1// Copyright (c) 2015-2016 The Khronos Group Inc.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
16#define LIBSPIRV_UTIL_HEX_FLOAT_H_
17
18#include <cassert>
19#include <cctype>
20#include <cmath>
21#include <cstdint>
22#include <iomanip>
23#include <limits>
24#include <sstream>
25
26#include "bitutils.h"
27
28namespace spvutils {
29
30class Float16 {
31 public:
32 Float16(uint16_t v) : val(v) {}
33 Float16() {}
34 static bool isNan(const Float16& val) {
35 return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
36 }
37 // Returns true if the given value is any kind of infinity.
38 static bool isInfinity(const Float16& val) {
39 return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
40 }
41 Float16(const Float16& other) { val = other.val; }
42 uint16_t get_value() const { return val; }
43
44 // Returns the maximum normal value.
45 static Float16 max() { return Float16(0x7bff); }
46 // Returns the lowest normal value.
47 static Float16 lowest() { return Float16(0xfbff); }
48
49 private:
50 uint16_t val;
51};
52
53// To specialize this type, you must override uint_type to define
54// an unsigned integer that can fit your floating point type.
55// You must also add a isNan function that returns true if
56// a value is Nan.
57template <typename T>
58struct FloatProxyTraits {
59 typedef void uint_type;
60};
61
62template <>
63struct FloatProxyTraits<float> {
64 typedef uint32_t uint_type;
65 static bool isNan(float f) { return std::isnan(f); }
66 // Returns true if the given value is any kind of infinity.
67 static bool isInfinity(float f) { return std::isinf(f); }
68 // Returns the maximum normal value.
69 static float max() { return std::numeric_limits<float>::max(); }
70 // Returns the lowest normal value.
71 static float lowest() { return std::numeric_limits<float>::lowest(); }
72};
73
74template <>
75struct FloatProxyTraits<double> {
76 typedef uint64_t uint_type;
77 static bool isNan(double f) { return std::isnan(f); }
78 // Returns true if the given value is any kind of infinity.
79 static bool isInfinity(double f) { return std::isinf(f); }
80 // Returns the maximum normal value.
81 static double max() { return std::numeric_limits<double>::max(); }
82 // Returns the lowest normal value.
83 static double lowest() { return std::numeric_limits<double>::lowest(); }
84};
85
86template <>
87struct FloatProxyTraits<Float16> {
88 typedef uint16_t uint_type;
89 static bool isNan(Float16 f) { return Float16::isNan(f); }
90 // Returns true if the given value is any kind of infinity.
91 static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
92 // Returns the maximum normal value.
93 static Float16 max() { return Float16::max(); }
94 // Returns the lowest normal value.
95 static Float16 lowest() { return Float16::lowest(); }
96};
97
98// Since copying a floating point number (especially if it is NaN)
99// does not guarantee that bits are preserved, this class lets us
100// store the type and use it as a float when necessary.
101template <typename T>
102class FloatProxy {
103 public:
104 typedef typename FloatProxyTraits<T>::uint_type uint_type;
105
106 // Since this is to act similar to the normal floats,
107 // do not initialize the data by default.
108 FloatProxy() {}
109
110 // Intentionally non-explicit. This is a proxy type so
111 // implicit conversions allow us to use it more transparently.
112 FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
113
114 // Intentionally non-explicit. This is a proxy type so
115 // implicit conversions allow us to use it more transparently.
116 FloatProxy(uint_type val) { data_ = val; }
117
118 // This is helpful to have and is guaranteed not to stomp bits.
119 FloatProxy<T> operator-() const {
120 return static_cast<uint_type>(data_ ^
121 (uint_type(0x1) << (sizeof(T) * 8 - 1)));
122 }
123
124 // Returns the data as a floating point value.
125 T getAsFloat() const { return BitwiseCast<T>(data_); }
126
127 // Returns the raw data.
128 uint_type data() const { return data_; }
129
130 // Returns true if the value represents any type of NaN.
131 bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
132 // Returns true if the value represents any type of infinity.
133 bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
134
135 // Returns the maximum normal value.
136 static FloatProxy<T> max() {
137 return FloatProxy<T>(FloatProxyTraits<T>::max());
138 }
139 // Returns the lowest normal value.
140 static FloatProxy<T> lowest() {
141 return FloatProxy<T>(FloatProxyTraits<T>::lowest());
142 }
143
144 private:
145 uint_type data_;
146};
147
148template <typename T>
149bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
150 return first.data() == second.data();
151}
152
153// Reads a FloatProxy value as a normal float from a stream.
154template <typename T>
155std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
156 T float_val;
157 is >> float_val;
158 value = FloatProxy<T>(float_val);
159 return is;
160}
161
162// This is an example traits. It is not meant to be used in practice, but will
163// be the default for any non-specialized type.
164template <typename T>
165struct HexFloatTraits {
166 // Integer type that can store this hex-float.
167 typedef void uint_type;
168 // Signed integer type that can store this hex-float.
169 typedef void int_type;
170 // The numerical type that this HexFloat represents.
171 typedef void underlying_type;
172 // The type needed to construct the underlying type.
173 typedef void native_type;
174 // The number of bits that are actually relevant in the uint_type.
175 // This allows us to deal with, for example, 24-bit values in a 32-bit
176 // integer.
177 static const uint32_t num_used_bits = 0;
178 // Number of bits that represent the exponent.
179 static const uint32_t num_exponent_bits = 0;
180 // Number of bits that represent the fractional part.
181 static const uint32_t num_fraction_bits = 0;
182 // The bias of the exponent. (How much we need to subtract from the stored
183 // value to get the correct value.)
184 static const uint32_t exponent_bias = 0;
185};
186
187// Traits for IEEE float.
188// 1 sign bit, 8 exponent bits, 23 fractional bits.
189template <>
190struct HexFloatTraits<FloatProxy<float>> {
191 typedef uint32_t uint_type;
192 typedef int32_t int_type;
193 typedef FloatProxy<float> underlying_type;
194 typedef float native_type;
195 static const uint_type num_used_bits = 32;
196 static const uint_type num_exponent_bits = 8;
197 static const uint_type num_fraction_bits = 23;
198 static const uint_type exponent_bias = 127;
199};
200
201// Traits for IEEE double.
202// 1 sign bit, 11 exponent bits, 52 fractional bits.
203template <>
204struct HexFloatTraits<FloatProxy<double>> {
205 typedef uint64_t uint_type;
206 typedef int64_t int_type;
207 typedef FloatProxy<double> underlying_type;
208 typedef double native_type;
209 static const uint_type num_used_bits = 64;
210 static const uint_type num_exponent_bits = 11;
211 static const uint_type num_fraction_bits = 52;
212 static const uint_type exponent_bias = 1023;
213};
214
215// Traits for IEEE half.
216// 1 sign bit, 5 exponent bits, 10 fractional bits.
217template <>
218struct HexFloatTraits<FloatProxy<Float16>> {
219 typedef uint16_t uint_type;
220 typedef int16_t int_type;
221 typedef uint16_t underlying_type;
222 typedef uint16_t native_type;
223 static const uint_type num_used_bits = 16;
224 static const uint_type num_exponent_bits = 5;
225 static const uint_type num_fraction_bits = 10;
226 static const uint_type exponent_bias = 15;
227};
228
229enum round_direction {
230 kRoundToZero,
231 kRoundToNearestEven,
232 kRoundToPositiveInfinity,
233 kRoundToNegativeInfinity
234};
235
236// Template class that houses a floating pointer number.
237// It exposes a number of constants based on the provided traits to
238// assist in interpreting the bits of the value.
239template <typename T, typename Traits = HexFloatTraits<T>>
240class HexFloat {
241 public:
242 typedef typename Traits::uint_type uint_type;
243 typedef typename Traits::int_type int_type;
244 typedef typename Traits::underlying_type underlying_type;
245 typedef typename Traits::native_type native_type;
246
247 explicit HexFloat(T f) : value_(f) {}
248
249 T value() const { return value_; }
250 void set_value(T f) { value_ = f; }
251
252 // These are all written like this because it is convenient to have
253 // compile-time constants for all of these values.
254
255 // Pass-through values to save typing.
256 static const uint32_t num_used_bits = Traits::num_used_bits;
257 static const uint32_t exponent_bias = Traits::exponent_bias;
258 static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
259 static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
260
261 // Number of bits to shift left to set the highest relevant bit.
262 static const uint32_t top_bit_left_shift = num_used_bits - 1;
263 // How many nibbles (hex characters) the fractional part takes up.
264 static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
265 // If the fractional part does not fit evenly into a hex character (4-bits)
266 // then we have to left-shift to get rid of leading 0s. This is the amount
267 // we have to shift (might be 0).
268 static const uint32_t num_overflow_bits =
269 fraction_nibbles * 4 - num_fraction_bits;
270
271 // The representation of the fraction, not the actual bits. This
272 // includes the leading bit that is usually implicit.
273 static const uint_type fraction_represent_mask =
274 spvutils::SetBits<uint_type, 0,
275 num_fraction_bits + num_overflow_bits>::get;
276
277 // The topmost bit in the nibble-aligned fraction.
278 static const uint_type fraction_top_bit =
279 uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
280
281 // The least significant bit in the exponent, which is also the bit
282 // immediately to the left of the significand.
283 static const uint_type first_exponent_bit = uint_type(1)
284 << (num_fraction_bits);
285
286 // The mask for the encoded fraction. It does not include the
287 // implicit bit.
288 static const uint_type fraction_encode_mask =
289 spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
290
291 // The bit that is used as a sign.
292 static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
293
294 // The bits that represent the exponent.
295 static const uint_type exponent_mask =
296 spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
297
298 // How far left the exponent is shifted.
299 static const uint32_t exponent_left_shift = num_fraction_bits;
300
301 // How far from the right edge the fraction is shifted.
302 static const uint32_t fraction_right_shift =
303 static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
304
305 // The maximum representable unbiased exponent.
306 static const int_type max_exponent =
307 (exponent_mask >> num_fraction_bits) - exponent_bias;
308 // The minimum representable exponent for normalized numbers.
309 static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
310
311 // Returns the bits associated with the value.
312 uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
313
314 // Returns the bits associated with the value, without the leading sign bit.
315 uint_type getUnsignedBits() const {
316 return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
317 ~sign_mask);
318 }
319
320 // Returns the bits associated with the exponent, shifted to start at the
321 // lsb of the type.
322 const uint_type getExponentBits() const {
323 return static_cast<uint_type>((getBits() & exponent_mask) >>
324 num_fraction_bits);
325 }
326
327 // Returns the exponent in unbiased form. This is the exponent in the
328 // human-friendly form.
329 const int_type getUnbiasedExponent() const {
330 return static_cast<int_type>(getExponentBits() - exponent_bias);
331 }
332
333 // Returns just the significand bits from the value.
334 const uint_type getSignificandBits() const {
335 return getBits() & fraction_encode_mask;
336 }
337
338 // If the number was normalized, returns the unbiased exponent.
339 // If the number was denormal, normalize the exponent first.
340 const int_type getUnbiasedNormalizedExponent() const {
341 if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0
342 return 0;
343 }
344 int_type exp = getUnbiasedExponent();
345 if (exp == min_exponent) { // We are in denorm land.
346 uint_type significand_bits = getSignificandBits();
347 while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
348 significand_bits = static_cast<uint_type>(significand_bits << 1);
349 exp = static_cast<int_type>(exp - 1);
350 }
351 significand_bits &= fraction_encode_mask;
352 }
353 return exp;
354 }
355
356 // Returns the signficand after it has been normalized.
357 const uint_type getNormalizedSignificand() const {
358 int_type unbiased_exponent = getUnbiasedNormalizedExponent();
359 uint_type significand = getSignificandBits();
360 for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
361 significand = static_cast<uint_type>(significand << 1);
362 }
363 significand &= fraction_encode_mask;
364 return significand;
365 }
366
367 // Returns true if this number represents a negative value.
368 bool isNegative() const { return (getBits() & sign_mask) != 0; }
369
370 // Sets this HexFloat from the individual components.
371 // Note this assumes EVERY significand is normalized, and has an implicit
372 // leading one. This means that the only way that this method will set 0,
373 // is if you set a number so denormalized that it underflows.
374 // Do not use this method with raw bits extracted from a subnormal number,
375 // since subnormals do not have an implicit leading 1 in the significand.
376 // The significand is also expected to be in the
377 // lowest-most num_fraction_bits of the uint_type.
378 // The exponent is expected to be unbiased, meaning an exponent of
379 // 0 actually means 0.
380 // If underflow_round_up is set, then on underflow, if a number is non-0
381 // and would underflow, we round up to the smallest denorm.
382 void setFromSignUnbiasedExponentAndNormalizedSignificand(
383 bool negative, int_type exponent, uint_type significand,
384 bool round_denorm_up) {
385 bool significand_is_zero = significand == 0;
386
387 if (exponent <= min_exponent) {
388 // If this was denormalized, then we have to shift the bit on, meaning
389 // the significand is not zero.
390 significand_is_zero = false;
391 significand |= first_exponent_bit;
392 significand = static_cast<uint_type>(significand >> 1);
393 }
394
395 while (exponent < min_exponent) {
396 significand = static_cast<uint_type>(significand >> 1);
397 ++exponent;
398 }
399
400 if (exponent == min_exponent) {
401 if (significand == 0 && !significand_is_zero && round_denorm_up) {
402 significand = static_cast<uint_type>(0x1);
403 }
404 }
405
406 uint_type new_value = 0;
407 if (negative) {
408 new_value = static_cast<uint_type>(new_value | sign_mask);
409 }
410 exponent = static_cast<int_type>(exponent + exponent_bias);
411 assert(exponent >= 0);
412
413 // put it all together
414 exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
415 exponent_mask);
416 significand = static_cast<uint_type>(significand & fraction_encode_mask);
417 new_value = static_cast<uint_type>(new_value | (exponent | significand));
418 value_ = BitwiseCast<T>(new_value);
419 }
420
421 // Increments the significand of this number by the given amount.
422 // If this would spill the significand into the implicit bit,
423 // carry is set to true and the significand is shifted to fit into
424 // the correct location, otherwise carry is set to false.
425 // All significands and to_increment are assumed to be within the bounds
426 // for a valid significand.
427 static uint_type incrementSignificand(uint_type significand,
428 uint_type to_increment, bool* carry) {
429 significand = static_cast<uint_type>(significand + to_increment);
430 *carry = false;
431 if (significand & first_exponent_bit) {
432 *carry = true;
433 // The implicit 1-bit will have carried, so we should zero-out the
434 // top bit and shift back.
435 significand = static_cast<uint_type>(significand & ~first_exponent_bit);
436 significand = static_cast<uint_type>(significand >> 1);
437 }
438 return significand;
439 }
440
441 // These exist because MSVC throws warnings on negative right-shifts
442 // even if they are not going to be executed. Eg:
443 // constant_number < 0? 0: constant_number
444 // These convert the negative left-shifts into right shifts.
445
446 template <typename int_type>
447 uint_type negatable_left_shift(int_type N, uint_type val)
448 {
449 if(N >= 0)
450 return val << N;
451
452 return val >> -N;
453 }
454
455 template <typename int_type>
456 uint_type negatable_right_shift(int_type N, uint_type val)
457 {
458 if(N >= 0)
459 return val >> N;
460
461 return val << -N;
462 }
463
464 // Returns the significand, rounded to fit in a significand in
465 // other_T. This is shifted so that the most significant
466 // bit of the rounded number lines up with the most significant bit
467 // of the returned significand.
468 template <typename other_T>
469 typename other_T::uint_type getRoundedNormalizedSignificand(
470 round_direction dir, bool* carry_bit) {
471 typedef typename other_T::uint_type other_uint_type;
472 static const int_type num_throwaway_bits =
473 static_cast<int_type>(num_fraction_bits) -
474 static_cast<int_type>(other_T::num_fraction_bits);
475
476 static const uint_type last_significant_bit =
477 (num_throwaway_bits < 0)
478 ? 0
479 : negatable_left_shift(num_throwaway_bits, 1u);
480 static const uint_type first_rounded_bit =
481 (num_throwaway_bits < 1)
482 ? 0
483 : negatable_left_shift(num_throwaway_bits - 1, 1u);
484
485 static const uint_type throwaway_mask_bits =
486 num_throwaway_bits > 0 ? num_throwaway_bits : 0;
487 static const uint_type throwaway_mask =
488 spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
489
490 *carry_bit = false;
491 other_uint_type out_val = 0;
492 uint_type significand = getNormalizedSignificand();
493 // If we are up-casting, then we just have to shift to the right location.
494 if (num_throwaway_bits <= 0) {
495 out_val = static_cast<other_uint_type>(significand);
496 uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
497 out_val = static_cast<other_uint_type>(out_val << shift_amount);
498 return out_val;
499 }
500
501 // If every non-representable bit is 0, then we don't have any casting to
502 // do.
503 if ((significand & throwaway_mask) == 0) {
504 return static_cast<other_uint_type>(
505 negatable_right_shift(num_throwaway_bits, significand));
506 }
507
508 bool round_away_from_zero = false;
509 // We actually have to narrow the significand here, so we have to follow the
510 // rounding rules.
511 switch (dir) {
512 case kRoundToZero:
513 break;
514 case kRoundToPositiveInfinity:
515 round_away_from_zero = !isNegative();
516 break;
517 case kRoundToNegativeInfinity:
518 round_away_from_zero = isNegative();
519 break;
520 case kRoundToNearestEven:
521 // Have to round down, round bit is 0
522 if ((first_rounded_bit & significand) == 0) {
523 break;
524 }
525 if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
526 // If any subsequent bit of the rounded portion is non-0 then we round
527 // up.
528 round_away_from_zero = true;
529 break;
530 }
531 // We are exactly half-way between 2 numbers, pick even.
532 if ((significand & last_significant_bit) != 0) {
533 // 1 for our last bit, round up.
534 round_away_from_zero = true;
535 break;
536 }
537 break;
538 }
539
540 if (round_away_from_zero) {
541 return static_cast<other_uint_type>(
542 negatable_right_shift(num_throwaway_bits, incrementSignificand(
543 significand, last_significant_bit, carry_bit)));
544 } else {
545 return static_cast<other_uint_type>(
546 negatable_right_shift(num_throwaway_bits, significand));
547 }
548 }
549
550 // Casts this value to another HexFloat. If the cast is widening,
551 // then round_dir is ignored. If the cast is narrowing, then
552 // the result is rounded in the direction specified.
553 // This number will retain Nan and Inf values.
554 // It will also saturate to Inf if the number overflows, and
555 // underflow to (0 or min depending on rounding) if the number underflows.
556 template <typename other_T>
557 void castTo(other_T& other, round_direction round_dir) {
558 other = other_T(static_cast<typename other_T::native_type>(0));
559 bool negate = isNegative();
560 if (getUnsignedBits() == 0) {
561 if (negate) {
562 other.set_value(-other.value());
563 }
564 return;
565 }
566 uint_type significand = getSignificandBits();
567 bool carried = false;
568 typename other_T::uint_type rounded_significand =
569 getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
570
571 int_type exponent = getUnbiasedExponent();
572 if (exponent == min_exponent) {
573 // If we are denormal, normalize the exponent, so that we can encode
574 // easily.
575 exponent = static_cast<int_type>(exponent + 1);
576 for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
577 check_bit = static_cast<uint_type>(check_bit >> 1)) {
578 exponent = static_cast<int_type>(exponent - 1);
579 if (check_bit & significand) break;
580 }
581 }
582
583 bool is_nan =
584 (getBits() & exponent_mask) == exponent_mask && significand != 0;
585 bool is_inf =
586 !is_nan &&
587 ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
588 (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
589
590 // If we are Nan or Inf we should pass that through.
591 if (is_inf) {
592 other.set_value(BitwiseCast<typename other_T::underlying_type>(
593 static_cast<typename other_T::uint_type>(
594 (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
595 return;
596 }
597 if (is_nan) {
598 typename other_T::uint_type shifted_significand;
599 shifted_significand = static_cast<typename other_T::uint_type>(
600 negatable_left_shift(
601 static_cast<int_type>(other_T::num_fraction_bits) -
602 static_cast<int_type>(num_fraction_bits), significand));
603
604 // We are some sort of Nan. We try to keep the bit-pattern of the Nan
605 // as close as possible. If we had to shift off bits so we are 0, then we
606 // just set the last bit.
607 other.set_value(BitwiseCast<typename other_T::underlying_type>(
608 static_cast<typename other_T::uint_type>(
609 (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
610 (shifted_significand == 0 ? 0x1 : shifted_significand))));
611 return;
612 }
613
614 bool round_underflow_up =
615 isNegative() ? round_dir == kRoundToNegativeInfinity
616 : round_dir == kRoundToPositiveInfinity;
617 typedef typename other_T::int_type other_int_type;
618 // setFromSignUnbiasedExponentAndNormalizedSignificand will
619 // zero out any underflowing value (but retain the sign).
620 other.setFromSignUnbiasedExponentAndNormalizedSignificand(
621 negate, static_cast<other_int_type>(exponent), rounded_significand,
622 round_underflow_up);
623 return;
624 }
625
626 private:
627 T value_;
628
629 static_assert(num_used_bits ==
630 Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
631 "The number of bits do not fit");
632 static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
633};
634
635// Returns 4 bits represented by the hex character.
636inline uint8_t get_nibble_from_character(int character) {
637 const char* dec = "0123456789";
638 const char* lower = "abcdef";
639 const char* upper = "ABCDEF";
640 const char* p = nullptr;
641 if ((p = strchr(dec, character))) {
642 return static_cast<uint8_t>(p - dec);
643 } else if ((p = strchr(lower, character))) {
644 return static_cast<uint8_t>(p - lower + 0xa);
645 } else if ((p = strchr(upper, character))) {
646 return static_cast<uint8_t>(p - upper + 0xa);
647 }
648
649 assert(false && "This was called with a non-hex character");
650 return 0;
651}
652
653// Outputs the given HexFloat to the stream.
654template <typename T, typename Traits>
655std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
656 typedef HexFloat<T, Traits> HF;
657 typedef typename HF::uint_type uint_type;
658 typedef typename HF::int_type int_type;
659
660 static_assert(HF::num_used_bits != 0,
661 "num_used_bits must be non-zero for a valid float");
662 static_assert(HF::num_exponent_bits != 0,
663 "num_exponent_bits must be non-zero for a valid float");
664 static_assert(HF::num_fraction_bits != 0,
665 "num_fractin_bits must be non-zero for a valid float");
666
667 const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
668 const char* const sign = (bits & HF::sign_mask) ? "-" : "";
669 const uint_type exponent = static_cast<uint_type>(
670 (bits & HF::exponent_mask) >> HF::num_fraction_bits);
671
672 uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
673 << HF::num_overflow_bits);
674
675 const bool is_zero = exponent == 0 && fraction == 0;
676 const bool is_denorm = exponent == 0 && !is_zero;
677
678 // exponent contains the biased exponent we have to convert it back into
679 // the normal range.
680 int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
681 // If the number is all zeros, then we actually have to NOT shift the
682 // exponent.
683 int_exponent = is_zero ? 0 : int_exponent;
684
685 // If we are denorm, then start shifting, and decreasing the exponent until
686 // our leading bit is 1.
687
688 if (is_denorm) {
689 while ((fraction & HF::fraction_top_bit) == 0) {
690 fraction = static_cast<uint_type>(fraction << 1);
691 int_exponent = static_cast<int_type>(int_exponent - 1);
692 }
693 // Since this is denormalized, we have to consume the leading 1 since it
694 // will end up being implicit.
695 fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1
696 fraction &= HF::fraction_represent_mask;
697 }
698
699 uint_type fraction_nibbles = HF::fraction_nibbles;
700 // We do not have to display any trailing 0s, since this represents the
701 // fractional part.
702 while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
703 // Shift off any trailing values;
704 fraction = static_cast<uint_type>(fraction >> 4);
705 --fraction_nibbles;
706 }
707
708 const auto saved_flags = os.flags();
709 const auto saved_fill = os.fill();
710
711 os << sign << "0x" << (is_zero ? '0' : '1');
712 if (fraction_nibbles) {
713 // Make sure to keep the leading 0s in place, since this is the fractional
714 // part.
715 os << "." << std::setw(static_cast<int>(fraction_nibbles))
716 << std::setfill('0') << std::hex << fraction;
717 }
718 os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
719
720 os.flags(saved_flags);
721 os.fill(saved_fill);
722
723 return os;
724}
725
726// Returns true if negate_value is true and the next character on the
727// input stream is a plus or minus sign. In that case we also set the fail bit
728// on the stream and set the value to the zero value for its type.
729template <typename T, typename Traits>
730inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
731 HexFloat<T, Traits>& value) {
732 if (negate_value) {
733 auto next_char = is.peek();
734 if (next_char == '-' || next_char == '+') {
735 // Fail the parse. Emulate standard behaviour by setting the value to
736 // the zero value, and set the fail bit on the stream.
737 value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
738 is.setstate(std::ios_base::failbit);
739 return true;
740 }
741 }
742 return false;
743}
744
745// Parses a floating point number from the given stream and stores it into the
746// value parameter.
747// If negate_value is true then the number may not have a leading minus or
748// plus, and if it successfully parses, then the number is negated before
749// being stored into the value parameter.
750// If the value cannot be correctly parsed or overflows the target floating
751// point type, then set the fail bit on the stream.
752// TODO(dneto): Promise C++11 standard behavior in how the value is set in
753// the error case, but only after all target platforms implement it correctly.
754// In particular, the Microsoft C++ runtime appears to be out of spec.
755template <typename T, typename Traits>
756inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
757 HexFloat<T, Traits>& value) {
758 if (RejectParseDueToLeadingSign(is, negate_value, value)) {
759 return is;
760 }
761 T val;
762 is >> val;
763 if (negate_value) {
764 val = -val;
765 }
766 value.set_value(val);
767 // In the failure case, map -0.0 to 0.0.
768 if (is.fail() && value.getUnsignedBits() == 0u) {
769 value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
770 }
771 if (val.isInfinity()) {
772 // Fail the parse. Emulate standard behaviour by setting the value to
773 // the closest normal value, and set the fail bit on the stream.
774 value.set_value((value.isNegative() || negate_value) ? T::lowest()
775 : T::max());
776 is.setstate(std::ios_base::failbit);
777 }
778 return is;
779}
780
781// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
782// This will parse the float as it were a 32-bit floating point number,
783// and then round it down to fit into a Float16 value.
784// The number is rounded towards zero.
785// If negate_value is true then the number may not have a leading minus or
786// plus, and if it successfully parses, then the number is negated before
787// being stored into the value parameter.
788// If the value cannot be correctly parsed or overflows the target floating
789// point type, then set the fail bit on the stream.
790// TODO(dneto): Promise C++11 standard behavior in how the value is set in
791// the error case, but only after all target platforms implement it correctly.
792// In particular, the Microsoft C++ runtime appears to be out of spec.
793template <>
794inline std::istream&
795ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
796 std::istream& is, bool negate_value,
797 HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
798 // First parse as a 32-bit float.
799 HexFloat<FloatProxy<float>> float_val(0.0f);
800 ParseNormalFloat(is, negate_value, float_val);
801
802 // Then convert to 16-bit float, saturating at infinities, and
803 // rounding toward zero.
804 float_val.castTo(value, kRoundToZero);
805
806 // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
807 // fail bit and set the lowest or highest value.
808 if (Float16::isInfinity(value.value().getAsFloat())) {
809 value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
810 is.setstate(std::ios_base::failbit);
811 }
812 return is;
813}
814
815// Reads a HexFloat from the given stream.
816// If the float is not encoded as a hex-float then it will be parsed
817// as a regular float.
818// This may fail if your stream does not support at least one unget.
819// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
820// This would normally overflow a float and round to
821// infinity but this special pattern is the exact representation for a NaN,
822// and therefore is actually encoded as the correct NaN. To encode inf,
823// either 0x0p+exponent_bias can be specified or any exponent greater than
824// exponent_bias.
825// Examples using IEEE 32-bit float encoding.
826// 0x1.0p+128 (+inf)
827// -0x1.0p-128 (-inf)
828//
829// 0x1.1p+128 (+Nan)
830// -0x1.1p+128 (-Nan)
831//
832// 0x1p+129 (+inf)
833// -0x1p+129 (-inf)
834template <typename T, typename Traits>
835std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
836 using HF = HexFloat<T, Traits>;
837 using uint_type = typename HF::uint_type;
838 using int_type = typename HF::int_type;
839
840 value.set_value(static_cast<typename HF::native_type>(0.f));
841
842 if (is.flags() & std::ios::skipws) {
843 // If the user wants to skip whitespace , then we should obey that.
844 while (std::isspace(is.peek())) {
845 is.get();
846 }
847 }
848
849 auto next_char = is.peek();
850 bool negate_value = false;
851
852 if (next_char != '-' && next_char != '0') {
853 return ParseNormalFloat(is, negate_value, value);
854 }
855
856 if (next_char == '-') {
857 negate_value = true;
858 is.get();
859 next_char = is.peek();
860 }
861
862 if (next_char == '0') {
863 is.get(); // We may have to unget this.
864 auto maybe_hex_start = is.peek();
865 if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
866 is.unget();
867 return ParseNormalFloat(is, negate_value, value);
868 } else {
869 is.get(); // Throw away the 'x';
870 }
871 } else {
872 return ParseNormalFloat(is, negate_value, value);
873 }
874
875 // This "looks" like a hex-float so treat it as one.
876 bool seen_p = false;
877 bool seen_dot = false;
878 uint_type fraction_index = 0;
879
880 uint_type fraction = 0;
881 int_type exponent = HF::exponent_bias;
882
883 // Strip off leading zeros so we don't have to special-case them later.
884 while ((next_char = is.peek()) == '0') {
885 is.get();
886 }
887
888 bool is_denorm =
889 true; // Assume denorm "representation" until we hear otherwise.
890 // NB: This does not mean the value is actually denorm,
891 // it just means that it was written 0.
892 bool bits_written = false; // Stays false until we write a bit.
893 while (!seen_p && !seen_dot) {
894 // Handle characters that are left of the fractional part.
895 if (next_char == '.') {
896 seen_dot = true;
897 } else if (next_char == 'p') {
898 seen_p = true;
899 } else if (::isxdigit(next_char)) {
900 // We know this is not denormalized since we have stripped all leading
901 // zeroes and we are not a ".".
902 is_denorm = false;
903 int number = get_nibble_from_character(next_char);
904 for (int i = 0; i < 4; ++i, number <<= 1) {
905 uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
906 if (bits_written) {
907 // If we are here the bits represented belong in the fractional
908 // part of the float, and we have to adjust the exponent accordingly.
909 fraction = static_cast<uint_type>(
910 fraction |
911 static_cast<uint_type>(
912 write_bit << (HF::top_bit_left_shift - fraction_index++)));
913 exponent = static_cast<int_type>(exponent + 1);
914 }
915 bits_written |= write_bit != 0;
916 }
917 } else {
918 // We have not found our exponent yet, so we have to fail.
919 is.setstate(std::ios::failbit);
920 return is;
921 }
922 is.get();
923 next_char = is.peek();
924 }
925 bits_written = false;
926 while (seen_dot && !seen_p) {
927 // Handle only fractional parts now.
928 if (next_char == 'p') {
929 seen_p = true;
930 } else if (::isxdigit(next_char)) {
931 int number = get_nibble_from_character(next_char);
932 for (int i = 0; i < 4; ++i, number <<= 1) {
933 uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
934 bits_written |= write_bit != 0;
935 if (is_denorm && !bits_written) {
936 // Handle modifying the exponent here this way we can handle
937 // an arbitrary number of hex values without overflowing our
938 // integer.
939 exponent = static_cast<int_type>(exponent - 1);
940 } else {
941 fraction = static_cast<uint_type>(
942 fraction |
943 static_cast<uint_type>(
944 write_bit << (HF::top_bit_left_shift - fraction_index++)));
945 }
946 }
947 } else {
948 // We still have not found our 'p' exponent yet, so this is not a valid
949 // hex-float.
950 is.setstate(std::ios::failbit);
951 return is;
952 }
953 is.get();
954 next_char = is.peek();
955 }
956
957 bool seen_sign = false;
958 int8_t exponent_sign = 1;
959 int_type written_exponent = 0;
960 while (true) {
961 if ((next_char == '-' || next_char == '+')) {
962 if (seen_sign) {
963 is.setstate(std::ios::failbit);
964 return is;
965 }
966 seen_sign = true;
967 exponent_sign = (next_char == '-') ? -1 : 1;
968 } else if (::isdigit(next_char)) {
969 // Hex-floats express their exponent as decimal.
970 written_exponent = static_cast<int_type>(written_exponent * 10);
971 written_exponent =
972 static_cast<int_type>(written_exponent + (next_char - '0'));
973 } else {
974 break;
975 }
976 is.get();
977 next_char = is.peek();
978 }
979
980 written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
981 exponent = static_cast<int_type>(exponent + written_exponent);
982
983 bool is_zero = is_denorm && (fraction == 0);
984 if (is_denorm && !is_zero) {
985 fraction = static_cast<uint_type>(fraction << 1);
986 exponent = static_cast<int_type>(exponent - 1);
987 } else if (is_zero) {
988 exponent = 0;
989 }
990
991 if (exponent <= 0 && !is_zero) {
992 fraction = static_cast<uint_type>(fraction >> 1);
993 fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
994 }
995
996 fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
997
998 const int_type max_exponent =
999 SetBits<uint_type, 0, HF::num_exponent_bits>::get;
1000
1001 // Handle actual denorm numbers
1002 while (exponent < 0 && !is_zero) {
1003 fraction = static_cast<uint_type>(fraction >> 1);
1004 exponent = static_cast<int_type>(exponent + 1);
1005
1006 fraction &= HF::fraction_encode_mask;
1007 if (fraction == 0) {
1008 // We have underflowed our fraction. We should clamp to zero.
1009 is_zero = true;
1010 exponent = 0;
1011 }
1012 }
1013
1014 // We have overflowed so we should be inf/-inf.
1015 if (exponent > max_exponent) {
1016 exponent = max_exponent;
1017 fraction = 0;
1018 }
1019
1020 uint_type output_bits = static_cast<uint_type>(
1021 static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
1022 output_bits |= fraction;
1023
1024 uint_type shifted_exponent = static_cast<uint_type>(
1025 static_cast<uint_type>(exponent << HF::exponent_left_shift) &
1026 HF::exponent_mask);
1027 output_bits |= shifted_exponent;
1028
1029 T output_float = spvutils::BitwiseCast<T>(output_bits);
1030 value.set_value(output_float);
1031
1032 return is;
1033}
1034
1035// Writes a FloatProxy value to a stream.
1036// Zero and normal numbers are printed in the usual notation, but with
1037// enough digits to fully reproduce the value. Other values (subnormal,
1038// NaN, and infinity) are printed as a hex float.
1039template <typename T>
1040std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
1041 auto float_val = value.getAsFloat();
1042 switch (std::fpclassify(float_val)) {
1043 case FP_ZERO:
1044 case FP_NORMAL: {
1045 auto saved_precision = os.precision();
1046 os.precision(std::numeric_limits<T>::digits10);
1047 os << float_val;
1048 os.precision(saved_precision);
1049 } break;
1050 default:
1051 os << HexFloat<FloatProxy<T>>(value);
1052 break;
1053 }
1054 return os;
1055}
1056
1057template <>
1058inline std::ostream& operator<<<Float16>(std::ostream& os,
1059 const FloatProxy<Float16>& value) {
1060 os << HexFloat<FloatProxy<Float16>>(value);
1061 return os;
1062}
1063}
1064
1065#endif // LIBSPIRV_UTIL_HEX_FLOAT_H_
1066