| 1 | /**************************************************************************** |
| 2 | * |
| 3 | * ftbsdf.c |
| 4 | * |
| 5 | * Signed Distance Field support for bitmap fonts (body only). |
| 6 | * |
| 7 | * Copyright (C) 2020-2023 by |
| 8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
| 9 | * |
| 10 | * Written by Anuj Verma. |
| 11 | * |
| 12 | * This file is part of the FreeType project, and may only be used, |
| 13 | * modified, and distributed under the terms of the FreeType project |
| 14 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| 15 | * this file you indicate that you have read the license and |
| 16 | * understand and accept it fully. |
| 17 | * |
| 18 | */ |
| 19 | |
| 20 | |
| 21 | #include <freetype/internal/ftobjs.h> |
| 22 | #include <freetype/internal/ftdebug.h> |
| 23 | #include <freetype/internal/ftmemory.h> |
| 24 | #include <freetype/fttrigon.h> |
| 25 | |
| 26 | #include "ftsdf.h" |
| 27 | #include "ftsdferrs.h" |
| 28 | #include "ftsdfcommon.h" |
| 29 | |
| 30 | |
| 31 | /************************************************************************** |
| 32 | * |
| 33 | * A brief technical overview of how the BSDF rasterizer works |
| 34 | * ----------------------------------------------------------- |
| 35 | * |
| 36 | * [Notes]: |
| 37 | * * SDF stands for Signed Distance Field everywhere. |
| 38 | * |
| 39 | * * BSDF stands for Bitmap to Signed Distance Field rasterizer. |
| 40 | * |
| 41 | * * This renderer converts rasterized bitmaps to SDF. There is another |
| 42 | * renderer called 'sdf', which generates SDF directly from outlines; |
| 43 | * see file `ftsdf.c` for more. |
| 44 | * |
| 45 | * * The idea of generating SDF from bitmaps is taken from two research |
| 46 | * papers, where one is dependent on the other: |
| 47 | * |
| 48 | * - Per-Erik Danielsson: Euclidean Distance Mapping |
| 49 | * http://webstaff.itn.liu.se/~stegu/JFA/Danielsson.pdf |
| 50 | * |
| 51 | * From this paper we use the eight-point sequential Euclidean |
| 52 | * distance mapping (8SED). This is the heart of the process used |
| 53 | * in this rasterizer. |
| 54 | * |
| 55 | * - Stefan Gustavson, Robin Strand: Anti-aliased Euclidean distance transform. |
| 56 | * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf |
| 57 | * |
| 58 | * The original 8SED algorithm discards the pixels' alpha values, |
| 59 | * which can contain information about the actual outline of the |
| 60 | * glyph. This paper takes advantage of those alpha values and |
| 61 | * approximates outline pretty accurately. |
| 62 | * |
| 63 | * * This rasterizer also works for monochrome bitmaps. However, the |
| 64 | * result is not as accurate since we don't have any way to |
| 65 | * approximate outlines from binary bitmaps. |
| 66 | * |
| 67 | * ======================================================================== |
| 68 | * |
| 69 | * Generating SDF from bitmap is done in several steps. |
| 70 | * |
| 71 | * (1) The only information we have is the bitmap itself. It can |
| 72 | * be monochrome or anti-aliased. If it is anti-aliased, pixel values |
| 73 | * are nothing but coverage values. These coverage values can be used |
| 74 | * to extract information about the outline of the image. For |
| 75 | * example, if the pixel's alpha value is 0.5, then we can safely |
| 76 | * assume that the outline passes through the center of the pixel. |
| 77 | * |
| 78 | * (2) Find edge pixels in the bitmap (see `bsdf_is_edge` for more). For |
| 79 | * all edge pixels we use the Anti-aliased Euclidean distance |
| 80 | * transform algorithm and compute approximate edge distances (see |
| 81 | * `compute_edge_distance` and/or the second paper for more). |
| 82 | * |
| 83 | * (3) Now that we have computed approximate distances for edge pixels we |
| 84 | * use the 8SED algorithm to basically sweep the entire bitmap and |
| 85 | * compute distances for the rest of the pixels. (Since the algorithm |
| 86 | * is pretty convoluted it is only explained briefly in a comment to |
| 87 | * function `edt8`. To see the actual algorithm refer to the first |
| 88 | * paper.) |
| 89 | * |
| 90 | * (4) Finally, compute the sign for each pixel. This is done in function |
| 91 | * `finalize_sdf`. The basic idea is that if a pixel's original |
| 92 | * alpha/coverage value is greater than 0.5 then it is 'inside' (and |
| 93 | * 'outside' otherwise). |
| 94 | * |
| 95 | * Pseudo Code: |
| 96 | * |
| 97 | * ``` |
| 98 | * b = source bitmap; |
| 99 | * t = target bitmap; |
| 100 | * dm = list of distances; // dimension equal to b |
| 101 | * |
| 102 | * foreach grid_point (x, y) in b: |
| 103 | * { |
| 104 | * if (is_edge(x, y)): |
| 105 | * dm = approximate_edge_distance(b, x, y); |
| 106 | * |
| 107 | * // do the 8SED on the distances |
| 108 | * edt8(dm); |
| 109 | * |
| 110 | * // determine the signs |
| 111 | * determine_signs(dm): |
| 112 | * |
| 113 | * // copy SDF data to the target bitmap |
| 114 | * copy(dm to t); |
| 115 | * } |
| 116 | * |
| 117 | */ |
| 118 | |
| 119 | |
| 120 | /************************************************************************** |
| 121 | * |
| 122 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| 123 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| 124 | * messages during execution. |
| 125 | */ |
| 126 | #undef FT_COMPONENT |
| 127 | #define FT_COMPONENT bsdf |
| 128 | |
| 129 | |
| 130 | /************************************************************************** |
| 131 | * |
| 132 | * useful macros |
| 133 | * |
| 134 | */ |
| 135 | |
| 136 | #define ONE 65536 /* 1 in 16.16 */ |
| 137 | |
| 138 | |
| 139 | /************************************************************************** |
| 140 | * |
| 141 | * structs |
| 142 | * |
| 143 | */ |
| 144 | |
| 145 | |
| 146 | /************************************************************************** |
| 147 | * |
| 148 | * @Struct: |
| 149 | * BSDF_TRaster |
| 150 | * |
| 151 | * @Description: |
| 152 | * This struct is used in place of @FT_Raster and is stored within the |
| 153 | * internal FreeType renderer struct. While rasterizing this is passed |
| 154 | * to the @FT_Raster_RenderFunc function, which then can be used however |
| 155 | * we want. |
| 156 | * |
| 157 | * @Fields: |
| 158 | * memory :: |
| 159 | * Used internally to allocate intermediate memory while raterizing. |
| 160 | * |
| 161 | */ |
| 162 | typedef struct BSDF_TRaster_ |
| 163 | { |
| 164 | FT_Memory memory; |
| 165 | |
| 166 | } BSDF_TRaster, *BSDF_PRaster; |
| 167 | |
| 168 | |
| 169 | /************************************************************************** |
| 170 | * |
| 171 | * @Struct: |
| 172 | * ED |
| 173 | * |
| 174 | * @Description: |
| 175 | * Euclidean distance. It gets used for Euclidean distance transforms; |
| 176 | * it can also be interpreted as an edge distance. |
| 177 | * |
| 178 | * @Fields: |
| 179 | * dist :: |
| 180 | * Vector length of the `prox` parameter. Can be squared or absolute |
| 181 | * depending on the `USE_SQUARED_DISTANCES` macro defined in file |
| 182 | * `ftsdfcommon.h`. |
| 183 | * |
| 184 | * prox :: |
| 185 | * Vector to the nearest edge. Can also be interpreted as shortest |
| 186 | * distance of a point. |
| 187 | * |
| 188 | * alpha :: |
| 189 | * Alpha value of the original bitmap from which we generate SDF. |
| 190 | * Needed for computing the gradient and determining the proper sign |
| 191 | * of a pixel. |
| 192 | * |
| 193 | */ |
| 194 | typedef struct ED_ |
| 195 | { |
| 196 | FT_16D16 dist; |
| 197 | FT_16D16_Vec prox; |
| 198 | FT_Byte alpha; |
| 199 | |
| 200 | } ED; |
| 201 | |
| 202 | |
| 203 | /************************************************************************** |
| 204 | * |
| 205 | * @Struct: |
| 206 | * BSDF_Worker |
| 207 | * |
| 208 | * @Description: |
| 209 | * A convenience struct that is passed to functions while generating |
| 210 | * SDF; most of those functions require the same parameters. |
| 211 | * |
| 212 | * @Fields: |
| 213 | * distance_map :: |
| 214 | * A one-dimensional array that gets interpreted as two-dimensional |
| 215 | * one. It contains the Euclidean distances of all points of the |
| 216 | * bitmap. |
| 217 | * |
| 218 | * width :: |
| 219 | * Width of the above `distance_map`. |
| 220 | * |
| 221 | * rows :: |
| 222 | * Number of rows in the above `distance_map`. |
| 223 | * |
| 224 | * params :: |
| 225 | * Internal parameters and properties required by the rasterizer. See |
| 226 | * file `ftsdf.h` for more. |
| 227 | * |
| 228 | */ |
| 229 | typedef struct BSDF_Worker_ |
| 230 | { |
| 231 | ED* distance_map; |
| 232 | |
| 233 | FT_Int width; |
| 234 | FT_Int rows; |
| 235 | |
| 236 | SDF_Raster_Params params; |
| 237 | |
| 238 | } BSDF_Worker; |
| 239 | |
| 240 | |
| 241 | /************************************************************************** |
| 242 | * |
| 243 | * initializer |
| 244 | * |
| 245 | */ |
| 246 | |
| 247 | static const ED zero_ed = { 0, { 0, 0 }, 0 }; |
| 248 | |
| 249 | |
| 250 | /************************************************************************** |
| 251 | * |
| 252 | * rasterizer functions |
| 253 | * |
| 254 | */ |
| 255 | |
| 256 | /************************************************************************** |
| 257 | * |
| 258 | * @Function: |
| 259 | * bsdf_is_edge |
| 260 | * |
| 261 | * @Description: |
| 262 | * Check whether a pixel is an edge pixel, i.e., whether it is |
| 263 | * surrounded by a completely black pixel (zero alpha), and the current |
| 264 | * pixel is not a completely black pixel. |
| 265 | * |
| 266 | * @Input: |
| 267 | * dm :: |
| 268 | * Array of distances. The parameter must point to the current |
| 269 | * pixel, i.e., the pixel that is to be checked for being an edge. |
| 270 | * |
| 271 | * x :: |
| 272 | * The x position of the current pixel. |
| 273 | * |
| 274 | * y :: |
| 275 | * The y position of the current pixel. |
| 276 | * |
| 277 | * w :: |
| 278 | * Width of the bitmap. |
| 279 | * |
| 280 | * r :: |
| 281 | * Number of rows in the bitmap. |
| 282 | * |
| 283 | * @Return: |
| 284 | * 1~if the current pixel is an edge pixel, 0~otherwise. |
| 285 | * |
| 286 | */ |
| 287 | |
| 288 | #ifdef CHECK_NEIGHBOR |
| 289 | #undef CHECK_NEIGHBOR |
| 290 | #endif |
| 291 | |
| 292 | #define CHECK_NEIGHBOR( x_offset, y_offset ) \ |
| 293 | do \ |
| 294 | { \ |
| 295 | if ( x + x_offset >= 0 && x + x_offset < w && \ |
| 296 | y + y_offset >= 0 && y + y_offset < r ) \ |
| 297 | { \ |
| 298 | num_neighbors++; \ |
| 299 | \ |
| 300 | to_check = dm + y_offset * w + x_offset; \ |
| 301 | if ( to_check->alpha == 0 ) \ |
| 302 | { \ |
| 303 | is_edge = 1; \ |
| 304 | goto Done; \ |
| 305 | } \ |
| 306 | } \ |
| 307 | } while ( 0 ) |
| 308 | |
| 309 | static FT_Bool |
| 310 | bsdf_is_edge( ED* dm, /* distance map */ |
| 311 | FT_Int x, /* x index of point to check */ |
| 312 | FT_Int y, /* y index of point to check */ |
| 313 | FT_Int w, /* width */ |
| 314 | FT_Int r ) /* rows */ |
| 315 | { |
| 316 | FT_Bool is_edge = 0; |
| 317 | ED* to_check = NULL; |
| 318 | FT_Int num_neighbors = 0; |
| 319 | |
| 320 | |
| 321 | if ( dm->alpha == 0 ) |
| 322 | goto Done; |
| 323 | |
| 324 | if ( dm->alpha > 0 && dm->alpha < 255 ) |
| 325 | { |
| 326 | is_edge = 1; |
| 327 | goto Done; |
| 328 | } |
| 329 | |
| 330 | /* up */ |
| 331 | CHECK_NEIGHBOR( 0, -1 ); |
| 332 | |
| 333 | /* down */ |
| 334 | CHECK_NEIGHBOR( 0, 1 ); |
| 335 | |
| 336 | /* left */ |
| 337 | CHECK_NEIGHBOR( -1, 0 ); |
| 338 | |
| 339 | /* right */ |
| 340 | CHECK_NEIGHBOR( 1, 0 ); |
| 341 | |
| 342 | /* up left */ |
| 343 | CHECK_NEIGHBOR( -1, -1 ); |
| 344 | |
| 345 | /* up right */ |
| 346 | CHECK_NEIGHBOR( 1, -1 ); |
| 347 | |
| 348 | /* down left */ |
| 349 | CHECK_NEIGHBOR( -1, 1 ); |
| 350 | |
| 351 | /* down right */ |
| 352 | CHECK_NEIGHBOR( 1, 1 ); |
| 353 | |
| 354 | if ( num_neighbors != 8 ) |
| 355 | is_edge = 1; |
| 356 | |
| 357 | Done: |
| 358 | return is_edge; |
| 359 | } |
| 360 | |
| 361 | #undef CHECK_NEIGHBOR |
| 362 | |
| 363 | |
| 364 | /************************************************************************** |
| 365 | * |
| 366 | * @Function: |
| 367 | * compute_edge_distance |
| 368 | * |
| 369 | * @Description: |
| 370 | * Approximate the outline and compute the distance from `current` |
| 371 | * to the approximated outline. |
| 372 | * |
| 373 | * @Input: |
| 374 | * current :: |
| 375 | * Array of Euclidean distances. `current` must point to the position |
| 376 | * for which the distance is to be caculated. We treat this array as |
| 377 | * a two-dimensional array mapped to a one-dimensional array. |
| 378 | * |
| 379 | * x :: |
| 380 | * The x coordinate of the `current` parameter in the array. |
| 381 | * |
| 382 | * y :: |
| 383 | * The y coordinate of the `current` parameter in the array. |
| 384 | * |
| 385 | * w :: |
| 386 | * The width of the distances array. |
| 387 | * |
| 388 | * r :: |
| 389 | * Number of rows in the distances array. |
| 390 | * |
| 391 | * @Return: |
| 392 | * A vector pointing to the approximate edge distance. |
| 393 | * |
| 394 | * @Note: |
| 395 | * This is a computationally expensive function. Try to reduce the |
| 396 | * number of calls to this function. Moreover, this must only be used |
| 397 | * for edge pixel positions. |
| 398 | * |
| 399 | */ |
| 400 | static FT_16D16_Vec |
| 401 | compute_edge_distance( ED* current, |
| 402 | FT_Int x, |
| 403 | FT_Int y, |
| 404 | FT_Int w, |
| 405 | FT_Int r ) |
| 406 | { |
| 407 | /* |
| 408 | * This function, based on the paper presented by Stefan Gustavson and |
| 409 | * Robin Strand, gets used to approximate edge distances from |
| 410 | * anti-aliased bitmaps. |
| 411 | * |
| 412 | * The algorithm is as follows. |
| 413 | * |
| 414 | * (1) In anti-aliased images, the pixel's alpha value is the coverage |
| 415 | * of the pixel by the outline. For example, if the alpha value is |
| 416 | * 0.5f we can assume that the outline passes through the center of |
| 417 | * the pixel. |
| 418 | * |
| 419 | * (2) For this reason we can use that alpha value to approximate the real |
| 420 | * distance of the pixel to edge pretty accurately. A simple |
| 421 | * approximation is `(0.5f - alpha)`, assuming that the outline is |
| 422 | * parallel to the x or y~axis. However, in this algorithm we use a |
| 423 | * different approximation which is quite accurate even for |
| 424 | * non-axis-aligned edges. |
| 425 | * |
| 426 | * (3) The only remaining piece of information that we cannot |
| 427 | * approximate directly from the alpha is the direction of the edge. |
| 428 | * This is where we use Sobel's operator to compute the gradient of |
| 429 | * the pixel. The gradient give us a pretty good approximation of |
| 430 | * the edge direction. We use a 3x3 kernel filter to compute the |
| 431 | * gradient. |
| 432 | * |
| 433 | * (4) After the above two steps we have both the direction and the |
| 434 | * distance to the edge which is used to generate the Signed |
| 435 | * Distance Field. |
| 436 | * |
| 437 | * References: |
| 438 | * |
| 439 | * - Anti-Aliased Euclidean Distance Transform: |
| 440 | * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf |
| 441 | * - Sobel Operator: |
| 442 | * https://en.wikipedia.org/wiki/Sobel_operator |
| 443 | */ |
| 444 | |
| 445 | FT_16D16_Vec g = { 0, 0 }; |
| 446 | FT_16D16 dist, current_alpha; |
| 447 | FT_16D16 a1, temp; |
| 448 | FT_16D16 gx, gy; |
| 449 | FT_16D16 alphas[9]; |
| 450 | |
| 451 | |
| 452 | /* Since our spread cannot be 0, this condition */ |
| 453 | /* can never be true. */ |
| 454 | if ( x <= 0 || x >= w - 1 || |
| 455 | y <= 0 || y >= r - 1 ) |
| 456 | return g; |
| 457 | |
| 458 | /* initialize the alphas */ |
| 459 | alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha; |
| 460 | alphas[1] = 256 * (FT_16D16)current[-w ].alpha; |
| 461 | alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha; |
| 462 | alphas[3] = 256 * (FT_16D16)current[ -1].alpha; |
| 463 | alphas[4] = 256 * (FT_16D16)current[ 0].alpha; |
| 464 | alphas[5] = 256 * (FT_16D16)current[ 1].alpha; |
| 465 | alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha; |
| 466 | alphas[7] = 256 * (FT_16D16)current[ w ].alpha; |
| 467 | alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha; |
| 468 | |
| 469 | current_alpha = alphas[4]; |
| 470 | |
| 471 | /* Compute the gradient using the Sobel operator. */ |
| 472 | /* In this case we use the following 3x3 filters: */ |
| 473 | /* */ |
| 474 | /* For x: | -1 0 -1 | */ |
| 475 | /* | -root(2) 0 root(2) | */ |
| 476 | /* | -1 0 1 | */ |
| 477 | /* */ |
| 478 | /* For y: | -1 -root(2) -1 | */ |
| 479 | /* | 0 0 0 | */ |
| 480 | /* | 1 root(2) 1 | */ |
| 481 | /* */ |
| 482 | /* [Note]: 92681 is root(2) in 16.16 format. */ |
| 483 | g.x = -alphas[0] - |
| 484 | FT_MulFix( alphas[3], 92681 ) - |
| 485 | alphas[6] + |
| 486 | alphas[2] + |
| 487 | FT_MulFix( alphas[5], 92681 ) + |
| 488 | alphas[8]; |
| 489 | |
| 490 | g.y = -alphas[0] - |
| 491 | FT_MulFix( alphas[1], 92681 ) - |
| 492 | alphas[2] + |
| 493 | alphas[6] + |
| 494 | FT_MulFix( alphas[7], 92681 ) + |
| 495 | alphas[8]; |
| 496 | |
| 497 | FT_Vector_NormLen( &g ); |
| 498 | |
| 499 | /* The gradient gives us the direction of the */ |
| 500 | /* edge for the current pixel. Once we have the */ |
| 501 | /* approximate direction of the edge, we can */ |
| 502 | /* approximate the edge distance much better. */ |
| 503 | |
| 504 | if ( g.x == 0 || g.y == 0 ) |
| 505 | dist = ONE / 2 - alphas[4]; |
| 506 | else |
| 507 | { |
| 508 | gx = g.x; |
| 509 | gy = g.y; |
| 510 | |
| 511 | gx = FT_ABS( gx ); |
| 512 | gy = FT_ABS( gy ); |
| 513 | |
| 514 | if ( gx < gy ) |
| 515 | { |
| 516 | temp = gx; |
| 517 | gx = gy; |
| 518 | gy = temp; |
| 519 | } |
| 520 | |
| 521 | a1 = FT_DivFix( gy, gx ) / 2; |
| 522 | |
| 523 | if ( current_alpha < a1 ) |
| 524 | dist = ( gx + gy ) / 2 - |
| 525 | square_root( 2 * FT_MulFix( gx, |
| 526 | FT_MulFix( gy, |
| 527 | current_alpha ) ) ); |
| 528 | |
| 529 | else if ( current_alpha < ( ONE - a1 ) ) |
| 530 | dist = FT_MulFix( ONE / 2 - current_alpha, gx ); |
| 531 | |
| 532 | else |
| 533 | dist = -( gx + gy ) / 2 + |
| 534 | square_root( 2 * FT_MulFix( gx, |
| 535 | FT_MulFix( gy, |
| 536 | ONE - current_alpha ) ) ); |
| 537 | } |
| 538 | |
| 539 | g.x = FT_MulFix( g.x, dist ); |
| 540 | g.y = FT_MulFix( g.y, dist ); |
| 541 | |
| 542 | return g; |
| 543 | } |
| 544 | |
| 545 | |
| 546 | /************************************************************************** |
| 547 | * |
| 548 | * @Function: |
| 549 | * bsdf_approximate_edge |
| 550 | * |
| 551 | * @Description: |
| 552 | * Loops over all the pixels and call `compute_edge_distance` only for |
| 553 | * edge pixels. This maked the process a lot faster since |
| 554 | * `compute_edge_distance` uses functions such as `FT_Vector_NormLen', |
| 555 | * which are quite slow. |
| 556 | * |
| 557 | * @InOut: |
| 558 | * worker :: |
| 559 | * Contains the distance map as well as all the relevant parameters |
| 560 | * required by the function. |
| 561 | * |
| 562 | * @Return: |
| 563 | * FreeType error, 0 means success. |
| 564 | * |
| 565 | * @Note: |
| 566 | * The function directly manipulates `worker->distance_map`. |
| 567 | * |
| 568 | */ |
| 569 | static FT_Error |
| 570 | bsdf_approximate_edge( BSDF_Worker* worker ) |
| 571 | { |
| 572 | FT_Error error = FT_Err_Ok; |
| 573 | FT_Int i, j; |
| 574 | FT_Int index; |
| 575 | ED* ed; |
| 576 | |
| 577 | |
| 578 | if ( !worker || !worker->distance_map ) |
| 579 | { |
| 580 | error = FT_THROW( Invalid_Argument ); |
| 581 | goto Exit; |
| 582 | } |
| 583 | |
| 584 | ed = worker->distance_map; |
| 585 | |
| 586 | for ( j = 0; j < worker->rows; j++ ) |
| 587 | { |
| 588 | for ( i = 0; i < worker->width; i++ ) |
| 589 | { |
| 590 | index = j * worker->width + i; |
| 591 | |
| 592 | if ( bsdf_is_edge( worker->distance_map + index, |
| 593 | i, j, |
| 594 | worker->width, |
| 595 | worker->rows ) ) |
| 596 | { |
| 597 | /* approximate the edge distance for edge pixels */ |
| 598 | ed[index].prox = compute_edge_distance( ed + index, |
| 599 | i, j, |
| 600 | worker->width, |
| 601 | worker->rows ); |
| 602 | ed[index].dist = VECTOR_LENGTH_16D16( ed[index].prox ); |
| 603 | } |
| 604 | else |
| 605 | { |
| 606 | /* for non-edge pixels assign far away distances */ |
| 607 | ed[index].dist = 400 * ONE; |
| 608 | ed[index].prox.x = 200 * ONE; |
| 609 | ed[index].prox.y = 200 * ONE; |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | Exit: |
| 615 | return error; |
| 616 | } |
| 617 | |
| 618 | |
| 619 | /************************************************************************** |
| 620 | * |
| 621 | * @Function: |
| 622 | * bsdf_init_distance_map |
| 623 | * |
| 624 | * @Description: |
| 625 | * Initialize the distance map according to the '8-point sequential |
| 626 | * Euclidean distance mapping' (8SED) algorithm. Basically it copies |
| 627 | * the `source` bitmap alpha values to the `distance_map->alpha` |
| 628 | * parameter of `worker`. |
| 629 | * |
| 630 | * @Input: |
| 631 | * source :: |
| 632 | * Source bitmap to copy the data from. |
| 633 | * |
| 634 | * @Output: |
| 635 | * worker :: |
| 636 | * Target distance map to copy the data to. |
| 637 | * |
| 638 | * @Return: |
| 639 | * FreeType error, 0 means success. |
| 640 | * |
| 641 | */ |
| 642 | static FT_Error |
| 643 | bsdf_init_distance_map( const FT_Bitmap* source, |
| 644 | BSDF_Worker* worker ) |
| 645 | { |
| 646 | FT_Error error = FT_Err_Ok; |
| 647 | |
| 648 | FT_Int x_diff, y_diff; |
| 649 | FT_Int t_i, t_j, s_i, s_j; |
| 650 | FT_Byte* s; |
| 651 | ED* t; |
| 652 | |
| 653 | |
| 654 | /* again check the parameters (probably unnecessary) */ |
| 655 | if ( !source || !worker ) |
| 656 | { |
| 657 | error = FT_THROW( Invalid_Argument ); |
| 658 | goto Exit; |
| 659 | } |
| 660 | |
| 661 | /* Because of the way we convert a bitmap to SDF, */ |
| 662 | /* i.e., aligning the source to the center of the */ |
| 663 | /* target, the target's width and rows must be */ |
| 664 | /* checked before copying. */ |
| 665 | if ( worker->width < (FT_Int)source->width || |
| 666 | worker->rows < (FT_Int)source->rows ) |
| 667 | { |
| 668 | error = FT_THROW( Invalid_Argument ); |
| 669 | goto Exit; |
| 670 | } |
| 671 | |
| 672 | /* check pixel mode */ |
| 673 | if ( source->pixel_mode == FT_PIXEL_MODE_NONE ) |
| 674 | { |
| 675 | FT_ERROR(( "bsdf_copy_source_to_target:" |
| 676 | " Invalid pixel mode of source bitmap" )); |
| 677 | error = FT_THROW( Invalid_Argument ); |
| 678 | goto Exit; |
| 679 | } |
| 680 | |
| 681 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 682 | if ( source->pixel_mode == FT_PIXEL_MODE_MONO ) |
| 683 | { |
| 684 | FT_TRACE0(( "bsdf_copy_source_to_target:" |
| 685 | " The `bsdf' renderer can convert monochrome\n" )); |
| 686 | FT_TRACE0(( " " |
| 687 | " bitmaps to SDF but the results are not perfect\n" )); |
| 688 | FT_TRACE0(( " " |
| 689 | " because there is no way to approximate actual\n" )); |
| 690 | FT_TRACE0(( " " |
| 691 | " outlines from monochrome bitmaps. Consider\n" )); |
| 692 | FT_TRACE0(( " " |
| 693 | " using an anti-aliased bitmap instead.\n" )); |
| 694 | } |
| 695 | #endif |
| 696 | |
| 697 | /* Calculate the width and row differences */ |
| 698 | /* between target and source. */ |
| 699 | x_diff = worker->width - (int)source->width; |
| 700 | y_diff = worker->rows - (int)source->rows; |
| 701 | |
| 702 | x_diff /= 2; |
| 703 | y_diff /= 2; |
| 704 | |
| 705 | t = (ED*)worker->distance_map; |
| 706 | s = source->buffer; |
| 707 | |
| 708 | /* For now we only support pixel mode `FT_PIXEL_MODE_MONO` */ |
| 709 | /* and `FT_PIXEL_MODE_GRAY`. More will be added later. */ |
| 710 | /* */ |
| 711 | /* [NOTE]: We can also use @FT_Bitmap_Convert to convert */ |
| 712 | /* bitmap to 8bpp. To avoid extra allocation and */ |
| 713 | /* since the target bitmap can be 16bpp we manually */ |
| 714 | /* convert the source bitmap to the desired bpp. */ |
| 715 | |
| 716 | switch ( source->pixel_mode ) |
| 717 | { |
| 718 | case FT_PIXEL_MODE_MONO: |
| 719 | { |
| 720 | FT_Int t_width = worker->width; |
| 721 | FT_Int t_rows = worker->rows; |
| 722 | FT_Int s_width = (int)source->width; |
| 723 | FT_Int s_rows = (int)source->rows; |
| 724 | |
| 725 | |
| 726 | for ( t_j = 0; t_j < t_rows; t_j++ ) |
| 727 | { |
| 728 | for ( t_i = 0; t_i < t_width; t_i++ ) |
| 729 | { |
| 730 | FT_Int t_index = t_j * t_width + t_i; |
| 731 | FT_Int s_index; |
| 732 | FT_Int div, mod; |
| 733 | FT_Byte pixel, byte; |
| 734 | |
| 735 | |
| 736 | t[t_index] = zero_ed; |
| 737 | |
| 738 | s_i = t_i - x_diff; |
| 739 | s_j = t_j - y_diff; |
| 740 | |
| 741 | /* Assign 0 to padding similar to */ |
| 742 | /* the source bitmap. */ |
| 743 | if ( s_i < 0 || s_i >= s_width || |
| 744 | s_j < 0 || s_j >= s_rows ) |
| 745 | continue; |
| 746 | |
| 747 | if ( worker->params.flip_y ) |
| 748 | s_index = ( s_rows - s_j - 1 ) * source->pitch; |
| 749 | else |
| 750 | s_index = s_j * source->pitch; |
| 751 | |
| 752 | div = s_index + s_i / 8; |
| 753 | mod = 7 - s_i % 8; |
| 754 | |
| 755 | pixel = s[div]; |
| 756 | byte = (FT_Byte)( 1 << mod ); |
| 757 | |
| 758 | t[t_index].alpha = pixel & byte ? 255 : 0; |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | break; |
| 763 | |
| 764 | case FT_PIXEL_MODE_GRAY: |
| 765 | { |
| 766 | FT_Int t_width = worker->width; |
| 767 | FT_Int t_rows = worker->rows; |
| 768 | FT_Int s_width = (int)source->width; |
| 769 | FT_Int s_rows = (int)source->rows; |
| 770 | |
| 771 | |
| 772 | /* loop over all pixels and assign pixel values from source */ |
| 773 | for ( t_j = 0; t_j < t_rows; t_j++ ) |
| 774 | { |
| 775 | for ( t_i = 0; t_i < t_width; t_i++ ) |
| 776 | { |
| 777 | FT_Int t_index = t_j * t_width + t_i; |
| 778 | FT_Int s_index; |
| 779 | |
| 780 | |
| 781 | t[t_index] = zero_ed; |
| 782 | |
| 783 | s_i = t_i - x_diff; |
| 784 | s_j = t_j - y_diff; |
| 785 | |
| 786 | /* Assign 0 to padding similar to */ |
| 787 | /* the source bitmap. */ |
| 788 | if ( s_i < 0 || s_i >= s_width || |
| 789 | s_j < 0 || s_j >= s_rows ) |
| 790 | continue; |
| 791 | |
| 792 | if ( worker->params.flip_y ) |
| 793 | s_index = ( s_rows - s_j - 1 ) * s_width + s_i; |
| 794 | else |
| 795 | s_index = s_j * s_width + s_i; |
| 796 | |
| 797 | /* simply copy the alpha values */ |
| 798 | t[t_index].alpha = s[s_index]; |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | break; |
| 803 | |
| 804 | default: |
| 805 | FT_ERROR(( "bsdf_copy_source_to_target:" |
| 806 | " unsopported pixel mode of source bitmap\n" )); |
| 807 | |
| 808 | error = FT_THROW( Unimplemented_Feature ); |
| 809 | break; |
| 810 | } |
| 811 | |
| 812 | Exit: |
| 813 | return error; |
| 814 | } |
| 815 | |
| 816 | |
| 817 | /************************************************************************** |
| 818 | * |
| 819 | * @Function: |
| 820 | * compare_neighbor |
| 821 | * |
| 822 | * @Description: |
| 823 | * Compare neighbor pixel (which is defined by the offset) and update |
| 824 | * `current` distance if the new distance is shorter than the original. |
| 825 | * |
| 826 | * @Input: |
| 827 | * x_offset :: |
| 828 | * X offset of the neighbor to be checked. The offset is relative to |
| 829 | * the `current`. |
| 830 | * |
| 831 | * y_offset :: |
| 832 | * Y offset of the neighbor to be checked. The offset is relative to |
| 833 | * the `current`. |
| 834 | * |
| 835 | * width :: |
| 836 | * Width of the `current` array. |
| 837 | * |
| 838 | * @InOut: |
| 839 | * current :: |
| 840 | * Pointer into array of distances. This parameter must point to the |
| 841 | * position whose neighbor is to be checked. The array is treated as |
| 842 | * a two-dimensional array. |
| 843 | * |
| 844 | */ |
| 845 | static void |
| 846 | compare_neighbor( ED* current, |
| 847 | FT_Int x_offset, |
| 848 | FT_Int y_offset, |
| 849 | FT_Int width ) |
| 850 | { |
| 851 | ED* to_check; |
| 852 | FT_16D16 dist; |
| 853 | FT_16D16_Vec dist_vec; |
| 854 | |
| 855 | |
| 856 | to_check = current + ( y_offset * width ) + x_offset; |
| 857 | |
| 858 | /* |
| 859 | * While checking for the nearest point we first approximate the |
| 860 | * distance of `current` by adding the deviation (which is sqrt(2) at |
| 861 | * most). Only if the new value is less than the current value we |
| 862 | * calculate the actual distances using `FT_Vector_Length`. This last |
| 863 | * step can be omitted by using squared distances. |
| 864 | */ |
| 865 | |
| 866 | /* |
| 867 | * Approximate the distance. We subtract 1 to avoid precision errors, |
| 868 | * which could happen because the two directions can be opposite. |
| 869 | */ |
| 870 | dist = to_check->dist - ONE; |
| 871 | |
| 872 | if ( dist < current->dist ) |
| 873 | { |
| 874 | dist_vec = to_check->prox; |
| 875 | |
| 876 | dist_vec.x += x_offset * ONE; |
| 877 | dist_vec.y += y_offset * ONE; |
| 878 | dist = VECTOR_LENGTH_16D16( dist_vec ); |
| 879 | |
| 880 | if ( dist < current->dist ) |
| 881 | { |
| 882 | current->dist = dist; |
| 883 | current->prox = dist_vec; |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | |
| 889 | /************************************************************************** |
| 890 | * |
| 891 | * @Function: |
| 892 | * first_pass |
| 893 | * |
| 894 | * @Description: |
| 895 | * First pass of the 8SED algorithm. Loop over the bitmap from top to |
| 896 | * bottom and scan each row left to right, updating the distances in |
| 897 | * `worker->distance_map`. |
| 898 | * |
| 899 | * @InOut: |
| 900 | * worker:: |
| 901 | * Contains all the relevant parameters. |
| 902 | * |
| 903 | */ |
| 904 | static void |
| 905 | first_pass( BSDF_Worker* worker ) |
| 906 | { |
| 907 | FT_Int i, j; /* iterators */ |
| 908 | FT_Int w, r; /* width, rows */ |
| 909 | ED* dm; /* distance map */ |
| 910 | |
| 911 | |
| 912 | dm = worker->distance_map; |
| 913 | w = worker->width; |
| 914 | r = worker->rows; |
| 915 | |
| 916 | /* Start scanning from top to bottom and sweep each */ |
| 917 | /* row back and forth comparing the distances of the */ |
| 918 | /* neighborhood. Leave the first row as it has no top */ |
| 919 | /* neighbor; it will be covered in the second scan of */ |
| 920 | /* the image (from bottom to top). */ |
| 921 | for ( j = 1; j < r; j++ ) |
| 922 | { |
| 923 | FT_Int index; |
| 924 | ED* current; |
| 925 | |
| 926 | |
| 927 | /* Forward pass of rows (left -> right). Leave the first */ |
| 928 | /* column, which gets covered in the backward pass. */ |
| 929 | for ( i = 1; i < w - 1; i++ ) |
| 930 | { |
| 931 | index = j * w + i; |
| 932 | current = dm + index; |
| 933 | |
| 934 | /* left-up */ |
| 935 | compare_neighbor( current, -1, -1, w ); |
| 936 | /* up */ |
| 937 | compare_neighbor( current, 0, -1, w ); |
| 938 | /* up-right */ |
| 939 | compare_neighbor( current, 1, -1, w ); |
| 940 | /* left */ |
| 941 | compare_neighbor( current, -1, 0, w ); |
| 942 | } |
| 943 | |
| 944 | /* Backward pass of rows (right -> left). Leave the last */ |
| 945 | /* column, which was already covered in the forward pass. */ |
| 946 | for ( i = w - 2; i >= 0; i-- ) |
| 947 | { |
| 948 | index = j * w + i; |
| 949 | current = dm + index; |
| 950 | |
| 951 | /* right */ |
| 952 | compare_neighbor( current, 1, 0, w ); |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | |
| 958 | /************************************************************************** |
| 959 | * |
| 960 | * @Function: |
| 961 | * second_pass |
| 962 | * |
| 963 | * @Description: |
| 964 | * Second pass of the 8SED algorithm. Loop over the bitmap from bottom |
| 965 | * to top and scan each row left to right, updating the distances in |
| 966 | * `worker->distance_map`. |
| 967 | * |
| 968 | * @InOut: |
| 969 | * worker:: |
| 970 | * Contains all the relevant parameters. |
| 971 | * |
| 972 | */ |
| 973 | static void |
| 974 | second_pass( BSDF_Worker* worker ) |
| 975 | { |
| 976 | FT_Int i, j; /* iterators */ |
| 977 | FT_Int w, r; /* width, rows */ |
| 978 | ED* dm; /* distance map */ |
| 979 | |
| 980 | |
| 981 | dm = worker->distance_map; |
| 982 | w = worker->width; |
| 983 | r = worker->rows; |
| 984 | |
| 985 | /* Start scanning from bottom to top and sweep each */ |
| 986 | /* row back and forth comparing the distances of the */ |
| 987 | /* neighborhood. Leave the last row as it has no down */ |
| 988 | /* neighbor; it is already covered in the first scan */ |
| 989 | /* of the image (from top to bottom). */ |
| 990 | for ( j = r - 2; j >= 0; j-- ) |
| 991 | { |
| 992 | FT_Int index; |
| 993 | ED* current; |
| 994 | |
| 995 | |
| 996 | /* Forward pass of rows (left -> right). Leave the first */ |
| 997 | /* column, which gets covered in the backward pass. */ |
| 998 | for ( i = 1; i < w - 1; i++ ) |
| 999 | { |
| 1000 | index = j * w + i; |
| 1001 | current = dm + index; |
| 1002 | |
| 1003 | /* left-up */ |
| 1004 | compare_neighbor( current, -1, 1, w ); |
| 1005 | /* up */ |
| 1006 | compare_neighbor( current, 0, 1, w ); |
| 1007 | /* up-right */ |
| 1008 | compare_neighbor( current, 1, 1, w ); |
| 1009 | /* left */ |
| 1010 | compare_neighbor( current, -1, 0, w ); |
| 1011 | } |
| 1012 | |
| 1013 | /* Backward pass of rows (right -> left). Leave the last */ |
| 1014 | /* column, which was already covered in the forward pass. */ |
| 1015 | for ( i = w - 2; i >= 0; i-- ) |
| 1016 | { |
| 1017 | index = j * w + i; |
| 1018 | current = dm + index; |
| 1019 | |
| 1020 | /* right */ |
| 1021 | compare_neighbor( current, 1, 0, w ); |
| 1022 | } |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | |
| 1027 | /************************************************************************** |
| 1028 | * |
| 1029 | * @Function: |
| 1030 | * edt8 |
| 1031 | * |
| 1032 | * @Description: |
| 1033 | * Compute the distance map of the a bitmap. Execute both first and |
| 1034 | * second pass of the 8SED algorithm. |
| 1035 | * |
| 1036 | * @InOut: |
| 1037 | * worker:: |
| 1038 | * Contains all the relevant parameters. |
| 1039 | * |
| 1040 | * @Return: |
| 1041 | * FreeType error, 0 means success. |
| 1042 | * |
| 1043 | */ |
| 1044 | static FT_Error |
| 1045 | edt8( BSDF_Worker* worker ) |
| 1046 | { |
| 1047 | FT_Error error = FT_Err_Ok; |
| 1048 | |
| 1049 | |
| 1050 | if ( !worker || !worker->distance_map ) |
| 1051 | { |
| 1052 | error = FT_THROW( Invalid_Argument ); |
| 1053 | goto Exit; |
| 1054 | } |
| 1055 | |
| 1056 | /* first scan of the image */ |
| 1057 | first_pass( worker ); |
| 1058 | |
| 1059 | /* second scan of the image */ |
| 1060 | second_pass( worker ); |
| 1061 | |
| 1062 | Exit: |
| 1063 | return error; |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | /************************************************************************** |
| 1068 | * |
| 1069 | * @Function: |
| 1070 | * finalize_sdf |
| 1071 | * |
| 1072 | * @Description: |
| 1073 | * Copy the SDF data from `worker->distance_map` to the `target` bitmap. |
| 1074 | * Also transform the data to output format, (which is 6.10 fixed-point |
| 1075 | * format at the moment). |
| 1076 | * |
| 1077 | * @Input: |
| 1078 | * worker :: |
| 1079 | * Contains source distance map and other SDF data. |
| 1080 | * |
| 1081 | * @Output: |
| 1082 | * target :: |
| 1083 | * Target bitmap to which the SDF data is copied to. |
| 1084 | * |
| 1085 | * @Return: |
| 1086 | * FreeType error, 0 means success. |
| 1087 | * |
| 1088 | */ |
| 1089 | static FT_Error |
| 1090 | finalize_sdf( BSDF_Worker* worker, |
| 1091 | const FT_Bitmap* target ) |
| 1092 | { |
| 1093 | FT_Error error = FT_Err_Ok; |
| 1094 | |
| 1095 | FT_Int w, r; |
| 1096 | FT_Int i, j; |
| 1097 | |
| 1098 | FT_SDFFormat* t_buffer; |
| 1099 | FT_16D16 sp_sq, spread; |
| 1100 | |
| 1101 | |
| 1102 | if ( !worker || !target ) |
| 1103 | { |
| 1104 | error = FT_THROW( Invalid_Argument ); |
| 1105 | goto Exit; |
| 1106 | } |
| 1107 | |
| 1108 | w = (int)target->width; |
| 1109 | r = (int)target->rows; |
| 1110 | t_buffer = (FT_SDFFormat*)target->buffer; |
| 1111 | |
| 1112 | if ( w != worker->width || |
| 1113 | r != worker->rows ) |
| 1114 | { |
| 1115 | error = FT_THROW( Invalid_Argument ); |
| 1116 | goto Exit; |
| 1117 | } |
| 1118 | |
| 1119 | spread = (FT_16D16)FT_INT_16D16( worker->params.spread ); |
| 1120 | |
| 1121 | #if USE_SQUARED_DISTANCES |
| 1122 | sp_sq = (FT_16D16)FT_INT_16D16( worker->params.spread * |
| 1123 | worker->params.spread ); |
| 1124 | #else |
| 1125 | sp_sq = (FT_16D16)FT_INT_16D16( worker->params.spread ); |
| 1126 | #endif |
| 1127 | |
| 1128 | for ( j = 0; j < r; j++ ) |
| 1129 | { |
| 1130 | for ( i = 0; i < w; i++ ) |
| 1131 | { |
| 1132 | FT_Int index; |
| 1133 | FT_16D16 dist; |
| 1134 | FT_SDFFormat final_dist; |
| 1135 | FT_Char sign; |
| 1136 | |
| 1137 | |
| 1138 | index = j * w + i; |
| 1139 | dist = worker->distance_map[index].dist; |
| 1140 | |
| 1141 | if ( dist < 0 || dist > sp_sq ) |
| 1142 | dist = sp_sq; |
| 1143 | |
| 1144 | #if USE_SQUARED_DISTANCES |
| 1145 | dist = square_root( dist ); |
| 1146 | #endif |
| 1147 | |
| 1148 | /* We assume that if the pixel is inside a contour */ |
| 1149 | /* its coverage value must be > 127. */ |
| 1150 | sign = worker->distance_map[index].alpha < 127 ? -1 : 1; |
| 1151 | |
| 1152 | /* flip the sign according to the property */ |
| 1153 | if ( worker->params.flip_sign ) |
| 1154 | sign = -sign; |
| 1155 | |
| 1156 | /* concatenate from 16.16 to appropriate format */ |
| 1157 | final_dist = map_fixed_to_sdf( dist * sign, spread ); |
| 1158 | |
| 1159 | t_buffer[index] = final_dist; |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | Exit: |
| 1164 | return error; |
| 1165 | } |
| 1166 | |
| 1167 | |
| 1168 | /************************************************************************** |
| 1169 | * |
| 1170 | * interface functions |
| 1171 | * |
| 1172 | */ |
| 1173 | |
| 1174 | /* called when adding a new module through @FT_Add_Module */ |
| 1175 | static FT_Error |
| 1176 | bsdf_raster_new( void* memory_, /* FT_Memory */ |
| 1177 | FT_Raster* araster_ ) /* BSDF_PRaster* */ |
| 1178 | { |
| 1179 | FT_Memory memory = (FT_Memory)memory_; |
| 1180 | BSDF_PRaster* araster = (BSDF_PRaster*)araster_; |
| 1181 | |
| 1182 | FT_Error error; |
| 1183 | BSDF_PRaster raster = NULL; |
| 1184 | |
| 1185 | |
| 1186 | if ( !FT_NEW( raster ) ) |
| 1187 | raster->memory = memory; |
| 1188 | |
| 1189 | *araster = raster; |
| 1190 | |
| 1191 | return error; |
| 1192 | } |
| 1193 | |
| 1194 | |
| 1195 | /* unused */ |
| 1196 | static void |
| 1197 | bsdf_raster_reset( FT_Raster raster, |
| 1198 | unsigned char* pool_base, |
| 1199 | unsigned long pool_size ) |
| 1200 | { |
| 1201 | FT_UNUSED( raster ); |
| 1202 | FT_UNUSED( pool_base ); |
| 1203 | FT_UNUSED( pool_size ); |
| 1204 | } |
| 1205 | |
| 1206 | |
| 1207 | /* unused */ |
| 1208 | static FT_Error |
| 1209 | bsdf_raster_set_mode( FT_Raster raster, |
| 1210 | unsigned long mode, |
| 1211 | void* args ) |
| 1212 | { |
| 1213 | FT_UNUSED( raster ); |
| 1214 | FT_UNUSED( mode ); |
| 1215 | FT_UNUSED( args ); |
| 1216 | |
| 1217 | return FT_Err_Ok; |
| 1218 | } |
| 1219 | |
| 1220 | |
| 1221 | /* called while rendering through @FT_Render_Glyph */ |
| 1222 | static FT_Error |
| 1223 | bsdf_raster_render( FT_Raster raster, |
| 1224 | const FT_Raster_Params* params ) |
| 1225 | { |
| 1226 | FT_Error error = FT_Err_Ok; |
| 1227 | FT_Memory memory = NULL; |
| 1228 | |
| 1229 | const FT_Bitmap* source = NULL; |
| 1230 | const FT_Bitmap* target = NULL; |
| 1231 | |
| 1232 | BSDF_TRaster* bsdf_raster = (BSDF_TRaster*)raster; |
| 1233 | BSDF_Worker worker; |
| 1234 | |
| 1235 | const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params; |
| 1236 | |
| 1237 | |
| 1238 | worker.distance_map = NULL; |
| 1239 | |
| 1240 | /* check for valid parameters */ |
| 1241 | if ( !raster || !params ) |
| 1242 | { |
| 1243 | error = FT_THROW( Invalid_Argument ); |
| 1244 | goto Exit; |
| 1245 | } |
| 1246 | |
| 1247 | /* check whether the flag is set */ |
| 1248 | if ( sdf_params->root.flags != FT_RASTER_FLAG_SDF ) |
| 1249 | { |
| 1250 | error = FT_THROW( Raster_Corrupted ); |
| 1251 | goto Exit; |
| 1252 | } |
| 1253 | |
| 1254 | source = (const FT_Bitmap*)sdf_params->root.source; |
| 1255 | target = (const FT_Bitmap*)sdf_params->root.target; |
| 1256 | |
| 1257 | /* check source and target bitmap */ |
| 1258 | if ( !source || !target ) |
| 1259 | { |
| 1260 | error = FT_THROW( Invalid_Argument ); |
| 1261 | goto Exit; |
| 1262 | } |
| 1263 | |
| 1264 | memory = bsdf_raster->memory; |
| 1265 | if ( !memory ) |
| 1266 | { |
| 1267 | FT_TRACE0(( "bsdf_raster_render: Raster not set up properly,\n" )); |
| 1268 | FT_TRACE0(( " unable to find memory handle.\n" )); |
| 1269 | |
| 1270 | error = FT_THROW( Invalid_Handle ); |
| 1271 | goto Exit; |
| 1272 | } |
| 1273 | |
| 1274 | /* check whether spread is set properly */ |
| 1275 | if ( sdf_params->spread > MAX_SPREAD || |
| 1276 | sdf_params->spread < MIN_SPREAD ) |
| 1277 | { |
| 1278 | FT_TRACE0(( "bsdf_raster_render:" |
| 1279 | " The `spread' field of `SDF_Raster_Params'\n" )); |
| 1280 | FT_TRACE0(( " " |
| 1281 | " is invalid; the value of this field must be\n" )); |
| 1282 | FT_TRACE0(( " " |
| 1283 | " within [%d, %d].\n" , |
| 1284 | MIN_SPREAD, MAX_SPREAD )); |
| 1285 | FT_TRACE0(( " " |
| 1286 | " Also, you must pass `SDF_Raster_Params'\n" )); |
| 1287 | FT_TRACE0(( " " |
| 1288 | " instead of the default `FT_Raster_Params'\n" )); |
| 1289 | FT_TRACE0(( " " |
| 1290 | " while calling this function and set the fields\n" )); |
| 1291 | FT_TRACE0(( " " |
| 1292 | " accordingly.\n" )); |
| 1293 | |
| 1294 | error = FT_THROW( Invalid_Argument ); |
| 1295 | goto Exit; |
| 1296 | } |
| 1297 | |
| 1298 | /* set up the worker */ |
| 1299 | |
| 1300 | /* allocate the distance map */ |
| 1301 | if ( FT_QALLOC_MULT( worker.distance_map, target->rows, |
| 1302 | target->width * sizeof ( *worker.distance_map ) ) ) |
| 1303 | goto Exit; |
| 1304 | |
| 1305 | worker.width = (int)target->width; |
| 1306 | worker.rows = (int)target->rows; |
| 1307 | worker.params = *sdf_params; |
| 1308 | |
| 1309 | FT_CALL( bsdf_init_distance_map( source, &worker ) ); |
| 1310 | FT_CALL( bsdf_approximate_edge( &worker ) ); |
| 1311 | FT_CALL( edt8( &worker ) ); |
| 1312 | FT_CALL( finalize_sdf( &worker, target ) ); |
| 1313 | |
| 1314 | FT_TRACE0(( "bsdf_raster_render: Total memory used = %ld\n" , |
| 1315 | worker.width * worker.rows * |
| 1316 | (long)sizeof ( *worker.distance_map ) )); |
| 1317 | |
| 1318 | Exit: |
| 1319 | if ( worker.distance_map ) |
| 1320 | FT_FREE( worker.distance_map ); |
| 1321 | |
| 1322 | return error; |
| 1323 | } |
| 1324 | |
| 1325 | |
| 1326 | /* called while deleting `FT_Library` only if the module is added */ |
| 1327 | static void |
| 1328 | bsdf_raster_done( FT_Raster raster ) |
| 1329 | { |
| 1330 | FT_Memory memory = (FT_Memory)((BSDF_TRaster*)raster)->memory; |
| 1331 | |
| 1332 | |
| 1333 | FT_FREE( raster ); |
| 1334 | } |
| 1335 | |
| 1336 | |
| 1337 | FT_DEFINE_RASTER_FUNCS( |
| 1338 | ft_bitmap_sdf_raster, |
| 1339 | |
| 1340 | FT_GLYPH_FORMAT_BITMAP, |
| 1341 | |
| 1342 | (FT_Raster_New_Func) bsdf_raster_new, /* raster_new */ |
| 1343 | (FT_Raster_Reset_Func) bsdf_raster_reset, /* raster_reset */ |
| 1344 | (FT_Raster_Set_Mode_Func)bsdf_raster_set_mode, /* raster_set_mode */ |
| 1345 | (FT_Raster_Render_Func) bsdf_raster_render, /* raster_render */ |
| 1346 | (FT_Raster_Done_Func) bsdf_raster_done /* raster_done */ |
| 1347 | ) |
| 1348 | |
| 1349 | |
| 1350 | /* END */ |
| 1351 | |