompose_Curve |
| 1724 | * |
| 1725 | * @Description: |
| 1726 | * Scan the outline arrays in order to emit individual segments and |
| 1727 | * Beziers by calling Line_To() and Bezier_To(). It handles all |
| 1728 | * weird cases, like when the first point is off the curve, or when |
| 1729 | * there are simply no `on' points in the contour! |
| 1730 | * |
| 1731 | * @Input: |
| 1732 | * first :: |
| 1733 | * The index of the first point in the contour. |
| 1734 | * |
| 1735 | * last :: |
| 1736 | * The index of the last point in the contour. |
| 1737 | * |
| 1738 | * flipped :: |
| 1739 | * If set, flip the direction of the curve. |
| 1740 | * |
| 1741 | * @Return: |
| 1742 | * SUCCESS on success, FAILURE on error. |
| 1743 | */ |
| 1744 | static Bool |
| 1745 | Decompose_Curve( RAS_ARGS Int first, |
| 1746 | Int last, |
| 1747 | Int flipped ) |
| 1748 | { |
| 1749 | FT_Vector v_last; |
| 1750 | FT_Vector v_control; |
| 1751 | FT_Vector v_start; |
| 1752 | |
| 1753 | FT_Vector* points; |
| 1754 | FT_Vector* point; |
| 1755 | FT_Vector* limit; |
| 1756 | char* tags; |
| 1757 | |
| 1758 | UInt tag; /* current point's state */ |
| 1759 | |
| 1760 | |
| 1761 | points = ras.outline.points; |
| 1762 | limit = points + last; |
| 1763 | |
| 1764 | v_start.x = SCALED( points[first].x ); |
| 1765 | v_start.y = SCALED( points[first].y ); |
| 1766 | v_last.x = SCALED( points[last].x ); |
| 1767 | v_last.y = SCALED( points[last].y ); |
| 1768 | |
| 1769 | if ( flipped ) |
| 1770 | { |
| 1771 | SWAP_( v_start.x, v_start.y ); |
| 1772 | SWAP_( v_last.x, v_last.y ); |
| 1773 | } |
| 1774 | |
| 1775 | v_control = v_start; |
| 1776 | |
| 1777 | point = points + first; |
| 1778 | tags = ras.outline.tags + first; |
| 1779 | |
| 1780 | /* set scan mode if necessary */ |
| 1781 | if ( tags[0] & FT_CURVE_TAG_HAS_SCANMODE ) |
| 1782 | ras.dropOutControl = (Byte)tags[0] >> 5; |
| 1783 | |
| 1784 | tag = FT_CURVE_TAG( tags[0] ); |
| 1785 | |
| 1786 | /* A contour cannot start with a cubic control point! */ |
| 1787 | if ( tag == FT_CURVE_TAG_CUBIC ) |
| 1788 | goto Invalid_Outline; |
| 1789 | |
| 1790 | /* check first point to determine origin */ |
| 1791 | if ( tag == FT_CURVE_TAG_CONIC ) |
| 1792 | { |
| 1793 | /* first point is conic control. Yes, this happens. */ |
| 1794 | if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON ) |
| 1795 | { |
| 1796 | /* start at last point if it is on the curve */ |
| 1797 | v_start = v_last; |
| 1798 | limit--; |
| 1799 | } |
| 1800 | else |
| 1801 | { |
| 1802 | /* if both first and last points are conic, */ |
| 1803 | /* start at their middle and record its position */ |
| 1804 | /* for closure */ |
| 1805 | v_start.x = ( v_start.x + v_last.x ) / 2; |
| 1806 | v_start.y = ( v_start.y + v_last.y ) / 2; |
| 1807 | |
| 1808 | /* v_last = v_start; */ |
| 1809 | } |
| 1810 | point--; |
| 1811 | tags--; |
| 1812 | } |
| 1813 | |
| 1814 | ras.lastX = v_start.x; |
| 1815 | ras.lastY = v_start.y; |
| 1816 | |
| 1817 | while ( point < limit ) |
| 1818 | { |
| 1819 | point++; |
| 1820 | tags++; |
| 1821 | |
| 1822 | tag = FT_CURVE_TAG( tags[0] ); |
| 1823 | |
| 1824 | switch ( tag ) |
| 1825 | { |
| 1826 | case FT_CURVE_TAG_ON: /* emit a single line_to */ |
| 1827 | { |
| 1828 | Long x, y; |
| 1829 | |
| 1830 | |
| 1831 | x = SCALED( point->x ); |
| 1832 | y = SCALED( point->y ); |
| 1833 | if ( flipped ) |
| 1834 | SWAP_( x, y ); |
| 1835 | |
| 1836 | if ( Line_To( RAS_VARS x, y ) ) |
| 1837 | goto Fail; |
| 1838 | continue; |
| 1839 | } |
| 1840 | |
| 1841 | case FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
| 1842 | v_control.x = SCALED( point[0].x ); |
| 1843 | v_control.y = SCALED( point[0].y ); |
| 1844 | |
| 1845 | if ( flipped ) |
| 1846 | SWAP_( v_control.x, v_control.y ); |
| 1847 | |
| 1848 | Do_Conic: |
| 1849 | if ( point < limit ) |
| 1850 | { |
| 1851 | FT_Vector v_middle; |
| 1852 | Long x, y; |
| 1853 | |
| 1854 | |
| 1855 | point++; |
| 1856 | tags++; |
| 1857 | tag = FT_CURVE_TAG( tags[0] ); |
| 1858 | |
| 1859 | x = SCALED( point[0].x ); |
| 1860 | y = SCALED( point[0].y ); |
| 1861 | |
| 1862 | if ( flipped ) |
| 1863 | SWAP_( x, y ); |
| 1864 | |
| 1865 | if ( tag == FT_CURVE_TAG_ON ) |
| 1866 | { |
| 1867 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) ) |
| 1868 | goto Fail; |
| 1869 | continue; |
| 1870 | } |
| 1871 | |
| 1872 | if ( tag != FT_CURVE_TAG_CONIC ) |
| 1873 | goto Invalid_Outline; |
| 1874 | |
| 1875 | v_middle.x = ( v_control.x + x ) / 2; |
| 1876 | v_middle.y = ( v_control.y + y ) / 2; |
| 1877 | |
| 1878 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, |
| 1879 | v_middle.x, v_middle.y ) ) |
| 1880 | goto Fail; |
| 1881 | |
| 1882 | v_control.x = x; |
| 1883 | v_control.y = y; |
| 1884 | |
| 1885 | goto Do_Conic; |
| 1886 | } |
| 1887 | |
| 1888 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, |
| 1889 | v_start.x, v_start.y ) ) |
| 1890 | goto Fail; |
| 1891 | |
| 1892 | goto Close; |
| 1893 | |
| 1894 | default: /* FT_CURVE_TAG_CUBIC */ |
| 1895 | { |
| 1896 | Long x1, y1, x2, y2, x3, y3; |
| 1897 | |
| 1898 | |
| 1899 | if ( point + 1 > limit || |
| 1900 | FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC ) |
| 1901 | goto Invalid_Outline; |
| 1902 | |
| 1903 | point += 2; |
| 1904 | tags += 2; |
| 1905 | |
| 1906 | x1 = SCALED( point[-2].x ); |
| 1907 | y1 = SCALED( point[-2].y ); |
| 1908 | x2 = SCALED( point[-1].x ); |
| 1909 | y2 = SCALED( point[-1].y ); |
| 1910 | |
| 1911 | if ( flipped ) |
| 1912 | { |
| 1913 | SWAP_( x1, y1 ); |
| 1914 | SWAP_( x2, y2 ); |
| 1915 | } |
| 1916 | |
| 1917 | if ( point <= limit ) |
| 1918 | { |
| 1919 | x3 = SCALED( point[0].x ); |
| 1920 | y3 = SCALED( point[0].y ); |
| 1921 | |
| 1922 | if ( flipped ) |
| 1923 | SWAP_( x3, y3 ); |
| 1924 | |
| 1925 | if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) ) |
| 1926 | goto Fail; |
| 1927 | continue; |
| 1928 | } |
| 1929 | |
| 1930 | if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) ) |
| 1931 | goto Fail; |
| 1932 | goto Close; |
| 1933 | } |
| 1934 | } |
| 1935 | } |
| 1936 | |
| 1937 | /* close the contour with a line segment */ |
| 1938 | if ( Line_To( RAS_VARS v_start.x, v_start.y ) ) |
| 1939 | goto Fail; |
| 1940 | |
| 1941 | Close: |
| 1942 | return SUCCESS; |
| 1943 | |
| 1944 | Invalid_Outline: |
| 1945 | ras.error = FT_THROW( Invalid_Outline ); |
| 1946 | |
| 1947 | Fail: |
| 1948 | return FAILURE; |
| 1949 | } |
| 1950 | |
| 1951 | |
| 1952 | /************************************************************************** |
| 1953 | * |
| 1954 | * @Function: |
| 1955 | * Convert_Glyph |
| 1956 | * |
| 1957 | * @Description: |
| 1958 | * Convert a glyph into a series of segments and arcs and make a |
| 1959 | * profiles list with them. |
| 1960 | * |
| 1961 | * @Input: |
| 1962 | * flipped :: |
| 1963 | * If set, flip the direction of curve. |
| 1964 | * |
| 1965 | * @Return: |
| 1966 | * SUCCESS on success, FAILURE if any error was encountered during |
| 1967 | * rendering. |
| 1968 | */ |
| 1969 | static Bool |
| 1970 | Convert_Glyph( RAS_ARGS Int flipped ) |
| 1971 | { |
| 1972 | Int i; |
| 1973 | Int first, last; |
| 1974 | |
| 1975 | |
| 1976 | ras.fProfile = NULL; |
| 1977 | ras.joint = FALSE; |
| 1978 | ras.fresh = FALSE; |
| 1979 | |
| 1980 | ras.maxBuff = ras.sizeBuff - AlignProfileSize; |
| 1981 | |
| 1982 | ras.numTurns = 0; |
| 1983 | |
| 1984 | ras.cProfile = (PProfile)ras.top; |
| 1985 | ras.cProfile->offset = ras.top; |
| 1986 | ras.num_Profs = 0; |
| 1987 | |
| 1988 | last = -1; |
| 1989 | for ( i = 0; i < ras.outline.n_contours; i++ ) |
| 1990 | { |
| 1991 | PProfile lastProfile; |
| 1992 | Bool o; |
| 1993 | |
| 1994 | |
| 1995 | ras.state = Unknown_State; |
| 1996 | ras.gProfile = NULL; |
| 1997 | |
| 1998 | first = last + 1; |
| 1999 | last = ras.outline.contours[i]; |
| 2000 | |
| 2001 | if ( Decompose_Curve( RAS_VARS first, last, flipped ) ) |
| 2002 | return FAILURE; |
| 2003 | |
| 2004 | /* we must now check whether the extreme arcs join or not */ |
| 2005 | if ( FRAC( ras.lastY ) == 0 && |
| 2006 | ras.lastY >= ras.minY && |
| 2007 | ras.lastY <= ras.maxY ) |
| 2008 | if ( ras.gProfile && |
| 2009 | ( ras.gProfile->flags & Flow_Up ) == |
| 2010 | ( ras.cProfile->flags & Flow_Up ) ) |
| 2011 | ras.top--; |
| 2012 | /* Note that ras.gProfile can be nil if the contour was too small */ |
| 2013 | /* to be drawn. */ |
| 2014 | |
| 2015 | lastProfile = ras.cProfile; |
| 2016 | if ( ras.top != ras.cProfile->offset && |
| 2017 | ( ras.cProfile->flags & Flow_Up ) ) |
| 2018 | o = IS_TOP_OVERSHOOT( ras.lastY ); |
| 2019 | else |
| 2020 | o = IS_BOTTOM_OVERSHOOT( ras.lastY ); |
| 2021 | if ( End_Profile( RAS_VARS o ) ) |
| 2022 | return FAILURE; |
| 2023 | |
| 2024 | /* close the `next profile in contour' linked list */ |
| 2025 | if ( ras.gProfile ) |
| 2026 | lastProfile->next = ras.gProfile; |
| 2027 | } |
| 2028 | |
| 2029 | if ( Finalize_Profile_Table( RAS_VAR ) ) |
| 2030 | return FAILURE; |
| 2031 | |
| 2032 | return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE ); |
| 2033 | } |
| 2034 | |
| 2035 | |
| 2036 | /*************************************************************************/ |
| 2037 | /*************************************************************************/ |
| 2038 | /** **/ |
| 2039 | /** SCAN-LINE SWEEPS AND DRAWING **/ |
| 2040 | /** **/ |
| 2041 | /*************************************************************************/ |
| 2042 | /*************************************************************************/ |
| 2043 | |
| 2044 | |
| 2045 | /************************************************************************** |
| 2046 | * |
| 2047 | * Init_Linked |
| 2048 | * |
| 2049 | * Initializes an empty linked list. |
| 2050 | */ |
| 2051 | static void |
| 2052 | Init_Linked( TProfileList* l ) |
| 2053 | { |
| 2054 | *l = NULL; |
| 2055 | } |
| 2056 | |
| 2057 | |
| 2058 | /************************************************************************** |
| 2059 | * |
| 2060 | * InsNew |
| 2061 | * |
| 2062 | * Inserts a new profile in a linked list. |
| 2063 | */ |
| 2064 | static void |
| 2065 | InsNew( PProfileList list, |
| 2066 | PProfile profile ) |
| 2067 | { |
| 2068 | PProfile *old, current; |
| 2069 | Long x; |
| 2070 | |
| 2071 | |
| 2072 | old = list; |
| 2073 | current = *old; |
| 2074 | x = profile->X; |
| 2075 | |
| 2076 | while ( current ) |
| 2077 | { |
| 2078 | if ( x < current->X ) |
| 2079 | break; |
| 2080 | old = ¤t->link; |
| 2081 | current = *old; |
| 2082 | } |
| 2083 | |
| 2084 | profile->link = current; |
| 2085 | *old = profile; |
| 2086 | } |
| 2087 | |
| 2088 | |
| 2089 | /************************************************************************** |
| 2090 | * |
| 2091 | * DelOld |
| 2092 | * |
| 2093 | * Removes an old profile from a linked list. |
| 2094 | */ |
| 2095 | static void |
| 2096 | DelOld( PProfileList list, |
| 2097 | const PProfile profile ) |
| 2098 | { |
| 2099 | PProfile *old, current; |
| 2100 | |
| 2101 | |
| 2102 | old = list; |
| 2103 | current = *old; |
| 2104 | |
| 2105 | while ( current ) |
| 2106 | { |
| 2107 | if ( current == profile ) |
| 2108 | { |
| 2109 | *old = current->link; |
| 2110 | return; |
| 2111 | } |
| 2112 | |
| 2113 | old = ¤t->link; |
| 2114 | current = *old; |
| 2115 | } |
| 2116 | |
| 2117 | /* we should never get there, unless the profile was not part of */ |
| 2118 | /* the list. */ |
| 2119 | } |
| 2120 | |
| 2121 | |
| 2122 | /************************************************************************** |
| 2123 | * |
| 2124 | * Sort |
| 2125 | * |
| 2126 | * Sorts a trace list. In 95%, the list is already sorted. We need |
| 2127 | * an algorithm which is fast in this case. Bubble sort is enough |
| 2128 | * and simple. |
| 2129 | */ |
| 2130 | static void |
| 2131 | Sort( PProfileList list ) |
| 2132 | { |
| 2133 | PProfile *old, current, next; |
| 2134 | |
| 2135 | |
| 2136 | /* First, set the new X coordinate of each profile */ |
| 2137 | current = *list; |
| 2138 | while ( current ) |
| 2139 | { |
| 2140 | current->X = *current->offset; |
| 2141 | current->offset += ( current->flags & Flow_Up ) ? 1 : -1; |
| 2142 | current->height--; |
| 2143 | current = current->link; |
| 2144 | } |
| 2145 | |
| 2146 | /* Then sort them */ |
| 2147 | old = list; |
| 2148 | current = *old; |
| 2149 | |
| 2150 | if ( !current ) |
| 2151 | return; |
| 2152 | |
| 2153 | next = current->link; |
| 2154 | |
| 2155 | while ( next ) |
| 2156 | { |
| 2157 | if ( current->X <= next->X ) |
| 2158 | { |
| 2159 | old = ¤t->link; |
| 2160 | current = *old; |
| 2161 | |
| 2162 | if ( !current ) |
| 2163 | return; |
| 2164 | } |
| 2165 | else |
| 2166 | { |
| 2167 | *old = next; |
| 2168 | current->link = next->link; |
| 2169 | next->link = current; |
| 2170 | |
| 2171 | old = list; |
| 2172 | current = *old; |
| 2173 | } |
| 2174 | |
| 2175 | next = current->link; |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | |
| 2180 | /************************************************************************** |
| 2181 | * |
| 2182 | * Vertical Sweep Procedure Set |
| 2183 | * |
| 2184 | * These four routines are used during the vertical black/white sweep |
| 2185 | * phase by the generic Draw_Sweep() function. |
| 2186 | * |
| 2187 | */ |
| 2188 | |
| 2189 | static void |
| 2190 | Vertical_Sweep_Init( RAS_ARGS Short min, |
| 2191 | Short max ) |
| 2192 | { |
| 2193 | FT_UNUSED( max ); |
| 2194 | |
| 2195 | |
| 2196 | ras.bLine = ras.bOrigin - min * ras.target.pitch; |
| 2197 | } |
| 2198 | |
| 2199 | |
| 2200 | static void |
| 2201 | Vertical_Sweep_Span( RAS_ARGS Short y, |
| 2202 | FT_F26Dot6 x1, |
| 2203 | FT_F26Dot6 x2, |
| 2204 | PProfile left, |
| 2205 | PProfile right ) |
| 2206 | { |
| 2207 | Long e1, e2; |
| 2208 | |
| 2209 | Int dropOutControl = left->flags & 7; |
| 2210 | |
| 2211 | FT_UNUSED( y ); |
| 2212 | FT_UNUSED( left ); |
| 2213 | FT_UNUSED( right ); |
| 2214 | |
| 2215 | |
| 2216 | /* in high-precision mode, we need 12 digits after the comma to */ |
| 2217 | /* represent multiples of 1/(1<<12) = 1/4096 */ |
| 2218 | FT_TRACE7(( " y=%d x=[% .12f;% .12f]" , |
| 2219 | y, |
| 2220 | (double)x1 / (double)ras.precision, |
| 2221 | (double)x2 / (double)ras.precision )); |
| 2222 | |
| 2223 | /* Drop-out control */ |
| 2224 | |
| 2225 | e1 = CEILING( x1 ); |
| 2226 | e2 = FLOOR( x2 ); |
| 2227 | |
| 2228 | /* take care of the special case where both the left */ |
| 2229 | /* and right contour lie exactly on pixel centers */ |
| 2230 | if ( dropOutControl != 2 && |
| 2231 | x2 - x1 - ras.precision <= ras.precision_jitter && |
| 2232 | e1 != x1 && e2 != x2 ) |
| 2233 | e2 = e1; |
| 2234 | |
| 2235 | e1 = TRUNC( e1 ); |
| 2236 | e2 = TRUNC( e2 ); |
| 2237 | |
| 2238 | if ( e2 >= 0 && e1 < ras.bWidth ) |
| 2239 | { |
| 2240 | Byte* target; |
| 2241 | |
| 2242 | Int c1, c2; |
| 2243 | Byte f1, f2; |
| 2244 | |
| 2245 | |
| 2246 | if ( e1 < 0 ) |
| 2247 | e1 = 0; |
| 2248 | if ( e2 >= ras.bWidth ) |
| 2249 | e2 = ras.bWidth - 1; |
| 2250 | |
| 2251 | FT_TRACE7(( " -> x=[%ld;%ld]" , e1, e2 )); |
| 2252 | |
| 2253 | c1 = (Short)( e1 >> 3 ); |
| 2254 | c2 = (Short)( e2 >> 3 ); |
| 2255 | |
| 2256 | f1 = (Byte) ( 0xFF >> ( e1 & 7 ) ); |
| 2257 | f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) ); |
| 2258 | |
| 2259 | target = ras.bLine + c1; |
| 2260 | c2 -= c1; |
| 2261 | |
| 2262 | if ( c2 > 0 ) |
| 2263 | { |
| 2264 | target[0] |= f1; |
| 2265 | |
| 2266 | /* memset() is slower than the following code on many platforms. */ |
| 2267 | /* This is due to the fact that, in the vast majority of cases, */ |
| 2268 | /* the span length in bytes is relatively small. */ |
| 2269 | while ( --c2 > 0 ) |
| 2270 | *( ++target ) = 0xFF; |
| 2271 | |
| 2272 | target[1] |= f2; |
| 2273 | } |
| 2274 | else |
| 2275 | *target |= ( f1 & f2 ); |
| 2276 | } |
| 2277 | |
| 2278 | FT_TRACE7(( "\n" )); |
| 2279 | } |
| 2280 | |
| 2281 | |
| 2282 | static void |
| 2283 | Vertical_Sweep_Drop( RAS_ARGS Short y, |
| 2284 | FT_F26Dot6 x1, |
| 2285 | FT_F26Dot6 x2, |
| 2286 | PProfile left, |
| 2287 | PProfile right ) |
| 2288 | { |
| 2289 | Long e1, e2, pxl; |
| 2290 | Short c1, f1; |
| 2291 | |
| 2292 | |
| 2293 | FT_TRACE7(( " y=%d x=[% .12f;% .12f]" , |
| 2294 | y, |
| 2295 | (double)x1 / (double)ras.precision, |
| 2296 | (double)x2 / (double)ras.precision )); |
| 2297 | |
| 2298 | /* Drop-out control */ |
| 2299 | |
| 2300 | /* e2 x2 x1 e1 */ |
| 2301 | /* */ |
| 2302 | /* ^ | */ |
| 2303 | /* | | */ |
| 2304 | /* +-------------+---------------------+------------+ */ |
| 2305 | /* | | */ |
| 2306 | /* | v */ |
| 2307 | /* */ |
| 2308 | /* pixel contour contour pixel */ |
| 2309 | /* center center */ |
| 2310 | |
| 2311 | /* drop-out mode scan conversion rules (as defined in OpenType) */ |
| 2312 | /* --------------------------------------------------------------- */ |
| 2313 | /* 0 1, 2, 3 */ |
| 2314 | /* 1 1, 2, 4 */ |
| 2315 | /* 2 1, 2 */ |
| 2316 | /* 3 same as mode 2 */ |
| 2317 | /* 4 1, 2, 5 */ |
| 2318 | /* 5 1, 2, 6 */ |
| 2319 | /* 6, 7 same as mode 2 */ |
| 2320 | |
| 2321 | e1 = CEILING( x1 ); |
| 2322 | e2 = FLOOR ( x2 ); |
| 2323 | pxl = e1; |
| 2324 | |
| 2325 | if ( e1 > e2 ) |
| 2326 | { |
| 2327 | Int dropOutControl = left->flags & 7; |
| 2328 | |
| 2329 | |
| 2330 | if ( e1 == e2 + ras.precision ) |
| 2331 | { |
| 2332 | switch ( dropOutControl ) |
| 2333 | { |
| 2334 | case 0: /* simple drop-outs including stubs */ |
| 2335 | pxl = e2; |
| 2336 | break; |
| 2337 | |
| 2338 | case 4: /* smart drop-outs including stubs */ |
| 2339 | pxl = SMART( x1, x2 ); |
| 2340 | break; |
| 2341 | |
| 2342 | case 1: /* simple drop-outs excluding stubs */ |
| 2343 | case 5: /* smart drop-outs excluding stubs */ |
| 2344 | |
| 2345 | /* Drop-out Control Rules #4 and #6 */ |
| 2346 | |
| 2347 | /* The specification neither provides an exact definition */ |
| 2348 | /* of a `stub' nor gives exact rules to exclude them. */ |
| 2349 | /* */ |
| 2350 | /* Here the constraints we use to recognize a stub. */ |
| 2351 | /* */ |
| 2352 | /* upper stub: */ |
| 2353 | /* */ |
| 2354 | /* - P_Left and P_Right are in the same contour */ |
| 2355 | /* - P_Right is the successor of P_Left in that contour */ |
| 2356 | /* - y is the top of P_Left and P_Right */ |
| 2357 | /* */ |
| 2358 | /* lower stub: */ |
| 2359 | /* */ |
| 2360 | /* - P_Left and P_Right are in the same contour */ |
| 2361 | /* - P_Left is the successor of P_Right in that contour */ |
| 2362 | /* - y is the bottom of P_Left */ |
| 2363 | /* */ |
| 2364 | /* We draw a stub if the following constraints are met. */ |
| 2365 | /* */ |
| 2366 | /* - for an upper or lower stub, there is top or bottom */ |
| 2367 | /* overshoot, respectively */ |
| 2368 | /* - the covered interval is greater or equal to a half */ |
| 2369 | /* pixel */ |
| 2370 | |
| 2371 | /* upper stub test */ |
| 2372 | if ( left->next == right && |
| 2373 | left->height <= 0 && |
| 2374 | !( left->flags & Overshoot_Top && |
| 2375 | x2 - x1 >= ras.precision_half ) ) |
| 2376 | goto Exit; |
| 2377 | |
| 2378 | /* lower stub test */ |
| 2379 | if ( right->next == left && |
| 2380 | left->start == y && |
| 2381 | !( left->flags & Overshoot_Bottom && |
| 2382 | x2 - x1 >= ras.precision_half ) ) |
| 2383 | goto Exit; |
| 2384 | |
| 2385 | if ( dropOutControl == 1 ) |
| 2386 | pxl = e2; |
| 2387 | else |
| 2388 | pxl = SMART( x1, x2 ); |
| 2389 | break; |
| 2390 | |
| 2391 | default: /* modes 2, 3, 6, 7 */ |
| 2392 | goto Exit; /* no drop-out control */ |
| 2393 | } |
| 2394 | |
| 2395 | /* undocumented but confirmed: If the drop-out would result in a */ |
| 2396 | /* pixel outside of the bounding box, use the pixel inside of the */ |
| 2397 | /* bounding box instead */ |
| 2398 | if ( pxl < 0 ) |
| 2399 | pxl = e1; |
| 2400 | else if ( TRUNC( pxl ) >= ras.bWidth ) |
| 2401 | pxl = e2; |
| 2402 | |
| 2403 | /* check that the other pixel isn't set */ |
| 2404 | e1 = ( pxl == e1 ) ? e2 : e1; |
| 2405 | |
| 2406 | e1 = TRUNC( e1 ); |
| 2407 | |
| 2408 | c1 = (Short)( e1 >> 3 ); |
| 2409 | f1 = (Short)( e1 & 7 ); |
| 2410 | |
| 2411 | if ( e1 >= 0 && e1 < ras.bWidth && |
| 2412 | ras.bLine[c1] & ( 0x80 >> f1 ) ) |
| 2413 | goto Exit; |
| 2414 | } |
| 2415 | else |
| 2416 | goto Exit; |
| 2417 | } |
| 2418 | |
| 2419 | e1 = TRUNC( pxl ); |
| 2420 | |
| 2421 | if ( e1 >= 0 && e1 < ras.bWidth ) |
| 2422 | { |
| 2423 | FT_TRACE7(( " -> x=%ld" , e1 )); |
| 2424 | |
| 2425 | c1 = (Short)( e1 >> 3 ); |
| 2426 | f1 = (Short)( e1 & 7 ); |
| 2427 | |
| 2428 | ras.bLine[c1] |= (char)( 0x80 >> f1 ); |
| 2429 | } |
| 2430 | |
| 2431 | Exit: |
| 2432 | FT_TRACE7(( " dropout=%d\n" , left->flags & 7 )); |
| 2433 | } |
| 2434 | |
| 2435 | |
| 2436 | static void |
| 2437 | Vertical_Sweep_Step( RAS_ARG ) |
| 2438 | { |
| 2439 | ras.bLine -= ras.target.pitch; |
| 2440 | } |
| 2441 | |
| 2442 | |
| 2443 | /************************************************************************ |
| 2444 | * |
| 2445 | * Horizontal Sweep Procedure Set |
| 2446 | * |
| 2447 | * These four routines are used during the horizontal black/white |
| 2448 | * sweep phase by the generic Draw_Sweep() function. |
| 2449 | * |
| 2450 | */ |
| 2451 | |
| 2452 | static void |
| 2453 | Horizontal_Sweep_Init( RAS_ARGS Short min, |
| 2454 | Short max ) |
| 2455 | { |
| 2456 | /* nothing, really */ |
| 2457 | FT_UNUSED_RASTER; |
| 2458 | FT_UNUSED( min ); |
| 2459 | FT_UNUSED( max ); |
| 2460 | } |
| 2461 | |
| 2462 | |
| 2463 | static void |
| 2464 | Horizontal_Sweep_Span( RAS_ARGS Short y, |
| 2465 | FT_F26Dot6 x1, |
| 2466 | FT_F26Dot6 x2, |
| 2467 | PProfile left, |
| 2468 | PProfile right ) |
| 2469 | { |
| 2470 | Long e1, e2; |
| 2471 | |
| 2472 | FT_UNUSED( left ); |
| 2473 | FT_UNUSED( right ); |
| 2474 | |
| 2475 | |
| 2476 | FT_TRACE7(( " x=%d y=[% .12f;% .12f]" , |
| 2477 | y, |
| 2478 | (double)x1 / (double)ras.precision, |
| 2479 | (double)x2 / (double)ras.precision )); |
| 2480 | |
| 2481 | /* We should not need this procedure but the vertical sweep */ |
| 2482 | /* mishandles horizontal lines through pixel centers. So we */ |
| 2483 | /* have to check perfectly aligned span edges here. */ |
| 2484 | /* */ |
| 2485 | /* XXX: Can we handle horizontal lines better and drop this? */ |
| 2486 | |
| 2487 | e1 = CEILING( x1 ); |
| 2488 | |
| 2489 | if ( x1 == e1 ) |
| 2490 | { |
| 2491 | e1 = TRUNC( e1 ); |
| 2492 | |
| 2493 | if ( e1 >= 0 && (ULong)e1 < ras.target.rows ) |
| 2494 | { |
| 2495 | Byte f1; |
| 2496 | PByte bits; |
| 2497 | |
| 2498 | |
| 2499 | bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch; |
| 2500 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
| 2501 | |
| 2502 | FT_TRACE7(( bits[0] & f1 ? " redundant" |
| 2503 | : " -> y=%ld edge" , e1 )); |
| 2504 | |
| 2505 | bits[0] |= f1; |
| 2506 | } |
| 2507 | } |
| 2508 | |
| 2509 | e2 = FLOOR ( x2 ); |
| 2510 | |
| 2511 | if ( x2 == e2 ) |
| 2512 | { |
| 2513 | e2 = TRUNC( e2 ); |
| 2514 | |
| 2515 | if ( e2 >= 0 && (ULong)e2 < ras.target.rows ) |
| 2516 | { |
| 2517 | Byte f1; |
| 2518 | PByte bits; |
| 2519 | |
| 2520 | |
| 2521 | bits = ras.bOrigin + ( y >> 3 ) - e2 * ras.target.pitch; |
| 2522 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
| 2523 | |
| 2524 | FT_TRACE7(( bits[0] & f1 ? " redundant" |
| 2525 | : " -> y=%ld edge" , e2 )); |
| 2526 | |
| 2527 | bits[0] |= f1; |
| 2528 | } |
| 2529 | } |
| 2530 | |
| 2531 | FT_TRACE7(( "\n" )); |
| 2532 | } |
| 2533 | |
| 2534 | |
| 2535 | static void |
| 2536 | Horizontal_Sweep_Drop( RAS_ARGS Short y, |
| 2537 | FT_F26Dot6 x1, |
| 2538 | FT_F26Dot6 x2, |
| 2539 | PProfile left, |
| 2540 | PProfile right ) |
| 2541 | { |
| 2542 | Long e1, e2, pxl; |
| 2543 | PByte bits; |
| 2544 | Byte f1; |
| 2545 | |
| 2546 | |
| 2547 | FT_TRACE7(( " x=%d y=[% .12f;% .12f]" , |
| 2548 | y, |
| 2549 | (double)x1 / (double)ras.precision, |
| 2550 | (double)x2 / (double)ras.precision )); |
| 2551 | |
| 2552 | /* During the horizontal sweep, we only take care of drop-outs */ |
| 2553 | |
| 2554 | /* e1 + <-- pixel center */ |
| 2555 | /* | */ |
| 2556 | /* x1 ---+--> <-- contour */ |
| 2557 | /* | */ |
| 2558 | /* | */ |
| 2559 | /* x2 <--+--- <-- contour */ |
| 2560 | /* | */ |
| 2561 | /* | */ |
| 2562 | /* e2 + <-- pixel center */ |
| 2563 | |
| 2564 | e1 = CEILING( x1 ); |
| 2565 | e2 = FLOOR ( x2 ); |
| 2566 | pxl = e1; |
| 2567 | |
| 2568 | if ( e1 > e2 ) |
| 2569 | { |
| 2570 | Int dropOutControl = left->flags & 7; |
| 2571 | |
| 2572 | |
| 2573 | if ( e1 == e2 + ras.precision ) |
| 2574 | { |
| 2575 | switch ( dropOutControl ) |
| 2576 | { |
| 2577 | case 0: /* simple drop-outs including stubs */ |
| 2578 | pxl = e2; |
| 2579 | break; |
| 2580 | |
| 2581 | case 4: /* smart drop-outs including stubs */ |
| 2582 | pxl = SMART( x1, x2 ); |
| 2583 | break; |
| 2584 | |
| 2585 | case 1: /* simple drop-outs excluding stubs */ |
| 2586 | case 5: /* smart drop-outs excluding stubs */ |
| 2587 | /* see Vertical_Sweep_Drop for details */ |
| 2588 | |
| 2589 | /* rightmost stub test */ |
| 2590 | if ( left->next == right && |
| 2591 | left->height <= 0 && |
| 2592 | !( left->flags & Overshoot_Top && |
| 2593 | x2 - x1 >= ras.precision_half ) ) |
| 2594 | goto Exit; |
| 2595 | |
| 2596 | /* leftmost stub test */ |
| 2597 | if ( right->next == left && |
| 2598 | left->start == y && |
| 2599 | !( left->flags & Overshoot_Bottom && |
| 2600 | x2 - x1 >= ras.precision_half ) ) |
| 2601 | goto Exit; |
| 2602 | |
| 2603 | if ( dropOutControl == 1 ) |
| 2604 | pxl = e2; |
| 2605 | else |
| 2606 | pxl = SMART( x1, x2 ); |
| 2607 | break; |
| 2608 | |
| 2609 | default: /* modes 2, 3, 6, 7 */ |
| 2610 | goto Exit; /* no drop-out control */ |
| 2611 | } |
| 2612 | |
| 2613 | /* undocumented but confirmed: If the drop-out would result in a */ |
| 2614 | /* pixel outside of the bounding box, use the pixel inside of the */ |
| 2615 | /* bounding box instead */ |
| 2616 | if ( pxl < 0 ) |
| 2617 | pxl = e1; |
| 2618 | else if ( (ULong)( TRUNC( pxl ) ) >= ras.target.rows ) |
| 2619 | pxl = e2; |
| 2620 | |
| 2621 | /* check that the other pixel isn't set */ |
| 2622 | e1 = ( pxl == e1 ) ? e2 : e1; |
| 2623 | |
| 2624 | e1 = TRUNC( e1 ); |
| 2625 | |
| 2626 | bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch; |
| 2627 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
| 2628 | |
| 2629 | if ( e1 >= 0 && |
| 2630 | (ULong)e1 < ras.target.rows && |
| 2631 | *bits & f1 ) |
| 2632 | goto Exit; |
| 2633 | } |
| 2634 | else |
| 2635 | goto Exit; |
| 2636 | } |
| 2637 | |
| 2638 | e1 = TRUNC( pxl ); |
| 2639 | |
| 2640 | if ( e1 >= 0 && (ULong)e1 < ras.target.rows ) |
| 2641 | { |
| 2642 | FT_TRACE7(( " -> y=%ld" , e1 )); |
| 2643 | |
| 2644 | bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch; |
| 2645 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); |
| 2646 | |
| 2647 | bits[0] |= f1; |
| 2648 | } |
| 2649 | |
| 2650 | Exit: |
| 2651 | FT_TRACE7(( " dropout=%d\n" , left->flags & 7 )); |
| 2652 | } |
| 2653 | |
| 2654 | |
| 2655 | static void |
| 2656 | Horizontal_Sweep_Step( RAS_ARG ) |
| 2657 | { |
| 2658 | /* Nothing, really */ |
| 2659 | FT_UNUSED_RASTER; |
| 2660 | } |
| 2661 | |
| 2662 | |
| 2663 | /************************************************************************** |
| 2664 | * |
| 2665 | * Generic Sweep Drawing routine |
| 2666 | * |
| 2667 | */ |
| 2668 | |
| 2669 | static Bool |
| 2670 | Draw_Sweep( RAS_ARG ) |
| 2671 | { |
| 2672 | Short y, y_change, y_height; |
| 2673 | |
| 2674 | PProfile P, Q, P_Left, P_Right; |
| 2675 | |
| 2676 | Short min_Y, max_Y, top, bottom, dropouts; |
| 2677 | |
| 2678 | Long x1, x2, xs, e1, e2; |
| 2679 | |
| 2680 | TProfileList waiting; |
| 2681 | TProfileList draw_left, draw_right; |
| 2682 | |
| 2683 | |
| 2684 | /* initialize empty linked lists */ |
| 2685 | |
| 2686 | Init_Linked( &waiting ); |
| 2687 | |
| 2688 | Init_Linked( &draw_left ); |
| 2689 | Init_Linked( &draw_right ); |
| 2690 | |
| 2691 | /* first, compute min and max Y */ |
| 2692 | |
| 2693 | P = ras.fProfile; |
| 2694 | max_Y = (Short)TRUNC( ras.minY ); |
| 2695 | min_Y = (Short)TRUNC( ras.maxY ); |
| 2696 | |
| 2697 | while ( P ) |
| 2698 | { |
| 2699 | Q = P->link; |
| 2700 | |
| 2701 | bottom = (Short)P->start; |
| 2702 | top = (Short)( P->start + P->height - 1 ); |
| 2703 | |
| 2704 | if ( min_Y > bottom ) |
| 2705 | min_Y = bottom; |
| 2706 | if ( max_Y < top ) |
| 2707 | max_Y = top; |
| 2708 | |
| 2709 | P->X = 0; |
| 2710 | InsNew( &waiting, P ); |
| 2711 | |
| 2712 | P = Q; |
| 2713 | } |
| 2714 | |
| 2715 | /* check the Y-turns */ |
| 2716 | if ( ras.numTurns == 0 ) |
| 2717 | { |
| 2718 | ras.error = FT_THROW( Invalid_Outline ); |
| 2719 | return FAILURE; |
| 2720 | } |
| 2721 | |
| 2722 | /* now initialize the sweep */ |
| 2723 | |
| 2724 | ras.Proc_Sweep_Init( RAS_VARS min_Y, max_Y ); |
| 2725 | |
| 2726 | /* then compute the distance of each profile from min_Y */ |
| 2727 | |
| 2728 | P = waiting; |
| 2729 | |
| 2730 | while ( P ) |
| 2731 | { |
| 2732 | P->countL = P->start - min_Y; |
| 2733 | P = P->link; |
| 2734 | } |
| 2735 | |
| 2736 | /* let's go */ |
| 2737 | |
| 2738 | y = min_Y; |
| 2739 | y_height = 0; |
| 2740 | |
| 2741 | if ( ras.numTurns > 0 && |
| 2742 | ras.sizeBuff[-ras.numTurns] == min_Y ) |
| 2743 | ras.numTurns--; |
| 2744 | |
| 2745 | while ( ras.numTurns > 0 ) |
| 2746 | { |
| 2747 | /* check waiting list for new activations */ |
| 2748 | |
| 2749 | P = waiting; |
| 2750 | |
| 2751 | while ( P ) |
| 2752 | { |
| 2753 | Q = P->link; |
| 2754 | P->countL -= y_height; |
| 2755 | if ( P->countL == 0 ) |
| 2756 | { |
| 2757 | DelOld( &waiting, P ); |
| 2758 | |
| 2759 | if ( P->flags & Flow_Up ) |
| 2760 | InsNew( &draw_left, P ); |
| 2761 | else |
| 2762 | InsNew( &draw_right, P ); |
| 2763 | } |
| 2764 | |
| 2765 | P = Q; |
| 2766 | } |
| 2767 | |
| 2768 | /* sort the drawing lists */ |
| 2769 | |
| 2770 | Sort( &draw_left ); |
| 2771 | Sort( &draw_right ); |
| 2772 | |
| 2773 | y_change = (Short)ras.sizeBuff[-ras.numTurns--]; |
| 2774 | y_height = (Short)( y_change - y ); |
| 2775 | |
| 2776 | while ( y < y_change ) |
| 2777 | { |
| 2778 | /* let's trace */ |
| 2779 | |
| 2780 | dropouts = 0; |
| 2781 | |
| 2782 | P_Left = draw_left; |
| 2783 | P_Right = draw_right; |
| 2784 | |
| 2785 | while ( P_Left && P_Right ) |
| 2786 | { |
| 2787 | x1 = P_Left ->X; |
| 2788 | x2 = P_Right->X; |
| 2789 | |
| 2790 | if ( x1 > x2 ) |
| 2791 | { |
| 2792 | xs = x1; |
| 2793 | x1 = x2; |
| 2794 | x2 = xs; |
| 2795 | } |
| 2796 | |
| 2797 | e1 = FLOOR( x1 ); |
| 2798 | e2 = CEILING( x2 ); |
| 2799 | |
| 2800 | if ( x2 - x1 <= ras.precision && |
| 2801 | e1 != x1 && e2 != x2 ) |
| 2802 | { |
| 2803 | if ( e1 > e2 || e2 == e1 + ras.precision ) |
| 2804 | { |
| 2805 | Int dropOutControl = P_Left->flags & 7; |
| 2806 | |
| 2807 | |
| 2808 | if ( dropOutControl != 2 ) |
| 2809 | { |
| 2810 | /* a drop-out was detected */ |
| 2811 | |
| 2812 | P_Left ->X = x1; |
| 2813 | P_Right->X = x2; |
| 2814 | |
| 2815 | /* mark profile for drop-out processing */ |
| 2816 | P_Left->countL = 1; |
| 2817 | dropouts++; |
| 2818 | } |
| 2819 | |
| 2820 | goto Skip_To_Next; |
| 2821 | } |
| 2822 | } |
| 2823 | |
| 2824 | ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right ); |
| 2825 | |
| 2826 | Skip_To_Next: |
| 2827 | |
| 2828 | P_Left = P_Left->link; |
| 2829 | P_Right = P_Right->link; |
| 2830 | } |
| 2831 | |
| 2832 | /* handle drop-outs _after_ the span drawing -- */ |
| 2833 | /* drop-out processing has been moved out of the loop */ |
| 2834 | /* for performance tuning */ |
| 2835 | if ( dropouts > 0 ) |
| 2836 | goto Scan_DropOuts; |
| 2837 | |
| 2838 | Next_Line: |
| 2839 | |
| 2840 | ras.Proc_Sweep_Step( RAS_VAR ); |
| 2841 | |
| 2842 | y++; |
| 2843 | |
| 2844 | if ( y < y_change ) |
| 2845 | { |
| 2846 | Sort( &draw_left ); |
| 2847 | Sort( &draw_right ); |
| 2848 | } |
| 2849 | } |
| 2850 | |
| 2851 | /* now finalize the profiles that need it */ |
| 2852 | |
| 2853 | P = draw_left; |
| 2854 | while ( P ) |
| 2855 | { |
| 2856 | Q = P->link; |
| 2857 | if ( P->height == 0 ) |
| 2858 | DelOld( &draw_left, P ); |
| 2859 | P = Q; |
| 2860 | } |
| 2861 | |
| 2862 | P = draw_right; |
| 2863 | while ( P ) |
| 2864 | { |
| 2865 | Q = P->link; |
| 2866 | if ( P->height == 0 ) |
| 2867 | DelOld( &draw_right, P ); |
| 2868 | P = Q; |
| 2869 | } |
| 2870 | } |
| 2871 | |
| 2872 | /* for gray-scaling, flush the bitmap scanline cache */ |
| 2873 | while ( y <= max_Y ) |
| 2874 | { |
| 2875 | ras.Proc_Sweep_Step( RAS_VAR ); |
| 2876 | y++; |
| 2877 | } |
| 2878 | |
| 2879 | return SUCCESS; |
| 2880 | |
| 2881 | Scan_DropOuts: |
| 2882 | |
| 2883 | P_Left = draw_left; |
| 2884 | P_Right = draw_right; |
| 2885 | |
| 2886 | while ( P_Left && P_Right ) |
| 2887 | { |
| 2888 | if ( P_Left->countL ) |
| 2889 | { |
| 2890 | P_Left->countL = 0; |
| 2891 | #if 0 |
| 2892 | dropouts--; /* -- this is useful when debugging only */ |
| 2893 | #endif |
| 2894 | ras.Proc_Sweep_Drop( RAS_VARS y, |
| 2895 | P_Left->X, |
| 2896 | P_Right->X, |
| 2897 | P_Left, |
| 2898 | P_Right ); |
| 2899 | } |
| 2900 | |
| 2901 | P_Left = P_Left->link; |
| 2902 | P_Right = P_Right->link; |
| 2903 | } |
| 2904 | |
| 2905 | goto Next_Line; |
| 2906 | } |
| 2907 | |
| 2908 | |
| 2909 | #ifdef STANDALONE_ |
| 2910 | |
| 2911 | /************************************************************************** |
| 2912 | * |
| 2913 | * The following functions should only compile in stand-alone mode, |
| 2914 | * i.e., when building this component without the rest of FreeType. |
| 2915 | * |
| 2916 | */ |
| 2917 | |
| 2918 | /************************************************************************** |
| 2919 | * |
| 2920 | * @Function: |
| 2921 | * FT_Outline_Get_CBox |
| 2922 | * |
| 2923 | * @Description: |
| 2924 | * Return an outline's `control box'. The control box encloses all |
| 2925 | * the outline's points, including Bézier control points. Though it |
| 2926 | * coincides with the exact bounding box for most glyphs, it can be |
| 2927 | * slightly larger in some situations (like when rotating an outline |
| 2928 | * that contains Bézier outside arcs). |
| 2929 | * |
| 2930 | * Computing the control box is very fast, while getting the bounding |
| 2931 | * box can take much more time as it needs to walk over all segments |
| 2932 | * and arcs in the outline. To get the latter, you can use the |
| 2933 | * `ftbbox' component, which is dedicated to this single task. |
| 2934 | * |
| 2935 | * @Input: |
| 2936 | * outline :: |
| 2937 | * A pointer to the source outline descriptor. |
| 2938 | * |
| 2939 | * @Output: |
| 2940 | * acbox :: |
| 2941 | * The outline's control box. |
| 2942 | * |
| 2943 | * @Note: |
| 2944 | * See @FT_Glyph_Get_CBox for a discussion of tricky fonts. |
| 2945 | */ |
| 2946 | |
| 2947 | static void |
| 2948 | FT_Outline_Get_CBox( const FT_Outline* outline, |
| 2949 | FT_BBox *acbox ) |
| 2950 | { |
| 2951 | if ( outline && acbox ) |
| 2952 | { |
| 2953 | Long xMin, yMin, xMax, yMax; |
| 2954 | |
| 2955 | |
| 2956 | if ( outline->n_points == 0 ) |
| 2957 | { |
| 2958 | xMin = 0; |
| 2959 | yMin = 0; |
| 2960 | xMax = 0; |
| 2961 | yMax = 0; |
| 2962 | } |
| 2963 | else |
| 2964 | { |
| 2965 | FT_Vector* vec = outline->points; |
| 2966 | FT_Vector* limit = vec + outline->n_points; |
| 2967 | |
| 2968 | |
| 2969 | xMin = xMax = vec->x; |
| 2970 | yMin = yMax = vec->y; |
| 2971 | vec++; |
| 2972 | |
| 2973 | for ( ; vec < limit; vec++ ) |
| 2974 | { |
| 2975 | Long x, y; |
| 2976 | |
| 2977 | |
| 2978 | x = vec->x; |
| 2979 | if ( x < xMin ) xMin = x; |
| 2980 | if ( x > xMax ) xMax = x; |
| 2981 | |
| 2982 | y = vec->y; |
| 2983 | if ( y < yMin ) yMin = y; |
| 2984 | if ( y > yMax ) yMax = y; |
| 2985 | } |
| 2986 | } |
| 2987 | acbox->xMin = xMin; |
| 2988 | acbox->xMax = xMax; |
| 2989 | acbox->yMin = yMin; |
| 2990 | acbox->yMax = yMax; |
| 2991 | } |
| 2992 | } |
| 2993 | |
| 2994 | #endif /* STANDALONE_ */ |
| 2995 | |
| 2996 | |
| 2997 | /************************************************************************** |
| 2998 | * |
| 2999 | * @Function: |
| 3000 | * Render_Single_Pass |
| 3001 | * |
| 3002 | * @Description: |
| 3003 | * Perform one sweep with sub-banding. |
| 3004 | * |
| 3005 | * @Input: |
| 3006 | * flipped :: |
| 3007 | * If set, flip the direction of the outline. |
| 3008 | * |
| 3009 | * @Return: |
| 3010 | * Renderer error code. |
| 3011 | */ |
| 3012 | static int |
| 3013 | Render_Single_Pass( RAS_ARGS Bool flipped, |
| 3014 | Int y_min, |
| 3015 | Int y_max ) |
| 3016 | { |
| 3017 | Int y_mid; |
| 3018 | Int band_top = 0; |
| 3019 | Int band_stack[32]; /* enough to bisect 32-bit int bands */ |
| 3020 | |
| 3021 | |
| 3022 | while ( 1 ) |
| 3023 | { |
| 3024 | ras.minY = (Long)y_min * ras.precision; |
| 3025 | ras.maxY = (Long)y_max * ras.precision; |
| 3026 | |
| 3027 | ras.top = ras.buff; |
| 3028 | |
| 3029 | ras.error = Raster_Err_Ok; |
| 3030 | |
| 3031 | if ( Convert_Glyph( RAS_VARS flipped ) ) |
| 3032 | { |
| 3033 | if ( ras.error != Raster_Err_Raster_Overflow ) |
| 3034 | return ras.error; |
| 3035 | |
| 3036 | /* sub-banding */ |
| 3037 | |
| 3038 | if ( y_min == y_max ) |
| 3039 | return ras.error; /* still Raster_Overflow */ |
| 3040 | |
| 3041 | y_mid = ( y_min + y_max ) >> 1; |
| 3042 | |
| 3043 | band_stack[band_top++] = y_min; |
| 3044 | y_min = y_mid + 1; |
| 3045 | } |
| 3046 | else |
| 3047 | { |
| 3048 | if ( ras.fProfile ) |
| 3049 | if ( Draw_Sweep( RAS_VAR ) ) |
| 3050 | return ras.error; |
| 3051 | |
| 3052 | if ( --band_top < 0 ) |
| 3053 | break; |
| 3054 | |
| 3055 | y_max = y_min - 1; |
| 3056 | y_min = band_stack[band_top]; |
| 3057 | } |
| 3058 | } |
| 3059 | |
| 3060 | return Raster_Err_Ok; |
| 3061 | } |
| 3062 | |
| 3063 | |
| 3064 | /************************************************************************** |
| 3065 | * |
| 3066 | * @Function: |
| 3067 | * Render_Glyph |
| 3068 | * |
| 3069 | * @Description: |
| 3070 | * Render a glyph in a bitmap. Sub-banding if needed. |
| 3071 | * |
| 3072 | * @Return: |
| 3073 | * FreeType error code. 0 means success. |
| 3074 | */ |
| 3075 | static FT_Error |
| 3076 | Render_Glyph( RAS_ARG ) |
| 3077 | { |
| 3078 | FT_Error error; |
| 3079 | |
| 3080 | |
| 3081 | Set_High_Precision( RAS_VARS ras.outline.flags & |
| 3082 | FT_OUTLINE_HIGH_PRECISION ); |
| 3083 | |
| 3084 | if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS ) |
| 3085 | ras.dropOutControl = 2; |
| 3086 | else |
| 3087 | { |
| 3088 | if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS ) |
| 3089 | ras.dropOutControl = 4; |
| 3090 | else |
| 3091 | ras.dropOutControl = 0; |
| 3092 | |
| 3093 | if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) ) |
| 3094 | ras.dropOutControl += 1; |
| 3095 | } |
| 3096 | |
| 3097 | /* Vertical Sweep */ |
| 3098 | FT_TRACE7(( "Vertical pass (ftraster)\n" )); |
| 3099 | |
| 3100 | ras.Proc_Sweep_Init = Vertical_Sweep_Init; |
| 3101 | ras.Proc_Sweep_Span = Vertical_Sweep_Span; |
| 3102 | ras.Proc_Sweep_Drop = Vertical_Sweep_Drop; |
| 3103 | ras.Proc_Sweep_Step = Vertical_Sweep_Step; |
| 3104 | |
| 3105 | ras.bWidth = (UShort)ras.target.width; |
| 3106 | ras.bOrigin = (Byte*)ras.target.buffer; |
| 3107 | |
| 3108 | if ( ras.target.pitch > 0 ) |
| 3109 | ras.bOrigin += (Long)( ras.target.rows - 1 ) * ras.target.pitch; |
| 3110 | |
| 3111 | error = Render_Single_Pass( RAS_VARS 0, 0, (Int)ras.target.rows - 1 ); |
| 3112 | if ( error ) |
| 3113 | return error; |
| 3114 | |
| 3115 | /* Horizontal Sweep */ |
| 3116 | if ( !( ras.outline.flags & FT_OUTLINE_SINGLE_PASS ) ) |
| 3117 | { |
| 3118 | FT_TRACE7(( "Horizontal pass (ftraster)\n" )); |
| 3119 | |
| 3120 | ras.Proc_Sweep_Init = Horizontal_Sweep_Init; |
| 3121 | ras.Proc_Sweep_Span = Horizontal_Sweep_Span; |
| 3122 | ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop; |
| 3123 | ras.Proc_Sweep_Step = Horizontal_Sweep_Step; |
| 3124 | |
| 3125 | error = Render_Single_Pass( RAS_VARS 1, 0, (Int)ras.target.width - 1 ); |
| 3126 | if ( error ) |
| 3127 | return error; |
| 3128 | } |
| 3129 | |
| 3130 | return Raster_Err_Ok; |
| 3131 | } |
| 3132 | |
| 3133 | |
| 3134 | /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ |
| 3135 | /**** a static object. *****/ |
| 3136 | |
| 3137 | |
| 3138 | #ifdef STANDALONE_ |
| 3139 | |
| 3140 | |
| 3141 | static int |
| 3142 | ft_black_new( void* memory, |
| 3143 | FT_Raster *araster ) |
| 3144 | { |
| 3145 | static black_TRaster the_raster; |
| 3146 | FT_UNUSED( memory ); |
| 3147 | |
| 3148 | |
| 3149 | *araster = (FT_Raster)&the_raster; |
| 3150 | FT_ZERO( &the_raster ); |
| 3151 | |
| 3152 | return 0; |
| 3153 | } |
| 3154 | |
| 3155 | |
| 3156 | static void |
| 3157 | ft_black_done( FT_Raster raster ) |
| 3158 | { |
| 3159 | /* nothing */ |
| 3160 | FT_UNUSED( raster ); |
| 3161 | } |
| 3162 | |
| 3163 | |
| 3164 | #else /* !STANDALONE_ */ |
| 3165 | |
| 3166 | |
| 3167 | static int |
| 3168 | ft_black_new( void* memory_, /* FT_Memory */ |
| 3169 | FT_Raster *araster_ ) /* black_PRaster */ |
| 3170 | { |
| 3171 | FT_Memory memory = (FT_Memory)memory_; |
| 3172 | black_PRaster *araster = (black_PRaster*)araster_; |
| 3173 | |
| 3174 | FT_Error error; |
| 3175 | black_PRaster raster = NULL; |
| 3176 | |
| 3177 | |
| 3178 | if ( !FT_NEW( raster ) ) |
| 3179 | raster->memory = memory; |
| 3180 | |
| 3181 | *araster = raster; |
| 3182 | |
| 3183 | return error; |
| 3184 | } |
| 3185 | |
| 3186 | |
| 3187 | static void |
| 3188 | ft_black_done( FT_Raster raster_ ) /* black_PRaster */ |
| 3189 | { |
| 3190 | black_PRaster raster = (black_PRaster)raster_; |
| 3191 | FT_Memory memory = (FT_Memory)raster->memory; |
| 3192 | |
| 3193 | |
| 3194 | FT_FREE( raster ); |
| 3195 | } |
| 3196 | |
| 3197 | |
| 3198 | #endif /* !STANDALONE_ */ |
| 3199 | |
| 3200 | |
| 3201 | static void |
| 3202 | ft_black_reset( FT_Raster raster, |
| 3203 | PByte pool_base, |
| 3204 | ULong pool_size ) |
| 3205 | { |
| 3206 | FT_UNUSED( raster ); |
| 3207 | FT_UNUSED( pool_base ); |
| 3208 | FT_UNUSED( pool_size ); |
| 3209 | } |
| 3210 | |
| 3211 | |
| 3212 | static int |
| 3213 | ft_black_set_mode( FT_Raster raster, |
| 3214 | ULong mode, |
| 3215 | void* args ) |
| 3216 | { |
| 3217 | FT_UNUSED( raster ); |
| 3218 | FT_UNUSED( mode ); |
| 3219 | FT_UNUSED( args ); |
| 3220 | |
| 3221 | return 0; |
| 3222 | } |
| 3223 | |
| 3224 | |
| 3225 | static int |
| 3226 | ft_black_render( FT_Raster raster, |
| 3227 | const FT_Raster_Params* params ) |
| 3228 | { |
| 3229 | const FT_Outline* outline = (const FT_Outline*)params->source; |
| 3230 | const FT_Bitmap* target_map = params->target; |
| 3231 | |
| 3232 | #ifndef FT_STATIC_RASTER |
| 3233 | black_TWorker worker[1]; |
| 3234 | #endif |
| 3235 | |
| 3236 | Long buffer[FT_MAX_BLACK_POOL]; |
| 3237 | |
| 3238 | |
| 3239 | if ( !raster ) |
| 3240 | return FT_THROW( Raster_Uninitialized ); |
| 3241 | |
| 3242 | if ( !outline ) |
| 3243 | return FT_THROW( Invalid_Outline ); |
| 3244 | |
| 3245 | /* return immediately if the outline is empty */ |
| 3246 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| 3247 | return Raster_Err_Ok; |
| 3248 | |
| 3249 | if ( !outline->contours || !outline->points ) |
| 3250 | return FT_THROW( Invalid_Outline ); |
| 3251 | |
| 3252 | if ( outline->n_points != |
| 3253 | outline->contours[outline->n_contours - 1] + 1 ) |
| 3254 | return FT_THROW( Invalid_Outline ); |
| 3255 | |
| 3256 | /* this version of the raster does not support direct rendering, sorry */ |
| 3257 | if ( params->flags & FT_RASTER_FLAG_DIRECT || |
| 3258 | params->flags & FT_RASTER_FLAG_AA ) |
| 3259 | return FT_THROW( Cannot_Render_Glyph ); |
| 3260 | |
| 3261 | if ( !target_map ) |
| 3262 | return FT_THROW( Invalid_Argument ); |
| 3263 | |
| 3264 | /* nothing to do */ |
| 3265 | if ( !target_map->width || !target_map->rows ) |
| 3266 | return Raster_Err_Ok; |
| 3267 | |
| 3268 | if ( !target_map->buffer ) |
| 3269 | return FT_THROW( Invalid_Argument ); |
| 3270 | |
| 3271 | ras.outline = *outline; |
| 3272 | ras.target = *target_map; |
| 3273 | |
| 3274 | ras.buff = buffer; |
| 3275 | ras.sizeBuff = (&buffer)[1]; /* Points to right after buffer. */ |
| 3276 | |
| 3277 | return Render_Glyph( RAS_VAR ); |
| 3278 | } |
| 3279 | |
| 3280 | |
| 3281 | FT_DEFINE_RASTER_FUNCS( |
| 3282 | ft_standard_raster, |
| 3283 | |
| 3284 | FT_GLYPH_FORMAT_OUTLINE, |
| 3285 | |
| 3286 | ft_black_new, /* FT_Raster_New_Func raster_new */ |
| 3287 | ft_black_reset, /* FT_Raster_Reset_Func raster_reset */ |
| 3288 | ft_black_set_mode, /* FT_Raster_Set_Mode_Func raster_set_mode */ |
| 3289 | ft_black_render, /* FT_Raster_Render_Func raster_render */ |
| 3290 | ft_black_done /* FT_Raster_Done_Func raster_done */ |
| 3291 | ) |
| 3292 | |
| 3293 | |
| 3294 | /* END */ |
| 3295 | |