| 1 | /**************************************************************************** |
| 2 | * |
| 3 | * ftgrays.c |
| 4 | * |
| 5 | * A new `perfect' anti-aliasing renderer (body). |
| 6 | * |
| 7 | * Copyright (C) 2000-2023 by |
| 8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
| 9 | * |
| 10 | * This file is part of the FreeType project, and may only be used, |
| 11 | * modified, and distributed under the terms of the FreeType project |
| 12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| 13 | * this file you indicate that you have read the license and |
| 14 | * understand and accept it fully. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | /************************************************************************** |
| 19 | * |
| 20 | * This file can be compiled without the rest of the FreeType engine, by |
| 21 | * defining the STANDALONE_ macro when compiling it. You also need to |
| 22 | * put the files `ftgrays.h' and `ftimage.h' into the current |
| 23 | * compilation directory. Typically, you could do something like |
| 24 | * |
| 25 | * - copy `src/smooth/ftgrays.c' (this file) to your current directory |
| 26 | * |
| 27 | * - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the |
| 28 | * same directory |
| 29 | * |
| 30 | * - compile `ftgrays' with the STANDALONE_ macro defined, as in |
| 31 | * |
| 32 | * cc -c -DSTANDALONE_ ftgrays.c |
| 33 | * |
| 34 | * The renderer can be initialized with a call to |
| 35 | * `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated |
| 36 | * with a call to `ft_gray_raster.raster_render'. |
| 37 | * |
| 38 | * See the comments and documentation in the file `ftimage.h' for more |
| 39 | * details on how the raster works. |
| 40 | * |
| 41 | */ |
| 42 | |
| 43 | /************************************************************************** |
| 44 | * |
| 45 | * This is a new anti-aliasing scan-converter for FreeType 2. The |
| 46 | * algorithm used here is _very_ different from the one in the standard |
| 47 | * `ftraster' module. Actually, `ftgrays' computes the _exact_ |
| 48 | * coverage of the outline on each pixel cell by straight segments. |
| 49 | * |
| 50 | * It is based on ideas that I initially found in Raph Levien's |
| 51 | * excellent LibArt graphics library (see https://www.levien.com/libart |
| 52 | * for more information, though the web pages do not tell anything |
| 53 | * about the renderer; you'll have to dive into the source code to |
| 54 | * understand how it works). |
| 55 | * |
| 56 | * Note, however, that this is a _very_ different implementation |
| 57 | * compared to Raph's. Coverage information is stored in a very |
| 58 | * different way, and I don't use sorted vector paths. Also, it doesn't |
| 59 | * use floating point values. |
| 60 | * |
| 61 | * Bézier segments are flattened by splitting them until their deviation |
| 62 | * from straight line becomes much smaller than a pixel. Therefore, the |
| 63 | * pixel coverage by a Bézier curve is calculated approximately. To |
| 64 | * estimate the deviation, we use the distance from the control point |
| 65 | * to the conic chord centre or the cubic chord trisection. These |
| 66 | * distances vanish fast after each split. In the conic case, they vanish |
| 67 | * predictably and the number of necessary splits can be calculated. |
| 68 | * |
| 69 | * This renderer has the following advantages: |
| 70 | * |
| 71 | * - It doesn't need an intermediate bitmap. Instead, one can supply a |
| 72 | * callback function that will be called by the renderer to draw gray |
| 73 | * spans on any target surface. You can thus do direct composition on |
| 74 | * any kind of bitmap, provided that you give the renderer the right |
| 75 | * callback. |
| 76 | * |
| 77 | * - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on |
| 78 | * each pixel cell by straight segments. |
| 79 | * |
| 80 | * - It performs a single pass on the outline (the `standard' FT2 |
| 81 | * renderer makes two passes). |
| 82 | * |
| 83 | * - It can easily be modified to render to _any_ number of gray levels |
| 84 | * cheaply. |
| 85 | * |
| 86 | * - For small (< 80) pixel sizes, it is faster than the standard |
| 87 | * renderer. |
| 88 | * |
| 89 | */ |
| 90 | |
| 91 | |
| 92 | /************************************************************************** |
| 93 | * |
| 94 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| 95 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| 96 | * messages during execution. |
| 97 | */ |
| 98 | #undef FT_COMPONENT |
| 99 | #define FT_COMPONENT smooth |
| 100 | |
| 101 | |
| 102 | #ifdef STANDALONE_ |
| 103 | |
| 104 | |
| 105 | /* The size in bytes of the render pool used by the scan-line converter */ |
| 106 | /* to do all of its work. */ |
| 107 | #define FT_RENDER_POOL_SIZE 16384L |
| 108 | |
| 109 | |
| 110 | /* Auxiliary macros for token concatenation. */ |
| 111 | #define FT_ERR_XCAT( x, y ) x ## y |
| 112 | #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y ) |
| 113 | |
| 114 | #define FT_BEGIN_STMNT do { |
| 115 | #define FT_END_STMNT } while ( 0 ) |
| 116 | |
| 117 | #define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) ) |
| 118 | #define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
| 119 | #define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
| 120 | |
| 121 | |
| 122 | /* |
| 123 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
| 124 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
| 125 | * largest error less than 7% compared to the exact value. |
| 126 | */ |
| 127 | #define FT_HYPOT( x, y ) \ |
| 128 | ( x = FT_ABS( x ), \ |
| 129 | y = FT_ABS( y ), \ |
| 130 | x > y ? x + ( 3 * y >> 3 ) \ |
| 131 | : y + ( 3 * x >> 3 ) ) |
| 132 | |
| 133 | |
| 134 | /* define this to dump debugging information */ |
| 135 | /* #define FT_DEBUG_LEVEL_TRACE */ |
| 136 | |
| 137 | |
| 138 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 139 | #include <stdio.h> |
| 140 | #include <stdarg.h> |
| 141 | #endif |
| 142 | |
| 143 | #include <stddef.h> |
| 144 | #include <string.h> |
| 145 | #include <setjmp.h> |
| 146 | #include <limits.h> |
| 147 | #define FT_CHAR_BIT CHAR_BIT |
| 148 | #define FT_UINT_MAX UINT_MAX |
| 149 | #define FT_INT_MAX INT_MAX |
| 150 | #define FT_ULONG_MAX ULONG_MAX |
| 151 | |
| 152 | #define ADD_INT( a, b ) \ |
| 153 | (int)( (unsigned int)(a) + (unsigned int)(b) ) |
| 154 | |
| 155 | #define FT_STATIC_BYTE_CAST( type, var ) (type)(unsigned char)(var) |
| 156 | |
| 157 | |
| 158 | #define ft_memset memset |
| 159 | |
| 160 | #define ft_setjmp setjmp |
| 161 | #define ft_longjmp longjmp |
| 162 | #define ft_jmp_buf jmp_buf |
| 163 | |
| 164 | typedef ptrdiff_t FT_PtrDist; |
| 165 | |
| 166 | |
| 167 | #define Smooth_Err_Ok 0 |
| 168 | #define Smooth_Err_Invalid_Outline -1 |
| 169 | #define Smooth_Err_Cannot_Render_Glyph -2 |
| 170 | #define Smooth_Err_Invalid_Argument -3 |
| 171 | #define Smooth_Err_Raster_Overflow -4 |
| 172 | |
| 173 | #define FT_BEGIN_HEADER |
| 174 | #define FT_END_HEADER |
| 175 | |
| 176 | #include "ftimage.h" |
| 177 | #include "ftgrays.h" |
| 178 | |
| 179 | |
| 180 | /* This macro is used to indicate that a function parameter is unused. */ |
| 181 | /* Its purpose is simply to reduce compiler warnings. Note also that */ |
| 182 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ |
| 183 | /* ANSI compilers (e.g. LCC). */ |
| 184 | #define FT_UNUSED( x ) (x) = (x) |
| 185 | |
| 186 | |
| 187 | /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */ |
| 188 | |
| 189 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 190 | |
| 191 | void |
| 192 | FT_Message( const char* fmt, |
| 193 | ... ) |
| 194 | { |
| 195 | va_list ap; |
| 196 | |
| 197 | |
| 198 | va_start( ap, fmt ); |
| 199 | vfprintf( stderr, fmt, ap ); |
| 200 | va_end( ap ); |
| 201 | } |
| 202 | |
| 203 | |
| 204 | /* empty function useful for setting a breakpoint to catch errors */ |
| 205 | int |
| 206 | FT_Throw( int error, |
| 207 | int line, |
| 208 | const char* file ) |
| 209 | { |
| 210 | FT_UNUSED( error ); |
| 211 | FT_UNUSED( line ); |
| 212 | FT_UNUSED( file ); |
| 213 | |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | |
| 218 | /* we don't handle tracing levels in stand-alone mode; */ |
| 219 | #ifndef FT_TRACE5 |
| 220 | #define FT_TRACE5( varformat ) FT_Message varformat |
| 221 | #endif |
| 222 | #ifndef FT_TRACE7 |
| 223 | #define FT_TRACE7( varformat ) FT_Message varformat |
| 224 | #endif |
| 225 | #ifndef FT_ERROR |
| 226 | #define FT_ERROR( varformat ) FT_Message varformat |
| 227 | #endif |
| 228 | |
| 229 | #define FT_THROW( e ) \ |
| 230 | ( FT_Throw( FT_ERR_CAT( Smooth_Err_, e ), \ |
| 231 | __LINE__, \ |
| 232 | __FILE__ ) | \ |
| 233 | FT_ERR_CAT( Smooth_Err_, e ) ) |
| 234 | |
| 235 | #else /* !FT_DEBUG_LEVEL_TRACE */ |
| 236 | |
| 237 | #define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
| 238 | #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
| 239 | #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
| 240 | #define FT_THROW( e ) FT_ERR_CAT( Smooth_Err_, e ) |
| 241 | |
| 242 | #endif /* !FT_DEBUG_LEVEL_TRACE */ |
| 243 | |
| 244 | |
| 245 | #define FT_Trace_Enable() do { } while ( 0 ) /* nothing */ |
| 246 | #define FT_Trace_Disable() do { } while ( 0 ) /* nothing */ |
| 247 | |
| 248 | |
| 249 | #define FT_DEFINE_OUTLINE_FUNCS( class_, \ |
| 250 | move_to_, line_to_, \ |
| 251 | conic_to_, cubic_to_, \ |
| 252 | shift_, delta_ ) \ |
| 253 | static const FT_Outline_Funcs class_ = \ |
| 254 | { \ |
| 255 | move_to_, \ |
| 256 | line_to_, \ |
| 257 | conic_to_, \ |
| 258 | cubic_to_, \ |
| 259 | shift_, \ |
| 260 | delta_ \ |
| 261 | }; |
| 262 | |
| 263 | #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \ |
| 264 | raster_new_, raster_reset_, \ |
| 265 | raster_set_mode_, raster_render_, \ |
| 266 | raster_done_ ) \ |
| 267 | const FT_Raster_Funcs class_ = \ |
| 268 | { \ |
| 269 | glyph_format_, \ |
| 270 | raster_new_, \ |
| 271 | raster_reset_, \ |
| 272 | raster_set_mode_, \ |
| 273 | raster_render_, \ |
| 274 | raster_done_ \ |
| 275 | }; |
| 276 | |
| 277 | |
| 278 | #else /* !STANDALONE_ */ |
| 279 | |
| 280 | |
| 281 | #include <ft2build.h> |
| 282 | #include FT_CONFIG_CONFIG_H |
| 283 | #include "ftgrays.h" |
| 284 | #include <freetype/internal/ftobjs.h> |
| 285 | #include <freetype/internal/ftdebug.h> |
| 286 | #include <freetype/internal/ftcalc.h> |
| 287 | #include <freetype/ftoutln.h> |
| 288 | |
| 289 | #include "ftsmerrs.h" |
| 290 | |
| 291 | |
| 292 | #endif /* !STANDALONE_ */ |
| 293 | |
| 294 | |
| 295 | #ifndef FT_MEM_SET |
| 296 | #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c ) |
| 297 | #endif |
| 298 | |
| 299 | #ifndef FT_MEM_ZERO |
| 300 | #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count ) |
| 301 | #endif |
| 302 | |
| 303 | #ifndef FT_ZERO |
| 304 | #define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) ) |
| 305 | #endif |
| 306 | |
| 307 | /* as usual, for the speed hungry :-) */ |
| 308 | |
| 309 | #undef RAS_ARG |
| 310 | #undef RAS_ARG_ |
| 311 | #undef RAS_VAR |
| 312 | #undef RAS_VAR_ |
| 313 | |
| 314 | #ifndef FT_STATIC_RASTER |
| 315 | |
| 316 | #define RAS_ARG gray_PWorker worker |
| 317 | #define RAS_ARG_ gray_PWorker worker, |
| 318 | |
| 319 | #define RAS_VAR worker |
| 320 | #define RAS_VAR_ worker, |
| 321 | |
| 322 | #else /* FT_STATIC_RASTER */ |
| 323 | |
| 324 | #define RAS_ARG void |
| 325 | #define RAS_ARG_ /* empty */ |
| 326 | #define RAS_VAR /* empty */ |
| 327 | #define RAS_VAR_ /* empty */ |
| 328 | |
| 329 | #endif /* FT_STATIC_RASTER */ |
| 330 | |
| 331 | |
| 332 | /* must be at least 6 bits! */ |
| 333 | #define PIXEL_BITS 8 |
| 334 | |
| 335 | #define ONE_PIXEL ( 1 << PIXEL_BITS ) |
| 336 | #undef TRUNC |
| 337 | #define TRUNC( x ) (TCoord)( (x) >> PIXEL_BITS ) |
| 338 | #undef FRACT |
| 339 | #define FRACT( x ) (TCoord)( (x) & ( ONE_PIXEL - 1 ) ) |
| 340 | |
| 341 | #if PIXEL_BITS >= 6 |
| 342 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
| 343 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
| 344 | #else |
| 345 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
| 346 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
| 347 | #endif |
| 348 | |
| 349 | |
| 350 | /* Compute `dividend / divisor' and return both its quotient and */ |
| 351 | /* remainder, cast to a specific type. This macro also ensures that */ |
| 352 | /* the remainder is always positive. We use the remainder to keep */ |
| 353 | /* track of accumulating errors and compensate for them. */ |
| 354 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
| 355 | FT_BEGIN_STMNT \ |
| 356 | (quotient) = (type)( (dividend) / (divisor) ); \ |
| 357 | (remainder) = (type)( (dividend) % (divisor) ); \ |
| 358 | if ( (remainder) < 0 ) \ |
| 359 | { \ |
| 360 | (quotient)--; \ |
| 361 | (remainder) += (type)(divisor); \ |
| 362 | } \ |
| 363 | FT_END_STMNT |
| 364 | |
| 365 | #if defined( __GNUC__ ) && __GNUC__ < 7 && defined( __arm__ ) |
| 366 | /* Work around a bug specific to GCC which make the compiler fail to */ |
| 367 | /* optimize a division and modulo operation on the same parameters */ |
| 368 | /* into a single call to `__aeabi_idivmod'. See */ |
| 369 | /* */ |
| 370 | /* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */ |
| 371 | #undef FT_DIV_MOD |
| 372 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
| 373 | FT_BEGIN_STMNT \ |
| 374 | (quotient) = (type)( (dividend) / (divisor) ); \ |
| 375 | (remainder) = (type)( (dividend) - (quotient) * (divisor) ); \ |
| 376 | if ( (remainder) < 0 ) \ |
| 377 | { \ |
| 378 | (quotient)--; \ |
| 379 | (remainder) += (type)(divisor); \ |
| 380 | } \ |
| 381 | FT_END_STMNT |
| 382 | #endif /* __arm__ */ |
| 383 | |
| 384 | |
| 385 | /* Calculating coverages for a slanted line requires a division each */ |
| 386 | /* time the line crosses from cell to cell. These macros speed up */ |
| 387 | /* the repetitive divisions by replacing them with multiplications */ |
| 388 | /* and right shifts so that at most two divisions are performed for */ |
| 389 | /* each slanted line. Nevertheless, these divisions are noticeable */ |
| 390 | /* in the overall performance because flattened curves produce a */ |
| 391 | /* very large number of slanted lines. */ |
| 392 | /* */ |
| 393 | /* The division results here are always within ONE_PIXEL. Therefore */ |
| 394 | /* the shift magnitude should be at least PIXEL_BITS wider than the */ |
| 395 | /* divisors to provide sufficient accuracy of the multiply-shift. */ |
| 396 | /* It should not exceed (64 - PIXEL_BITS) to prevent overflowing and */ |
| 397 | /* leave enough room for 64-bit unsigned multiplication however. */ |
| 398 | #define FT_UDIVPREP( c, b ) \ |
| 399 | FT_Int64 b ## _r = c ? (FT_Int64)0xFFFFFFFF / ( b ) : 0 |
| 400 | #define FT_UDIV( a, b ) \ |
| 401 | (TCoord)( ( (FT_UInt64)( a ) * (FT_UInt64)( b ## _r ) ) >> 32 ) |
| 402 | |
| 403 | |
| 404 | /* Scale area and apply fill rule to calculate the coverage byte. */ |
| 405 | /* The top fill bit is used for the non-zero rule. The eighth */ |
| 406 | /* fill bit is used for the even-odd rule. The higher coverage */ |
| 407 | /* bytes are either clamped for the non-zero-rule or discarded */ |
| 408 | /* later for the even-odd rule. */ |
| 409 | #define FT_FILL_RULE( coverage, area, fill ) \ |
| 410 | FT_BEGIN_STMNT \ |
| 411 | coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) ); \ |
| 412 | if ( coverage & fill ) \ |
| 413 | coverage = ~coverage; \ |
| 414 | if ( coverage > 255 && fill & INT_MIN ) \ |
| 415 | coverage = 255; \ |
| 416 | FT_END_STMNT |
| 417 | |
| 418 | |
| 419 | /* It is faster to write small spans byte-by-byte than calling */ |
| 420 | /* `memset'. This is mainly due to the cost of the function call. */ |
| 421 | #define FT_GRAY_SET( d, s, count ) \ |
| 422 | FT_BEGIN_STMNT \ |
| 423 | unsigned char* q = d; \ |
| 424 | switch ( count ) \ |
| 425 | { \ |
| 426 | case 7: *q++ = (unsigned char)s; FALL_THROUGH; \ |
| 427 | case 6: *q++ = (unsigned char)s; FALL_THROUGH; \ |
| 428 | case 5: *q++ = (unsigned char)s; FALL_THROUGH; \ |
| 429 | case 4: *q++ = (unsigned char)s; FALL_THROUGH; \ |
| 430 | case 3: *q++ = (unsigned char)s; FALL_THROUGH; \ |
| 431 | case 2: *q++ = (unsigned char)s; FALL_THROUGH; \ |
| 432 | case 1: *q = (unsigned char)s; FALL_THROUGH; \ |
| 433 | case 0: break; \ |
| 434 | default: FT_MEM_SET( d, s, count ); \ |
| 435 | } \ |
| 436 | FT_END_STMNT |
| 437 | |
| 438 | |
| 439 | /************************************************************************** |
| 440 | * |
| 441 | * TYPE DEFINITIONS |
| 442 | */ |
| 443 | |
| 444 | /* don't change the following types to FT_Int or FT_Pos, since we might */ |
| 445 | /* need to define them to "float" or "double" when experimenting with */ |
| 446 | /* new algorithms */ |
| 447 | |
| 448 | typedef long TPos; /* subpixel coordinate */ |
| 449 | typedef int TCoord; /* integer scanline/pixel coordinate */ |
| 450 | typedef int TArea; /* cell areas, coordinate products */ |
| 451 | |
| 452 | |
| 453 | typedef struct TCell_* PCell; |
| 454 | |
| 455 | typedef struct TCell_ |
| 456 | { |
| 457 | TCoord x; /* same with gray_TWorker.ex */ |
| 458 | TCoord cover; /* same with gray_TWorker.cover */ |
| 459 | TArea area; |
| 460 | PCell next; |
| 461 | |
| 462 | } TCell; |
| 463 | |
| 464 | typedef struct TPixmap_ |
| 465 | { |
| 466 | unsigned char* origin; /* pixmap origin at the bottom-left */ |
| 467 | int pitch; /* pitch to go down one row */ |
| 468 | |
| 469 | } TPixmap; |
| 470 | |
| 471 | /* maximum number of gray cells in the buffer */ |
| 472 | #if FT_RENDER_POOL_SIZE > 2048 |
| 473 | #define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) ) |
| 474 | #else |
| 475 | #define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) ) |
| 476 | #endif |
| 477 | |
| 478 | /* FT_Span buffer size for direct rendering only */ |
| 479 | #define FT_MAX_GRAY_SPANS 16 |
| 480 | |
| 481 | |
| 482 | #if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */ |
| 483 | /* We disable the warning `structure was padded due to */ |
| 484 | /* __declspec(align())' in order to compile cleanly with */ |
| 485 | /* the maximum level of warnings. */ |
| 486 | #pragma warning( push ) |
| 487 | #pragma warning( disable : 4324 ) |
| 488 | #endif /* _MSC_VER */ |
| 489 | |
| 490 | typedef struct gray_TWorker_ |
| 491 | { |
| 492 | ft_jmp_buf jump_buffer; |
| 493 | |
| 494 | TCoord min_ex, max_ex; /* min and max integer pixel coordinates */ |
| 495 | TCoord min_ey, max_ey; |
| 496 | TCoord count_ey; /* same as (max_ey - min_ey) */ |
| 497 | |
| 498 | PCell cell; /* current cell */ |
| 499 | PCell cell_free; /* call allocation next free slot */ |
| 500 | PCell cell_null; /* last cell, used as dumpster and limit */ |
| 501 | |
| 502 | PCell* ycells; /* array of cell linked-lists; one per */ |
| 503 | /* vertical coordinate in the current band */ |
| 504 | |
| 505 | TPos x, y; /* last point position */ |
| 506 | |
| 507 | FT_Outline outline; /* input outline */ |
| 508 | TPixmap target; /* target pixmap */ |
| 509 | |
| 510 | FT_Raster_Span_Func render_span; |
| 511 | void* render_span_data; |
| 512 | |
| 513 | } gray_TWorker, *gray_PWorker; |
| 514 | |
| 515 | #if defined( _MSC_VER ) |
| 516 | #pragma warning( pop ) |
| 517 | #endif |
| 518 | |
| 519 | #ifndef FT_STATIC_RASTER |
| 520 | #define ras (*worker) |
| 521 | #else |
| 522 | static gray_TWorker ras; |
| 523 | #endif |
| 524 | |
| 525 | /* The |x| value of the null cell. Must be the largest possible */ |
| 526 | /* integer value stored in a `TCell.x` field. */ |
| 527 | #define CELL_MAX_X_VALUE INT_MAX |
| 528 | |
| 529 | |
| 530 | #define FT_INTEGRATE( ras, a, b ) \ |
| 531 | ras.cell->cover = ADD_INT( ras.cell->cover, a ), \ |
| 532 | ras.cell->area = ADD_INT( ras.cell->area, (a) * (TArea)(b) ) |
| 533 | |
| 534 | |
| 535 | typedef struct gray_TRaster_ |
| 536 | { |
| 537 | void* memory; |
| 538 | |
| 539 | } gray_TRaster, *gray_PRaster; |
| 540 | |
| 541 | |
| 542 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 543 | |
| 544 | /* to be called while in the debugger -- */ |
| 545 | /* this function causes a compiler warning since it is unused otherwise */ |
| 546 | static void |
| 547 | gray_dump_cells( RAS_ARG ) |
| 548 | { |
| 549 | int y; |
| 550 | |
| 551 | |
| 552 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
| 553 | { |
| 554 | PCell cell = ras.ycells[y - ras.min_ey]; |
| 555 | |
| 556 | |
| 557 | printf( "%3d:" , y ); |
| 558 | |
| 559 | for ( ; cell != ras.cell_null; cell = cell->next ) |
| 560 | printf( " (%3d, c:%4d, a:%6d)" , |
| 561 | cell->x, cell->cover, cell->area ); |
| 562 | printf( "\n" ); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | #endif /* FT_DEBUG_LEVEL_TRACE */ |
| 567 | |
| 568 | |
| 569 | /************************************************************************** |
| 570 | * |
| 571 | * Set the current cell to a new position. |
| 572 | */ |
| 573 | static void |
| 574 | gray_set_cell( RAS_ARG_ TCoord ex, |
| 575 | TCoord ey ) |
| 576 | { |
| 577 | /* Move the cell pointer to a new position in the linked list. We use */ |
| 578 | /* a dumpster null cell for everything outside of the clipping region */ |
| 579 | /* during the render phase. This means that: */ |
| 580 | /* */ |
| 581 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
| 582 | /* . the new horizontal position must be strictly less than max_ex */ |
| 583 | /* */ |
| 584 | /* Note that if a cell is to the left of the clipping region, it is */ |
| 585 | /* actually set to the (min_ex-1) horizontal position. */ |
| 586 | |
| 587 | TCoord ey_index = ey - ras.min_ey; |
| 588 | |
| 589 | |
| 590 | if ( ey_index < 0 || ey_index >= ras.count_ey || ex >= ras.max_ex ) |
| 591 | ras.cell = ras.cell_null; |
| 592 | else |
| 593 | { |
| 594 | PCell* pcell = ras.ycells + ey_index; |
| 595 | PCell cell; |
| 596 | |
| 597 | |
| 598 | ex = FT_MAX( ex, ras.min_ex - 1 ); |
| 599 | |
| 600 | while ( 1 ) |
| 601 | { |
| 602 | cell = *pcell; |
| 603 | |
| 604 | if ( cell->x > ex ) |
| 605 | break; |
| 606 | |
| 607 | if ( cell->x == ex ) |
| 608 | goto Found; |
| 609 | |
| 610 | pcell = &cell->next; |
| 611 | } |
| 612 | |
| 613 | /* insert new cell */ |
| 614 | cell = ras.cell_free++; |
| 615 | if ( cell >= ras.cell_null ) |
| 616 | ft_longjmp( ras.jump_buffer, 1 ); |
| 617 | |
| 618 | cell->x = ex; |
| 619 | cell->area = 0; |
| 620 | cell->cover = 0; |
| 621 | |
| 622 | cell->next = *pcell; |
| 623 | *pcell = cell; |
| 624 | |
| 625 | Found: |
| 626 | ras.cell = cell; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | |
| 631 | #ifndef FT_INT64 |
| 632 | |
| 633 | /************************************************************************** |
| 634 | * |
| 635 | * Render a scanline as one or more cells. |
| 636 | */ |
| 637 | static void |
| 638 | gray_render_scanline( RAS_ARG_ TCoord ey, |
| 639 | TPos x1, |
| 640 | TCoord y1, |
| 641 | TPos x2, |
| 642 | TCoord y2 ) |
| 643 | { |
| 644 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
| 645 | TPos p, dx; |
| 646 | int incr; |
| 647 | |
| 648 | |
| 649 | ex1 = TRUNC( x1 ); |
| 650 | ex2 = TRUNC( x2 ); |
| 651 | |
| 652 | /* trivial case. Happens often */ |
| 653 | if ( y1 == y2 ) |
| 654 | { |
| 655 | gray_set_cell( RAS_VAR_ ex2, ey ); |
| 656 | return; |
| 657 | } |
| 658 | |
| 659 | fx1 = FRACT( x1 ); |
| 660 | fx2 = FRACT( x2 ); |
| 661 | |
| 662 | /* everything is located in a single cell. That is easy! */ |
| 663 | /* */ |
| 664 | if ( ex1 == ex2 ) |
| 665 | goto End; |
| 666 | |
| 667 | /* ok, we'll have to render a run of adjacent cells on the same */ |
| 668 | /* scanline... */ |
| 669 | /* */ |
| 670 | dx = x2 - x1; |
| 671 | dy = y2 - y1; |
| 672 | |
| 673 | if ( dx > 0 ) |
| 674 | { |
| 675 | p = ( ONE_PIXEL - fx1 ) * dy; |
| 676 | first = ONE_PIXEL; |
| 677 | incr = 1; |
| 678 | } |
| 679 | else |
| 680 | { |
| 681 | p = fx1 * dy; |
| 682 | first = 0; |
| 683 | incr = -1; |
| 684 | dx = -dx; |
| 685 | } |
| 686 | |
| 687 | /* the fractional part of y-delta is mod/dx. It is essential to */ |
| 688 | /* keep track of its accumulation for accurate rendering. */ |
| 689 | /* XXX: y-delta and x-delta below should be related. */ |
| 690 | FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
| 691 | |
| 692 | FT_INTEGRATE( ras, delta, fx1 + first ); |
| 693 | y1 += delta; |
| 694 | ex1 += incr; |
| 695 | gray_set_cell( RAS_VAR_ ex1, ey ); |
| 696 | |
| 697 | if ( ex1 != ex2 ) |
| 698 | { |
| 699 | TCoord lift, rem; |
| 700 | |
| 701 | |
| 702 | p = ONE_PIXEL * dy; |
| 703 | FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
| 704 | |
| 705 | do |
| 706 | { |
| 707 | delta = lift; |
| 708 | mod += rem; |
| 709 | if ( mod >= (TCoord)dx ) |
| 710 | { |
| 711 | mod -= (TCoord)dx; |
| 712 | delta++; |
| 713 | } |
| 714 | |
| 715 | FT_INTEGRATE( ras, delta, ONE_PIXEL ); |
| 716 | y1 += delta; |
| 717 | ex1 += incr; |
| 718 | gray_set_cell( RAS_VAR_ ex1, ey ); |
| 719 | } while ( ex1 != ex2 ); |
| 720 | } |
| 721 | |
| 722 | fx1 = ONE_PIXEL - first; |
| 723 | |
| 724 | End: |
| 725 | FT_INTEGRATE( ras, y2 - y1, fx1 + fx2 ); |
| 726 | } |
| 727 | |
| 728 | |
| 729 | /************************************************************************** |
| 730 | * |
| 731 | * Render a given line as a series of scanlines. |
| 732 | */ |
| 733 | static void |
| 734 | gray_render_line( RAS_ARG_ TPos to_x, |
| 735 | TPos to_y ) |
| 736 | { |
| 737 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
| 738 | TPos p, dx, dy, x, x2; |
| 739 | int incr; |
| 740 | |
| 741 | |
| 742 | ey1 = TRUNC( ras.y ); |
| 743 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
| 744 | |
| 745 | /* perform vertical clipping */ |
| 746 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
| 747 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
| 748 | goto End; |
| 749 | |
| 750 | fy1 = FRACT( ras.y ); |
| 751 | fy2 = FRACT( to_y ); |
| 752 | |
| 753 | /* everything is on a single scanline */ |
| 754 | if ( ey1 == ey2 ) |
| 755 | { |
| 756 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ); |
| 757 | goto End; |
| 758 | } |
| 759 | |
| 760 | dx = to_x - ras.x; |
| 761 | dy = to_y - ras.y; |
| 762 | |
| 763 | /* vertical line - avoid calling gray_render_scanline */ |
| 764 | if ( dx == 0 ) |
| 765 | { |
| 766 | TCoord ex = TRUNC( ras.x ); |
| 767 | TCoord two_fx = FRACT( ras.x ) << 1; |
| 768 | |
| 769 | |
| 770 | if ( dy > 0) |
| 771 | { |
| 772 | first = ONE_PIXEL; |
| 773 | incr = 1; |
| 774 | } |
| 775 | else |
| 776 | { |
| 777 | first = 0; |
| 778 | incr = -1; |
| 779 | } |
| 780 | |
| 781 | delta = first - fy1; |
| 782 | FT_INTEGRATE( ras, delta, two_fx); |
| 783 | ey1 += incr; |
| 784 | |
| 785 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
| 786 | |
| 787 | delta = first + first - ONE_PIXEL; |
| 788 | while ( ey1 != ey2 ) |
| 789 | { |
| 790 | FT_INTEGRATE( ras, delta, two_fx); |
| 791 | ey1 += incr; |
| 792 | |
| 793 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
| 794 | } |
| 795 | |
| 796 | delta = fy2 - ONE_PIXEL + first; |
| 797 | FT_INTEGRATE( ras, delta, two_fx); |
| 798 | |
| 799 | goto End; |
| 800 | } |
| 801 | |
| 802 | /* ok, we have to render several scanlines */ |
| 803 | if ( dy > 0) |
| 804 | { |
| 805 | p = ( ONE_PIXEL - fy1 ) * dx; |
| 806 | first = ONE_PIXEL; |
| 807 | incr = 1; |
| 808 | } |
| 809 | else |
| 810 | { |
| 811 | p = fy1 * dx; |
| 812 | first = 0; |
| 813 | incr = -1; |
| 814 | dy = -dy; |
| 815 | } |
| 816 | |
| 817 | /* the fractional part of x-delta is mod/dy. It is essential to */ |
| 818 | /* keep track of its accumulation for accurate rendering. */ |
| 819 | FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
| 820 | |
| 821 | x = ras.x + delta; |
| 822 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ); |
| 823 | |
| 824 | ey1 += incr; |
| 825 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
| 826 | |
| 827 | if ( ey1 != ey2 ) |
| 828 | { |
| 829 | TCoord lift, rem; |
| 830 | |
| 831 | |
| 832 | p = ONE_PIXEL * dx; |
| 833 | FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
| 834 | |
| 835 | do |
| 836 | { |
| 837 | delta = lift; |
| 838 | mod += rem; |
| 839 | if ( mod >= (TCoord)dy ) |
| 840 | { |
| 841 | mod -= (TCoord)dy; |
| 842 | delta++; |
| 843 | } |
| 844 | |
| 845 | x2 = x + delta; |
| 846 | gray_render_scanline( RAS_VAR_ ey1, |
| 847 | x, ONE_PIXEL - first, |
| 848 | x2, first ); |
| 849 | x = x2; |
| 850 | |
| 851 | ey1 += incr; |
| 852 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
| 853 | } while ( ey1 != ey2 ); |
| 854 | } |
| 855 | |
| 856 | gray_render_scanline( RAS_VAR_ ey1, |
| 857 | x, ONE_PIXEL - first, |
| 858 | to_x, fy2 ); |
| 859 | |
| 860 | End: |
| 861 | ras.x = to_x; |
| 862 | ras.y = to_y; |
| 863 | } |
| 864 | |
| 865 | #else |
| 866 | |
| 867 | /************************************************************************** |
| 868 | * |
| 869 | * Render a straight line across multiple cells in any direction. |
| 870 | */ |
| 871 | static void |
| 872 | gray_render_line( RAS_ARG_ TPos to_x, |
| 873 | TPos to_y ) |
| 874 | { |
| 875 | TPos dx, dy; |
| 876 | TCoord fx1, fy1, fx2, fy2; |
| 877 | TCoord ex1, ey1, ex2, ey2; |
| 878 | |
| 879 | |
| 880 | ey1 = TRUNC( ras.y ); |
| 881 | ey2 = TRUNC( to_y ); |
| 882 | |
| 883 | /* perform vertical clipping */ |
| 884 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
| 885 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
| 886 | goto End; |
| 887 | |
| 888 | ex1 = TRUNC( ras.x ); |
| 889 | ex2 = TRUNC( to_x ); |
| 890 | |
| 891 | fx1 = FRACT( ras.x ); |
| 892 | fy1 = FRACT( ras.y ); |
| 893 | |
| 894 | dx = to_x - ras.x; |
| 895 | dy = to_y - ras.y; |
| 896 | |
| 897 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
| 898 | ; |
| 899 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
| 900 | { |
| 901 | gray_set_cell( RAS_VAR_ ex2, ey2 ); |
| 902 | goto End; |
| 903 | } |
| 904 | else if ( dx == 0 ) |
| 905 | { |
| 906 | if ( dy > 0 ) /* vertical line up */ |
| 907 | do |
| 908 | { |
| 909 | fy2 = ONE_PIXEL; |
| 910 | FT_INTEGRATE( ras, fy2 - fy1, fx1 * 2 ); |
| 911 | fy1 = 0; |
| 912 | ey1++; |
| 913 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 914 | } while ( ey1 != ey2 ); |
| 915 | else /* vertical line down */ |
| 916 | do |
| 917 | { |
| 918 | fy2 = 0; |
| 919 | FT_INTEGRATE( ras, fy2 - fy1, fx1 * 2 ); |
| 920 | fy1 = ONE_PIXEL; |
| 921 | ey1--; |
| 922 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 923 | } while ( ey1 != ey2 ); |
| 924 | } |
| 925 | else /* any other line */ |
| 926 | { |
| 927 | FT_Int64 prod = dx * (FT_Int64)fy1 - dy * (FT_Int64)fx1; |
| 928 | FT_UDIVPREP( ex1 != ex2, dx ); |
| 929 | FT_UDIVPREP( ey1 != ey2, dy ); |
| 930 | |
| 931 | |
| 932 | /* The fundamental value `prod' determines which side and the */ |
| 933 | /* exact coordinate where the line exits current cell. It is */ |
| 934 | /* also easily updated when moving from one cell to the next. */ |
| 935 | do |
| 936 | { |
| 937 | if ( prod - dx * ONE_PIXEL > 0 && |
| 938 | prod <= 0 ) /* left */ |
| 939 | { |
| 940 | fx2 = 0; |
| 941 | fy2 = FT_UDIV( -prod, -dx ); |
| 942 | prod -= dy * ONE_PIXEL; |
| 943 | FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 ); |
| 944 | fx1 = ONE_PIXEL; |
| 945 | fy1 = fy2; |
| 946 | ex1--; |
| 947 | } |
| 948 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 && |
| 949 | prod - dx * ONE_PIXEL <= 0 ) /* up */ |
| 950 | { |
| 951 | prod -= dx * ONE_PIXEL; |
| 952 | fx2 = FT_UDIV( -prod, dy ); |
| 953 | fy2 = ONE_PIXEL; |
| 954 | FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 ); |
| 955 | fx1 = fx2; |
| 956 | fy1 = 0; |
| 957 | ey1++; |
| 958 | } |
| 959 | else if ( prod + dy * ONE_PIXEL >= 0 && |
| 960 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 ) /* right */ |
| 961 | { |
| 962 | prod += dy * ONE_PIXEL; |
| 963 | fx2 = ONE_PIXEL; |
| 964 | fy2 = FT_UDIV( prod, dx ); |
| 965 | FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 ); |
| 966 | fx1 = 0; |
| 967 | fy1 = fy2; |
| 968 | ex1++; |
| 969 | } |
| 970 | else /* ( prod > 0 && |
| 971 | prod + dy * ONE_PIXEL < 0 ) down */ |
| 972 | { |
| 973 | fx2 = FT_UDIV( prod, -dy ); |
| 974 | fy2 = 0; |
| 975 | prod += dx * ONE_PIXEL; |
| 976 | FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 ); |
| 977 | fx1 = fx2; |
| 978 | fy1 = ONE_PIXEL; |
| 979 | ey1--; |
| 980 | } |
| 981 | |
| 982 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 983 | |
| 984 | } while ( ex1 != ex2 || ey1 != ey2 ); |
| 985 | } |
| 986 | |
| 987 | fx2 = FRACT( to_x ); |
| 988 | fy2 = FRACT( to_y ); |
| 989 | |
| 990 | FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 ); |
| 991 | |
| 992 | End: |
| 993 | ras.x = to_x; |
| 994 | ras.y = to_y; |
| 995 | } |
| 996 | |
| 997 | #endif |
| 998 | |
| 999 | /* |
| 1000 | * Benchmarking shows that using DDA to flatten the quadratic Bézier arcs |
| 1001 | * is slightly faster in the following cases: |
| 1002 | * |
| 1003 | * - When the host CPU is 64-bit. |
| 1004 | * - When SSE2 SIMD registers and instructions are available (even on |
| 1005 | * x86). |
| 1006 | * |
| 1007 | * For other cases, using binary splits is actually slightly faster. |
| 1008 | */ |
| 1009 | #if ( defined( __SSE2__ ) || \ |
| 1010 | defined( __x86_64__ ) || \ |
| 1011 | defined( _M_AMD64 ) || \ |
| 1012 | ( defined( _M_IX86_FP ) && _M_IX86_FP >= 2 ) ) && \ |
| 1013 | !defined( __VMS ) |
| 1014 | # define FT_SSE2 1 |
| 1015 | #else |
| 1016 | # define FT_SSE2 0 |
| 1017 | #endif |
| 1018 | |
| 1019 | #if FT_SSE2 || \ |
| 1020 | defined( __aarch64__ ) || \ |
| 1021 | defined( _M_ARM64 ) |
| 1022 | # define BEZIER_USE_DDA 1 |
| 1023 | #else |
| 1024 | # define BEZIER_USE_DDA 0 |
| 1025 | #endif |
| 1026 | |
| 1027 | /* |
| 1028 | * For now, the code that depends on `BEZIER_USE_DDA` requires `FT_Int64` |
| 1029 | * to be defined. If `FT_INT64` is not defined, meaning there is no |
| 1030 | * 64-bit type available, disable it to avoid compilation errors. See for |
| 1031 | * example https://gitlab.freedesktop.org/freetype/freetype/-/issues/1071. |
| 1032 | */ |
| 1033 | #if !defined( FT_INT64 ) |
| 1034 | # undef BEZIER_USE_DDA |
| 1035 | # define BEZIER_USE_DDA 0 |
| 1036 | #endif |
| 1037 | |
| 1038 | #if BEZIER_USE_DDA |
| 1039 | |
| 1040 | #if FT_SSE2 |
| 1041 | # include <emmintrin.h> |
| 1042 | #endif |
| 1043 | |
| 1044 | #define LEFT_SHIFT( a, b ) (FT_Int64)( (FT_UInt64)(a) << (b) ) |
| 1045 | |
| 1046 | |
| 1047 | static void |
| 1048 | gray_render_conic( RAS_ARG_ const FT_Vector* control, |
| 1049 | const FT_Vector* to ) |
| 1050 | { |
| 1051 | FT_Vector p0, p1, p2; |
| 1052 | TPos ax, ay, bx, by, dx, dy; |
| 1053 | int shift; |
| 1054 | |
| 1055 | FT_Int64 rx, ry; |
| 1056 | FT_Int64 qx, qy; |
| 1057 | FT_Int64 px, py; |
| 1058 | |
| 1059 | FT_UInt count; |
| 1060 | |
| 1061 | |
| 1062 | p0.x = ras.x; |
| 1063 | p0.y = ras.y; |
| 1064 | p1.x = UPSCALE( control->x ); |
| 1065 | p1.y = UPSCALE( control->y ); |
| 1066 | p2.x = UPSCALE( to->x ); |
| 1067 | p2.y = UPSCALE( to->y ); |
| 1068 | |
| 1069 | /* short-cut the arc that crosses the current band */ |
| 1070 | if ( ( TRUNC( p0.y ) >= ras.max_ey && |
| 1071 | TRUNC( p1.y ) >= ras.max_ey && |
| 1072 | TRUNC( p2.y ) >= ras.max_ey ) || |
| 1073 | ( TRUNC( p0.y ) < ras.min_ey && |
| 1074 | TRUNC( p1.y ) < ras.min_ey && |
| 1075 | TRUNC( p2.y ) < ras.min_ey ) ) |
| 1076 | { |
| 1077 | ras.x = p2.x; |
| 1078 | ras.y = p2.y; |
| 1079 | return; |
| 1080 | } |
| 1081 | |
| 1082 | bx = p1.x - p0.x; |
| 1083 | by = p1.y - p0.y; |
| 1084 | ax = p2.x - p1.x - bx; /* p0.x + p2.x - 2 * p1.x */ |
| 1085 | ay = p2.y - p1.y - by; /* p0.y + p2.y - 2 * p1.y */ |
| 1086 | |
| 1087 | dx = FT_ABS( ax ); |
| 1088 | dy = FT_ABS( ay ); |
| 1089 | if ( dx < dy ) |
| 1090 | dx = dy; |
| 1091 | |
| 1092 | if ( dx <= ONE_PIXEL / 4 ) |
| 1093 | { |
| 1094 | gray_render_line( RAS_VAR_ p2.x, p2.y ); |
| 1095 | return; |
| 1096 | } |
| 1097 | |
| 1098 | /* We can calculate the number of necessary bisections because */ |
| 1099 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
| 1100 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
| 1101 | shift = 0; |
| 1102 | do |
| 1103 | { |
| 1104 | dx >>= 2; |
| 1105 | shift += 1; |
| 1106 | |
| 1107 | } while ( dx > ONE_PIXEL / 4 ); |
| 1108 | |
| 1109 | /* |
| 1110 | * The (P0,P1,P2) arc equation, for t in [0,1] range: |
| 1111 | * |
| 1112 | * P(t) = P0*(1-t)^2 + P1*2*t*(1-t) + P2*t^2 |
| 1113 | * |
| 1114 | * P(t) = P0 + 2*(P1-P0)*t + (P0+P2-2*P1)*t^2 |
| 1115 | * = P0 + 2*B*t + A*t^2 |
| 1116 | * |
| 1117 | * for A = P0 + P2 - 2*P1 |
| 1118 | * and B = P1 - P0 |
| 1119 | * |
| 1120 | * Let's consider the difference when advancing by a small |
| 1121 | * parameter h: |
| 1122 | * |
| 1123 | * Q(h,t) = P(t+h) - P(t) = 2*B*h + A*h^2 + 2*A*h*t |
| 1124 | * |
| 1125 | * And then its own difference: |
| 1126 | * |
| 1127 | * R(h,t) = Q(h,t+h) - Q(h,t) = 2*A*h*h = R (constant) |
| 1128 | * |
| 1129 | * Since R is always a constant, it is possible to compute |
| 1130 | * successive positions with: |
| 1131 | * |
| 1132 | * P = P0 |
| 1133 | * Q = Q(h,0) = 2*B*h + A*h*h |
| 1134 | * R = 2*A*h*h |
| 1135 | * |
| 1136 | * loop: |
| 1137 | * P += Q |
| 1138 | * Q += R |
| 1139 | * EMIT(P) |
| 1140 | * |
| 1141 | * To ensure accurate results, perform computations on 64-bit |
| 1142 | * values, after scaling them by 2^32. |
| 1143 | * |
| 1144 | * h = 1 / 2^N |
| 1145 | * |
| 1146 | * R << 32 = 2 * A << (32 - N - N) |
| 1147 | * = A << (33 - 2*N) |
| 1148 | * |
| 1149 | * Q << 32 = (2 * B << (32 - N)) + (A << (32 - N - N)) |
| 1150 | * = (B << (33 - N)) + (A << (32 - 2*N)) |
| 1151 | */ |
| 1152 | |
| 1153 | #if FT_SSE2 |
| 1154 | /* Experience shows that for small shift values, */ |
| 1155 | /* SSE2 is actually slower. */ |
| 1156 | if ( shift > 2 ) |
| 1157 | { |
| 1158 | union |
| 1159 | { |
| 1160 | struct { FT_Int64 ax, ay, bx, by; } i; |
| 1161 | struct { __m128i a, b; } vec; |
| 1162 | |
| 1163 | } u; |
| 1164 | |
| 1165 | union |
| 1166 | { |
| 1167 | struct { FT_Int32 px_lo, px_hi, py_lo, py_hi; } i; |
| 1168 | __m128i vec; |
| 1169 | |
| 1170 | } v; |
| 1171 | |
| 1172 | __m128i a, b; |
| 1173 | __m128i r, q, q2; |
| 1174 | __m128i p; |
| 1175 | |
| 1176 | |
| 1177 | u.i.ax = ax; |
| 1178 | u.i.ay = ay; |
| 1179 | u.i.bx = bx; |
| 1180 | u.i.by = by; |
| 1181 | |
| 1182 | a = _mm_load_si128( &u.vec.a ); |
| 1183 | b = _mm_load_si128( &u.vec.b ); |
| 1184 | |
| 1185 | r = _mm_slli_epi64( a, 33 - 2 * shift ); |
| 1186 | q = _mm_slli_epi64( b, 33 - shift ); |
| 1187 | q2 = _mm_slli_epi64( a, 32 - 2 * shift ); |
| 1188 | |
| 1189 | q = _mm_add_epi64( q2, q ); |
| 1190 | |
| 1191 | v.i.px_lo = 0; |
| 1192 | v.i.px_hi = p0.x; |
| 1193 | v.i.py_lo = 0; |
| 1194 | v.i.py_hi = p0.y; |
| 1195 | |
| 1196 | p = _mm_load_si128( &v.vec ); |
| 1197 | |
| 1198 | for ( count = 1U << shift; count > 0; count-- ) |
| 1199 | { |
| 1200 | p = _mm_add_epi64( p, q ); |
| 1201 | q = _mm_add_epi64( q, r ); |
| 1202 | |
| 1203 | _mm_store_si128( &v.vec, p ); |
| 1204 | |
| 1205 | gray_render_line( RAS_VAR_ v.i.px_hi, v.i.py_hi ); |
| 1206 | } |
| 1207 | |
| 1208 | return; |
| 1209 | } |
| 1210 | #endif /* FT_SSE2 */ |
| 1211 | |
| 1212 | rx = LEFT_SHIFT( ax, 33 - 2 * shift ); |
| 1213 | ry = LEFT_SHIFT( ay, 33 - 2 * shift ); |
| 1214 | |
| 1215 | qx = LEFT_SHIFT( bx, 33 - shift ) + LEFT_SHIFT( ax, 32 - 2 * shift ); |
| 1216 | qy = LEFT_SHIFT( by, 33 - shift ) + LEFT_SHIFT( ay, 32 - 2 * shift ); |
| 1217 | |
| 1218 | px = LEFT_SHIFT( p0.x, 32 ); |
| 1219 | py = LEFT_SHIFT( p0.y, 32 ); |
| 1220 | |
| 1221 | for ( count = 1U << shift; count > 0; count-- ) |
| 1222 | { |
| 1223 | px += qx; |
| 1224 | py += qy; |
| 1225 | qx += rx; |
| 1226 | qy += ry; |
| 1227 | |
| 1228 | gray_render_line( RAS_VAR_ (FT_Pos)( px >> 32 ), |
| 1229 | (FT_Pos)( py >> 32 ) ); |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | #else /* !BEZIER_USE_DDA */ |
| 1234 | |
| 1235 | /* |
| 1236 | * Note that multiple attempts to speed up the function below |
| 1237 | * with SSE2 intrinsics, using various data layouts, have turned |
| 1238 | * out to be slower than the non-SIMD code below. |
| 1239 | */ |
| 1240 | static void |
| 1241 | gray_split_conic( FT_Vector* base ) |
| 1242 | { |
| 1243 | TPos a, b; |
| 1244 | |
| 1245 | |
| 1246 | base[4].x = base[2].x; |
| 1247 | a = base[0].x + base[1].x; |
| 1248 | b = base[1].x + base[2].x; |
| 1249 | base[3].x = b >> 1; |
| 1250 | base[2].x = ( a + b ) >> 2; |
| 1251 | base[1].x = a >> 1; |
| 1252 | |
| 1253 | base[4].y = base[2].y; |
| 1254 | a = base[0].y + base[1].y; |
| 1255 | b = base[1].y + base[2].y; |
| 1256 | base[3].y = b >> 1; |
| 1257 | base[2].y = ( a + b ) >> 2; |
| 1258 | base[1].y = a >> 1; |
| 1259 | } |
| 1260 | |
| 1261 | |
| 1262 | static void |
| 1263 | gray_render_conic( RAS_ARG_ const FT_Vector* control, |
| 1264 | const FT_Vector* to ) |
| 1265 | { |
| 1266 | FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
| 1267 | FT_Vector* arc = bez_stack; |
| 1268 | TPos dx, dy; |
| 1269 | int draw; |
| 1270 | |
| 1271 | |
| 1272 | arc[0].x = UPSCALE( to->x ); |
| 1273 | arc[0].y = UPSCALE( to->y ); |
| 1274 | arc[1].x = UPSCALE( control->x ); |
| 1275 | arc[1].y = UPSCALE( control->y ); |
| 1276 | arc[2].x = ras.x; |
| 1277 | arc[2].y = ras.y; |
| 1278 | |
| 1279 | /* short-cut the arc that crosses the current band */ |
| 1280 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
| 1281 | TRUNC( arc[1].y ) >= ras.max_ey && |
| 1282 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
| 1283 | ( TRUNC( arc[0].y ) < ras.min_ey && |
| 1284 | TRUNC( arc[1].y ) < ras.min_ey && |
| 1285 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
| 1286 | { |
| 1287 | ras.x = arc[0].x; |
| 1288 | ras.y = arc[0].y; |
| 1289 | return; |
| 1290 | } |
| 1291 | |
| 1292 | dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
| 1293 | dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
| 1294 | if ( dx < dy ) |
| 1295 | dx = dy; |
| 1296 | |
| 1297 | /* We can calculate the number of necessary bisections because */ |
| 1298 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
| 1299 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
| 1300 | draw = 1; |
| 1301 | while ( dx > ONE_PIXEL / 4 ) |
| 1302 | { |
| 1303 | dx >>= 2; |
| 1304 | draw <<= 1; |
| 1305 | } |
| 1306 | |
| 1307 | /* We use decrement counter to count the total number of segments */ |
| 1308 | /* to draw starting from 2^level. Before each draw we split as */ |
| 1309 | /* many times as there are trailing zeros in the counter. */ |
| 1310 | do |
| 1311 | { |
| 1312 | int split = draw & ( -draw ); /* isolate the rightmost 1-bit */ |
| 1313 | |
| 1314 | |
| 1315 | while ( ( split >>= 1 ) ) |
| 1316 | { |
| 1317 | gray_split_conic( arc ); |
| 1318 | arc += 2; |
| 1319 | } |
| 1320 | |
| 1321 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
| 1322 | arc -= 2; |
| 1323 | |
| 1324 | } while ( --draw ); |
| 1325 | } |
| 1326 | |
| 1327 | #endif /* !BEZIER_USE_DDA */ |
| 1328 | |
| 1329 | |
| 1330 | /* |
| 1331 | * For cubic Bézier, binary splits are still faster than DDA |
| 1332 | * because the splits are adaptive to how quickly each sub-arc |
| 1333 | * approaches their chord trisection points. |
| 1334 | * |
| 1335 | * It might be useful to experiment with SSE2 to speed up |
| 1336 | * `gray_split_cubic`, though. |
| 1337 | */ |
| 1338 | static void |
| 1339 | gray_split_cubic( FT_Vector* base ) |
| 1340 | { |
| 1341 | TPos a, b, c; |
| 1342 | |
| 1343 | |
| 1344 | base[6].x = base[3].x; |
| 1345 | a = base[0].x + base[1].x; |
| 1346 | b = base[1].x + base[2].x; |
| 1347 | c = base[2].x + base[3].x; |
| 1348 | base[5].x = c >> 1; |
| 1349 | c += b; |
| 1350 | base[4].x = c >> 2; |
| 1351 | base[1].x = a >> 1; |
| 1352 | a += b; |
| 1353 | base[2].x = a >> 2; |
| 1354 | base[3].x = ( a + c ) >> 3; |
| 1355 | |
| 1356 | base[6].y = base[3].y; |
| 1357 | a = base[0].y + base[1].y; |
| 1358 | b = base[1].y + base[2].y; |
| 1359 | c = base[2].y + base[3].y; |
| 1360 | base[5].y = c >> 1; |
| 1361 | c += b; |
| 1362 | base[4].y = c >> 2; |
| 1363 | base[1].y = a >> 1; |
| 1364 | a += b; |
| 1365 | base[2].y = a >> 2; |
| 1366 | base[3].y = ( a + c ) >> 3; |
| 1367 | } |
| 1368 | |
| 1369 | |
| 1370 | static void |
| 1371 | gray_render_cubic( RAS_ARG_ const FT_Vector* control1, |
| 1372 | const FT_Vector* control2, |
| 1373 | const FT_Vector* to ) |
| 1374 | { |
| 1375 | FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
| 1376 | FT_Vector* arc = bez_stack; |
| 1377 | |
| 1378 | |
| 1379 | arc[0].x = UPSCALE( to->x ); |
| 1380 | arc[0].y = UPSCALE( to->y ); |
| 1381 | arc[1].x = UPSCALE( control2->x ); |
| 1382 | arc[1].y = UPSCALE( control2->y ); |
| 1383 | arc[2].x = UPSCALE( control1->x ); |
| 1384 | arc[2].y = UPSCALE( control1->y ); |
| 1385 | arc[3].x = ras.x; |
| 1386 | arc[3].y = ras.y; |
| 1387 | |
| 1388 | /* short-cut the arc that crosses the current band */ |
| 1389 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
| 1390 | TRUNC( arc[1].y ) >= ras.max_ey && |
| 1391 | TRUNC( arc[2].y ) >= ras.max_ey && |
| 1392 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
| 1393 | ( TRUNC( arc[0].y ) < ras.min_ey && |
| 1394 | TRUNC( arc[1].y ) < ras.min_ey && |
| 1395 | TRUNC( arc[2].y ) < ras.min_ey && |
| 1396 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
| 1397 | { |
| 1398 | ras.x = arc[0].x; |
| 1399 | ras.y = arc[0].y; |
| 1400 | return; |
| 1401 | } |
| 1402 | |
| 1403 | for (;;) |
| 1404 | { |
| 1405 | /* with each split, control points quickly converge towards */ |
| 1406 | /* chord trisection points and the vanishing distances below */ |
| 1407 | /* indicate when the segment is flat enough to draw */ |
| 1408 | if ( FT_ABS( 2 * arc[0].x - 3 * arc[1].x + arc[3].x ) > ONE_PIXEL / 2 || |
| 1409 | FT_ABS( 2 * arc[0].y - 3 * arc[1].y + arc[3].y ) > ONE_PIXEL / 2 || |
| 1410 | FT_ABS( arc[0].x - 3 * arc[2].x + 2 * arc[3].x ) > ONE_PIXEL / 2 || |
| 1411 | FT_ABS( arc[0].y - 3 * arc[2].y + 2 * arc[3].y ) > ONE_PIXEL / 2 ) |
| 1412 | goto Split; |
| 1413 | |
| 1414 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
| 1415 | |
| 1416 | if ( arc == bez_stack ) |
| 1417 | return; |
| 1418 | |
| 1419 | arc -= 3; |
| 1420 | continue; |
| 1421 | |
| 1422 | Split: |
| 1423 | gray_split_cubic( arc ); |
| 1424 | arc += 3; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | |
| 1429 | static int |
| 1430 | gray_move_to( const FT_Vector* to, |
| 1431 | void* worker_ ) /* gray_PWorker */ |
| 1432 | { |
| 1433 | gray_PWorker worker = (gray_PWorker)worker_; |
| 1434 | |
| 1435 | TPos x, y; |
| 1436 | |
| 1437 | |
| 1438 | /* start to a new position */ |
| 1439 | x = UPSCALE( to->x ); |
| 1440 | y = UPSCALE( to->y ); |
| 1441 | |
| 1442 | gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) ); |
| 1443 | |
| 1444 | ras.x = x; |
| 1445 | ras.y = y; |
| 1446 | return 0; |
| 1447 | } |
| 1448 | |
| 1449 | |
| 1450 | static int |
| 1451 | gray_line_to( const FT_Vector* to, |
| 1452 | void* worker_ ) /* gray_PWorker */ |
| 1453 | { |
| 1454 | gray_PWorker worker = (gray_PWorker)worker_; |
| 1455 | |
| 1456 | |
| 1457 | gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) ); |
| 1458 | return 0; |
| 1459 | } |
| 1460 | |
| 1461 | |
| 1462 | static int |
| 1463 | gray_conic_to( const FT_Vector* control, |
| 1464 | const FT_Vector* to, |
| 1465 | void* worker_ ) /* gray_PWorker */ |
| 1466 | { |
| 1467 | gray_PWorker worker = (gray_PWorker)worker_; |
| 1468 | |
| 1469 | |
| 1470 | gray_render_conic( RAS_VAR_ control, to ); |
| 1471 | return 0; |
| 1472 | } |
| 1473 | |
| 1474 | |
| 1475 | static int |
| 1476 | gray_cubic_to( const FT_Vector* control1, |
| 1477 | const FT_Vector* control2, |
| 1478 | const FT_Vector* to, |
| 1479 | void* worker_ ) /* gray_PWorker */ |
| 1480 | { |
| 1481 | gray_PWorker worker = (gray_PWorker)worker_; |
| 1482 | |
| 1483 | |
| 1484 | gray_render_cubic( RAS_VAR_ control1, control2, to ); |
| 1485 | return 0; |
| 1486 | } |
| 1487 | |
| 1488 | |
| 1489 | static void |
| 1490 | gray_sweep( RAS_ARG ) |
| 1491 | { |
| 1492 | int fill = ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) ? 0x100 |
| 1493 | : INT_MIN; |
| 1494 | int coverage; |
| 1495 | int y; |
| 1496 | |
| 1497 | |
| 1498 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
| 1499 | { |
| 1500 | PCell cell = ras.ycells[y - ras.min_ey]; |
| 1501 | TCoord x = ras.min_ex; |
| 1502 | TArea cover = 0; |
| 1503 | |
| 1504 | unsigned char* line = ras.target.origin - ras.target.pitch * y; |
| 1505 | |
| 1506 | |
| 1507 | for ( ; cell != ras.cell_null; cell = cell->next ) |
| 1508 | { |
| 1509 | TArea area; |
| 1510 | |
| 1511 | |
| 1512 | if ( cover != 0 && cell->x > x ) |
| 1513 | { |
| 1514 | FT_FILL_RULE( coverage, cover, fill ); |
| 1515 | FT_GRAY_SET( line + x, coverage, cell->x - x ); |
| 1516 | } |
| 1517 | |
| 1518 | cover += (TArea)cell->cover * ( ONE_PIXEL * 2 ); |
| 1519 | area = cover - cell->area; |
| 1520 | |
| 1521 | if ( area != 0 && cell->x >= ras.min_ex ) |
| 1522 | { |
| 1523 | FT_FILL_RULE( coverage, area, fill ); |
| 1524 | line[cell->x] = (unsigned char)coverage; |
| 1525 | } |
| 1526 | |
| 1527 | x = cell->x + 1; |
| 1528 | } |
| 1529 | |
| 1530 | if ( cover != 0 ) /* only if cropped */ |
| 1531 | { |
| 1532 | FT_FILL_RULE( coverage, cover, fill ); |
| 1533 | FT_GRAY_SET( line + x, coverage, ras.max_ex - x ); |
| 1534 | } |
| 1535 | } |
| 1536 | } |
| 1537 | |
| 1538 | |
| 1539 | static void |
| 1540 | gray_sweep_direct( RAS_ARG ) |
| 1541 | { |
| 1542 | int fill = ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) ? 0x100 |
| 1543 | : INT_MIN; |
| 1544 | int coverage; |
| 1545 | int y; |
| 1546 | |
| 1547 | FT_Span span[FT_MAX_GRAY_SPANS]; |
| 1548 | int n = 0; |
| 1549 | |
| 1550 | |
| 1551 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
| 1552 | { |
| 1553 | PCell cell = ras.ycells[y - ras.min_ey]; |
| 1554 | TCoord x = ras.min_ex; |
| 1555 | TArea cover = 0; |
| 1556 | |
| 1557 | |
| 1558 | for ( ; cell != ras.cell_null; cell = cell->next ) |
| 1559 | { |
| 1560 | TArea area; |
| 1561 | |
| 1562 | |
| 1563 | if ( cover != 0 && cell->x > x ) |
| 1564 | { |
| 1565 | FT_FILL_RULE( coverage, cover, fill ); |
| 1566 | |
| 1567 | span[n].coverage = (unsigned char)coverage; |
| 1568 | span[n].x = (short)x; |
| 1569 | span[n].len = (unsigned short)( cell->x - x ); |
| 1570 | |
| 1571 | if ( ++n == FT_MAX_GRAY_SPANS ) |
| 1572 | { |
| 1573 | /* flush the span buffer and reset the count */ |
| 1574 | ras.render_span( y, n, span, ras.render_span_data ); |
| 1575 | n = 0; |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | cover += (TArea)cell->cover * ( ONE_PIXEL * 2 ); |
| 1580 | area = cover - cell->area; |
| 1581 | |
| 1582 | if ( area != 0 && cell->x >= ras.min_ex ) |
| 1583 | { |
| 1584 | FT_FILL_RULE( coverage, area, fill ); |
| 1585 | |
| 1586 | span[n].coverage = (unsigned char)coverage; |
| 1587 | span[n].x = (short)cell->x; |
| 1588 | span[n].len = 1; |
| 1589 | |
| 1590 | if ( ++n == FT_MAX_GRAY_SPANS ) |
| 1591 | { |
| 1592 | /* flush the span buffer and reset the count */ |
| 1593 | ras.render_span( y, n, span, ras.render_span_data ); |
| 1594 | n = 0; |
| 1595 | } |
| 1596 | } |
| 1597 | |
| 1598 | x = cell->x + 1; |
| 1599 | } |
| 1600 | |
| 1601 | if ( cover != 0 ) /* only if cropped */ |
| 1602 | { |
| 1603 | FT_FILL_RULE( coverage, cover, fill ); |
| 1604 | |
| 1605 | span[n].coverage = (unsigned char)coverage; |
| 1606 | span[n].x = (short)x; |
| 1607 | span[n].len = (unsigned short)( ras.max_ex - x ); |
| 1608 | |
| 1609 | ++n; |
| 1610 | } |
| 1611 | |
| 1612 | if ( n ) |
| 1613 | { |
| 1614 | /* flush the span buffer and reset the count */ |
| 1615 | ras.render_span( y, n, span, ras.render_span_data ); |
| 1616 | n = 0; |
| 1617 | } |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | |
| 1622 | #ifdef STANDALONE_ |
| 1623 | |
| 1624 | /************************************************************************** |
| 1625 | * |
| 1626 | * The following functions should only compile in stand-alone mode, |
| 1627 | * i.e., when building this component without the rest of FreeType. |
| 1628 | * |
| 1629 | */ |
| 1630 | |
| 1631 | /************************************************************************** |
| 1632 | * |
| 1633 | * @Function: |
| 1634 | * FT_Outline_Decompose |
| 1635 | * |
| 1636 | * @Description: |
| 1637 | * Walk over an outline's structure to decompose it into individual |
| 1638 | * segments and Bézier arcs. This function is also able to emit |
| 1639 | * `move to' and `close to' operations to indicate the start and end |
| 1640 | * of new contours in the outline. |
| 1641 | * |
| 1642 | * @Input: |
| 1643 | * outline :: |
| 1644 | * A pointer to the source target. |
| 1645 | * |
| 1646 | * func_interface :: |
| 1647 | * A table of `emitters', i.e., function pointers |
| 1648 | * called during decomposition to indicate path |
| 1649 | * operations. |
| 1650 | * |
| 1651 | * @InOut: |
| 1652 | * user :: |
| 1653 | * A typeless pointer which is passed to each |
| 1654 | * emitter during the decomposition. It can be |
| 1655 | * used to store the state during the |
| 1656 | * decomposition. |
| 1657 | * |
| 1658 | * @Return: |
| 1659 | * Error code. 0 means success. |
| 1660 | */ |
| 1661 | static int |
| 1662 | FT_Outline_Decompose( const FT_Outline* outline, |
| 1663 | const FT_Outline_Funcs* func_interface, |
| 1664 | void* user ) |
| 1665 | { |
| 1666 | #undef SCALED |
| 1667 | #define SCALED( x ) ( (x) * ( 1L << shift ) - delta ) |
| 1668 | |
| 1669 | FT_Vector v_last; |
| 1670 | FT_Vector v_control; |
| 1671 | FT_Vector v_start; |
| 1672 | |
| 1673 | FT_Vector* point; |
| 1674 | FT_Vector* limit; |
| 1675 | char* tags; |
| 1676 | |
| 1677 | int error; |
| 1678 | |
| 1679 | int n; /* index of contour in outline */ |
| 1680 | int first; /* index of first point in contour */ |
| 1681 | int last; /* index of last point in contour */ |
| 1682 | |
| 1683 | char tag; /* current point's state */ |
| 1684 | |
| 1685 | int shift; |
| 1686 | TPos delta; |
| 1687 | |
| 1688 | |
| 1689 | if ( !outline ) |
| 1690 | return FT_THROW( Invalid_Outline ); |
| 1691 | |
| 1692 | if ( !func_interface ) |
| 1693 | return FT_THROW( Invalid_Argument ); |
| 1694 | |
| 1695 | shift = func_interface->shift; |
| 1696 | delta = func_interface->delta; |
| 1697 | |
| 1698 | last = -1; |
| 1699 | for ( n = 0; n < outline->n_contours; n++ ) |
| 1700 | { |
| 1701 | FT_TRACE5(( "FT_Outline_Decompose: Contour %d\n" , n )); |
| 1702 | |
| 1703 | first = last + 1; |
| 1704 | last = outline->contours[n]; |
| 1705 | if ( last < first ) |
| 1706 | goto Invalid_Outline; |
| 1707 | |
| 1708 | limit = outline->points + last; |
| 1709 | |
| 1710 | v_start = outline->points[first]; |
| 1711 | v_start.x = SCALED( v_start.x ); |
| 1712 | v_start.y = SCALED( v_start.y ); |
| 1713 | |
| 1714 | v_last = outline->points[last]; |
| 1715 | v_last.x = SCALED( v_last.x ); |
| 1716 | v_last.y = SCALED( v_last.y ); |
| 1717 | |
| 1718 | v_control = v_start; |
| 1719 | |
| 1720 | point = outline->points + first; |
| 1721 | tags = outline->tags + first; |
| 1722 | tag = FT_CURVE_TAG( tags[0] ); |
| 1723 | |
| 1724 | /* A contour cannot start with a cubic control point! */ |
| 1725 | if ( tag == FT_CURVE_TAG_CUBIC ) |
| 1726 | goto Invalid_Outline; |
| 1727 | |
| 1728 | /* check first point to determine origin */ |
| 1729 | if ( tag == FT_CURVE_TAG_CONIC ) |
| 1730 | { |
| 1731 | /* first point is conic control. Yes, this happens. */ |
| 1732 | if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON ) |
| 1733 | { |
| 1734 | /* start at last point if it is on the curve */ |
| 1735 | v_start = v_last; |
| 1736 | limit--; |
| 1737 | } |
| 1738 | else |
| 1739 | { |
| 1740 | /* if both first and last points are conic, */ |
| 1741 | /* start at their middle and record its position */ |
| 1742 | /* for closure */ |
| 1743 | v_start.x = ( v_start.x + v_last.x ) / 2; |
| 1744 | v_start.y = ( v_start.y + v_last.y ) / 2; |
| 1745 | |
| 1746 | v_last = v_start; |
| 1747 | } |
| 1748 | point--; |
| 1749 | tags--; |
| 1750 | } |
| 1751 | |
| 1752 | FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
| 1753 | v_start.x / 64.0, v_start.y / 64.0 )); |
| 1754 | error = func_interface->move_to( &v_start, user ); |
| 1755 | if ( error ) |
| 1756 | goto Exit; |
| 1757 | |
| 1758 | while ( point < limit ) |
| 1759 | { |
| 1760 | point++; |
| 1761 | tags++; |
| 1762 | |
| 1763 | tag = FT_CURVE_TAG( tags[0] ); |
| 1764 | switch ( tag ) |
| 1765 | { |
| 1766 | case FT_CURVE_TAG_ON: /* emit a single line_to */ |
| 1767 | { |
| 1768 | FT_Vector vec; |
| 1769 | |
| 1770 | |
| 1771 | vec.x = SCALED( point->x ); |
| 1772 | vec.y = SCALED( point->y ); |
| 1773 | |
| 1774 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
| 1775 | vec.x / 64.0, vec.y / 64.0 )); |
| 1776 | error = func_interface->line_to( &vec, user ); |
| 1777 | if ( error ) |
| 1778 | goto Exit; |
| 1779 | continue; |
| 1780 | } |
| 1781 | |
| 1782 | case FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
| 1783 | v_control.x = SCALED( point->x ); |
| 1784 | v_control.y = SCALED( point->y ); |
| 1785 | |
| 1786 | Do_Conic: |
| 1787 | if ( point < limit ) |
| 1788 | { |
| 1789 | FT_Vector vec; |
| 1790 | FT_Vector v_middle; |
| 1791 | |
| 1792 | |
| 1793 | point++; |
| 1794 | tags++; |
| 1795 | tag = FT_CURVE_TAG( tags[0] ); |
| 1796 | |
| 1797 | vec.x = SCALED( point->x ); |
| 1798 | vec.y = SCALED( point->y ); |
| 1799 | |
| 1800 | if ( tag == FT_CURVE_TAG_ON ) |
| 1801 | { |
| 1802 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
| 1803 | " with control (%.2f, %.2f)\n" , |
| 1804 | vec.x / 64.0, vec.y / 64.0, |
| 1805 | v_control.x / 64.0, v_control.y / 64.0 )); |
| 1806 | error = func_interface->conic_to( &v_control, &vec, user ); |
| 1807 | if ( error ) |
| 1808 | goto Exit; |
| 1809 | continue; |
| 1810 | } |
| 1811 | |
| 1812 | if ( tag != FT_CURVE_TAG_CONIC ) |
| 1813 | goto Invalid_Outline; |
| 1814 | |
| 1815 | v_middle.x = ( v_control.x + vec.x ) / 2; |
| 1816 | v_middle.y = ( v_control.y + vec.y ) / 2; |
| 1817 | |
| 1818 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
| 1819 | " with control (%.2f, %.2f)\n" , |
| 1820 | v_middle.x / 64.0, v_middle.y / 64.0, |
| 1821 | v_control.x / 64.0, v_control.y / 64.0 )); |
| 1822 | error = func_interface->conic_to( &v_control, &v_middle, user ); |
| 1823 | if ( error ) |
| 1824 | goto Exit; |
| 1825 | |
| 1826 | v_control = vec; |
| 1827 | goto Do_Conic; |
| 1828 | } |
| 1829 | |
| 1830 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
| 1831 | " with control (%.2f, %.2f)\n" , |
| 1832 | v_start.x / 64.0, v_start.y / 64.0, |
| 1833 | v_control.x / 64.0, v_control.y / 64.0 )); |
| 1834 | error = func_interface->conic_to( &v_control, &v_start, user ); |
| 1835 | goto Close; |
| 1836 | |
| 1837 | default: /* FT_CURVE_TAG_CUBIC */ |
| 1838 | { |
| 1839 | FT_Vector vec1, vec2; |
| 1840 | |
| 1841 | |
| 1842 | if ( point + 1 > limit || |
| 1843 | FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC ) |
| 1844 | goto Invalid_Outline; |
| 1845 | |
| 1846 | point += 2; |
| 1847 | tags += 2; |
| 1848 | |
| 1849 | vec1.x = SCALED( point[-2].x ); |
| 1850 | vec1.y = SCALED( point[-2].y ); |
| 1851 | |
| 1852 | vec2.x = SCALED( point[-1].x ); |
| 1853 | vec2.y = SCALED( point[-1].y ); |
| 1854 | |
| 1855 | if ( point <= limit ) |
| 1856 | { |
| 1857 | FT_Vector vec; |
| 1858 | |
| 1859 | |
| 1860 | vec.x = SCALED( point->x ); |
| 1861 | vec.y = SCALED( point->y ); |
| 1862 | |
| 1863 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
| 1864 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
| 1865 | vec.x / 64.0, vec.y / 64.0, |
| 1866 | vec1.x / 64.0, vec1.y / 64.0, |
| 1867 | vec2.x / 64.0, vec2.y / 64.0 )); |
| 1868 | error = func_interface->cubic_to( &vec1, &vec2, &vec, user ); |
| 1869 | if ( error ) |
| 1870 | goto Exit; |
| 1871 | continue; |
| 1872 | } |
| 1873 | |
| 1874 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
| 1875 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
| 1876 | v_start.x / 64.0, v_start.y / 64.0, |
| 1877 | vec1.x / 64.0, vec1.y / 64.0, |
| 1878 | vec2.x / 64.0, vec2.y / 64.0 )); |
| 1879 | error = func_interface->cubic_to( &vec1, &vec2, &v_start, user ); |
| 1880 | goto Close; |
| 1881 | } |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | /* close the contour with a line segment */ |
| 1886 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
| 1887 | v_start.x / 64.0, v_start.y / 64.0 )); |
| 1888 | error = func_interface->line_to( &v_start, user ); |
| 1889 | |
| 1890 | Close: |
| 1891 | if ( error ) |
| 1892 | goto Exit; |
| 1893 | } |
| 1894 | |
| 1895 | FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
| 1896 | return Smooth_Err_Ok; |
| 1897 | |
| 1898 | Exit: |
| 1899 | FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n" , error )); |
| 1900 | return error; |
| 1901 | |
| 1902 | Invalid_Outline: |
| 1903 | return FT_THROW( Invalid_Outline ); |
| 1904 | } |
| 1905 | |
| 1906 | #endif /* STANDALONE_ */ |
| 1907 | |
| 1908 | |
| 1909 | FT_DEFINE_OUTLINE_FUNCS( |
| 1910 | func_interface, |
| 1911 | |
| 1912 | (FT_Outline_MoveTo_Func) gray_move_to, /* move_to */ |
| 1913 | (FT_Outline_LineTo_Func) gray_line_to, /* line_to */ |
| 1914 | (FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */ |
| 1915 | (FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */ |
| 1916 | |
| 1917 | 0, /* shift */ |
| 1918 | 0 /* delta */ |
| 1919 | ) |
| 1920 | |
| 1921 | |
| 1922 | static int |
| 1923 | gray_convert_glyph_inner( RAS_ARG_ |
| 1924 | int continued ) |
| 1925 | { |
| 1926 | volatile int error; |
| 1927 | |
| 1928 | |
| 1929 | if ( ft_setjmp( ras.jump_buffer ) == 0 ) |
| 1930 | { |
| 1931 | if ( continued ) |
| 1932 | FT_Trace_Disable(); |
| 1933 | error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras ); |
| 1934 | if ( continued ) |
| 1935 | FT_Trace_Enable(); |
| 1936 | |
| 1937 | FT_TRACE7(( "band [%d..%d]: %td cell%s remaining/\n" , |
| 1938 | ras.min_ey, |
| 1939 | ras.max_ey, |
| 1940 | ras.cell_null - ras.cell_free, |
| 1941 | ras.cell_null - ras.cell_free == 1 ? "" : "s" )); |
| 1942 | } |
| 1943 | else |
| 1944 | { |
| 1945 | error = FT_THROW( Raster_Overflow ); |
| 1946 | |
| 1947 | FT_TRACE7(( "band [%d..%d]: to be bisected\n" , |
| 1948 | ras.min_ey, ras.max_ey )); |
| 1949 | } |
| 1950 | |
| 1951 | return error; |
| 1952 | } |
| 1953 | |
| 1954 | |
| 1955 | static int |
| 1956 | gray_convert_glyph( RAS_ARG ) |
| 1957 | { |
| 1958 | const TCoord yMin = ras.min_ey; |
| 1959 | const TCoord yMax = ras.max_ey; |
| 1960 | |
| 1961 | TCell buffer[FT_MAX_GRAY_POOL]; |
| 1962 | size_t height = (size_t)( yMax - yMin ); |
| 1963 | size_t n = FT_MAX_GRAY_POOL / 8; |
| 1964 | TCoord y; |
| 1965 | TCoord bands[32]; /* enough to accommodate bisections */ |
| 1966 | TCoord* band; |
| 1967 | |
| 1968 | int continued = 0; |
| 1969 | |
| 1970 | |
| 1971 | /* Initialize the null cell at the end of the poll. */ |
| 1972 | ras.cell_null = buffer + FT_MAX_GRAY_POOL - 1; |
| 1973 | ras.cell_null->x = CELL_MAX_X_VALUE; |
| 1974 | ras.cell_null->area = 0; |
| 1975 | ras.cell_null->cover = 0; |
| 1976 | ras.cell_null->next = NULL; |
| 1977 | |
| 1978 | /* set up vertical bands */ |
| 1979 | ras.ycells = (PCell*)buffer; |
| 1980 | |
| 1981 | if ( height > n ) |
| 1982 | { |
| 1983 | /* two divisions rounded up */ |
| 1984 | n = ( height + n - 1 ) / n; |
| 1985 | height = ( height + n - 1 ) / n; |
| 1986 | } |
| 1987 | |
| 1988 | for ( y = yMin; y < yMax; ) |
| 1989 | { |
| 1990 | ras.min_ey = y; |
| 1991 | y += height; |
| 1992 | ras.max_ey = FT_MIN( y, yMax ); |
| 1993 | |
| 1994 | band = bands; |
| 1995 | band[1] = ras.min_ey; |
| 1996 | band[0] = ras.max_ey; |
| 1997 | |
| 1998 | do |
| 1999 | { |
| 2000 | TCoord width = band[0] - band[1]; |
| 2001 | TCoord w; |
| 2002 | int error; |
| 2003 | |
| 2004 | |
| 2005 | for ( w = 0; w < width; ++w ) |
| 2006 | ras.ycells[w] = ras.cell_null; |
| 2007 | |
| 2008 | /* memory management: skip ycells */ |
| 2009 | n = ( (size_t)width * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) / |
| 2010 | sizeof ( TCell ); |
| 2011 | |
| 2012 | ras.cell_free = buffer + n; |
| 2013 | ras.cell = ras.cell_null; |
| 2014 | ras.min_ey = band[1]; |
| 2015 | ras.max_ey = band[0]; |
| 2016 | ras.count_ey = width; |
| 2017 | |
| 2018 | error = gray_convert_glyph_inner( RAS_VAR_ continued ); |
| 2019 | continued = 1; |
| 2020 | |
| 2021 | if ( !error ) |
| 2022 | { |
| 2023 | if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */ |
| 2024 | gray_sweep_direct( RAS_VAR ); |
| 2025 | else |
| 2026 | gray_sweep( RAS_VAR ); |
| 2027 | band--; |
| 2028 | continue; |
| 2029 | } |
| 2030 | else if ( error != Smooth_Err_Raster_Overflow ) |
| 2031 | return error; |
| 2032 | |
| 2033 | /* render pool overflow; we will reduce the render band by half */ |
| 2034 | width >>= 1; |
| 2035 | |
| 2036 | /* this should never happen even with tiny rendering pool */ |
| 2037 | if ( width == 0 ) |
| 2038 | { |
| 2039 | FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" )); |
| 2040 | return FT_THROW( Raster_Overflow ); |
| 2041 | } |
| 2042 | |
| 2043 | band++; |
| 2044 | band[1] = band[0]; |
| 2045 | band[0] += width; |
| 2046 | } while ( band >= bands ); |
| 2047 | } |
| 2048 | |
| 2049 | return Smooth_Err_Ok; |
| 2050 | } |
| 2051 | |
| 2052 | |
| 2053 | static int |
| 2054 | gray_raster_render( FT_Raster raster, |
| 2055 | const FT_Raster_Params* params ) |
| 2056 | { |
| 2057 | const FT_Outline* outline = (const FT_Outline*)params->source; |
| 2058 | const FT_Bitmap* target_map = params->target; |
| 2059 | |
| 2060 | #ifndef FT_STATIC_RASTER |
| 2061 | gray_TWorker worker[1]; |
| 2062 | #endif |
| 2063 | |
| 2064 | |
| 2065 | if ( !raster ) |
| 2066 | return FT_THROW( Invalid_Argument ); |
| 2067 | |
| 2068 | /* this version does not support monochrome rendering */ |
| 2069 | if ( !( params->flags & FT_RASTER_FLAG_AA ) ) |
| 2070 | return FT_THROW( Cannot_Render_Glyph ); |
| 2071 | |
| 2072 | if ( !outline ) |
| 2073 | return FT_THROW( Invalid_Outline ); |
| 2074 | |
| 2075 | /* return immediately if the outline is empty */ |
| 2076 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| 2077 | return Smooth_Err_Ok; |
| 2078 | |
| 2079 | if ( !outline->contours || !outline->points ) |
| 2080 | return FT_THROW( Invalid_Outline ); |
| 2081 | |
| 2082 | if ( outline->n_points != |
| 2083 | outline->contours[outline->n_contours - 1] + 1 ) |
| 2084 | return FT_THROW( Invalid_Outline ); |
| 2085 | |
| 2086 | ras.outline = *outline; |
| 2087 | |
| 2088 | if ( params->flags & FT_RASTER_FLAG_DIRECT ) |
| 2089 | { |
| 2090 | if ( !params->gray_spans ) |
| 2091 | return Smooth_Err_Ok; |
| 2092 | |
| 2093 | ras.render_span = (FT_Raster_Span_Func)params->gray_spans; |
| 2094 | ras.render_span_data = params->user; |
| 2095 | |
| 2096 | ras.min_ex = params->clip_box.xMin; |
| 2097 | ras.min_ey = params->clip_box.yMin; |
| 2098 | ras.max_ex = params->clip_box.xMax; |
| 2099 | ras.max_ey = params->clip_box.yMax; |
| 2100 | } |
| 2101 | else |
| 2102 | { |
| 2103 | /* if direct mode is not set, we must have a target bitmap */ |
| 2104 | if ( !target_map ) |
| 2105 | return FT_THROW( Invalid_Argument ); |
| 2106 | |
| 2107 | /* nothing to do */ |
| 2108 | if ( !target_map->width || !target_map->rows ) |
| 2109 | return Smooth_Err_Ok; |
| 2110 | |
| 2111 | if ( !target_map->buffer ) |
| 2112 | return FT_THROW( Invalid_Argument ); |
| 2113 | |
| 2114 | if ( target_map->pitch < 0 ) |
| 2115 | ras.target.origin = target_map->buffer; |
| 2116 | else |
| 2117 | ras.target.origin = target_map->buffer |
| 2118 | + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch; |
| 2119 | |
| 2120 | ras.target.pitch = target_map->pitch; |
| 2121 | |
| 2122 | ras.render_span = (FT_Raster_Span_Func)NULL; |
| 2123 | ras.render_span_data = NULL; |
| 2124 | |
| 2125 | ras.min_ex = 0; |
| 2126 | ras.min_ey = 0; |
| 2127 | ras.max_ex = (FT_Pos)target_map->width; |
| 2128 | ras.max_ey = (FT_Pos)target_map->rows; |
| 2129 | } |
| 2130 | |
| 2131 | /* exit if nothing to do */ |
| 2132 | if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey ) |
| 2133 | return Smooth_Err_Ok; |
| 2134 | |
| 2135 | return gray_convert_glyph( RAS_VAR ); |
| 2136 | } |
| 2137 | |
| 2138 | |
| 2139 | /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/ |
| 2140 | /**** a static object. *****/ |
| 2141 | |
| 2142 | #ifdef STANDALONE_ |
| 2143 | |
| 2144 | static int |
| 2145 | gray_raster_new( void* memory, |
| 2146 | FT_Raster* araster ) |
| 2147 | { |
| 2148 | static gray_TRaster the_raster; |
| 2149 | |
| 2150 | FT_UNUSED( memory ); |
| 2151 | |
| 2152 | |
| 2153 | *araster = (FT_Raster)&the_raster; |
| 2154 | FT_ZERO( &the_raster ); |
| 2155 | |
| 2156 | return 0; |
| 2157 | } |
| 2158 | |
| 2159 | |
| 2160 | static void |
| 2161 | gray_raster_done( FT_Raster raster ) |
| 2162 | { |
| 2163 | /* nothing */ |
| 2164 | FT_UNUSED( raster ); |
| 2165 | } |
| 2166 | |
| 2167 | #else /* !STANDALONE_ */ |
| 2168 | |
| 2169 | static int |
| 2170 | gray_raster_new( void* memory_, |
| 2171 | FT_Raster* araster_ ) |
| 2172 | { |
| 2173 | FT_Memory memory = (FT_Memory)memory_; |
| 2174 | gray_PRaster* araster = (gray_PRaster*)araster_; |
| 2175 | |
| 2176 | FT_Error error; |
| 2177 | gray_PRaster raster = NULL; |
| 2178 | |
| 2179 | |
| 2180 | if ( !FT_NEW( raster ) ) |
| 2181 | raster->memory = memory; |
| 2182 | |
| 2183 | *araster = raster; |
| 2184 | |
| 2185 | return error; |
| 2186 | } |
| 2187 | |
| 2188 | |
| 2189 | static void |
| 2190 | gray_raster_done( FT_Raster raster ) |
| 2191 | { |
| 2192 | FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory; |
| 2193 | |
| 2194 | |
| 2195 | FT_FREE( raster ); |
| 2196 | } |
| 2197 | |
| 2198 | #endif /* !STANDALONE_ */ |
| 2199 | |
| 2200 | |
| 2201 | static void |
| 2202 | gray_raster_reset( FT_Raster raster, |
| 2203 | unsigned char* pool_base, |
| 2204 | unsigned long pool_size ) |
| 2205 | { |
| 2206 | FT_UNUSED( raster ); |
| 2207 | FT_UNUSED( pool_base ); |
| 2208 | FT_UNUSED( pool_size ); |
| 2209 | } |
| 2210 | |
| 2211 | |
| 2212 | static int |
| 2213 | gray_raster_set_mode( FT_Raster raster, |
| 2214 | unsigned long mode, |
| 2215 | void* args ) |
| 2216 | { |
| 2217 | FT_UNUSED( raster ); |
| 2218 | FT_UNUSED( mode ); |
| 2219 | FT_UNUSED( args ); |
| 2220 | |
| 2221 | |
| 2222 | return 0; /* nothing to do */ |
| 2223 | } |
| 2224 | |
| 2225 | |
| 2226 | FT_DEFINE_RASTER_FUNCS( |
| 2227 | ft_grays_raster, |
| 2228 | |
| 2229 | FT_GLYPH_FORMAT_OUTLINE, |
| 2230 | |
| 2231 | (FT_Raster_New_Func) gray_raster_new, /* raster_new */ |
| 2232 | (FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */ |
| 2233 | (FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */ |
| 2234 | (FT_Raster_Render_Func) gray_raster_render, /* raster_render */ |
| 2235 | (FT_Raster_Done_Func) gray_raster_done /* raster_done */ |
| 2236 | ) |
| 2237 | |
| 2238 | |
| 2239 | /* END */ |
| 2240 | |
| 2241 | |
| 2242 | /* Local Variables: */ |
| 2243 | /* coding: utf-8 */ |
| 2244 | /* End: */ |
| 2245 | |