| 1 | /* |
| 2 | * Copyright © 2018 Google, Inc. |
| 3 | * Copyright © 2019 Facebook, Inc. |
| 4 | * |
| 5 | * This is part of HarfBuzz, a text shaping library. |
| 6 | * |
| 7 | * Permission is hereby granted, without written agreement and without |
| 8 | * license or royalty fees, to use, copy, modify, and distribute this |
| 9 | * software and its documentation for any purpose, provided that the |
| 10 | * above copyright notice and the following two paragraphs appear in |
| 11 | * all copies of this software. |
| 12 | * |
| 13 | * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR |
| 14 | * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES |
| 15 | * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN |
| 16 | * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
| 17 | * DAMAGE. |
| 18 | * |
| 19 | * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, |
| 20 | * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
| 22 | * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO |
| 23 | * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
| 24 | * |
| 25 | * Google Author(s): Behdad Esfahbod |
| 26 | * Facebook Author(s): Behdad Esfahbod |
| 27 | */ |
| 28 | |
| 29 | #ifndef HB_ITER_HH |
| 30 | #define HB_ITER_HH |
| 31 | |
| 32 | #include "hb.hh" |
| 33 | #include "hb-algs.hh" |
| 34 | #include "hb-meta.hh" |
| 35 | |
| 36 | |
| 37 | /* Unified iterator object. |
| 38 | * |
| 39 | * The goal of this template is to make the same iterator interface |
| 40 | * available to all types, and make it very easy and compact to use. |
| 41 | * hb_iter_tator objects are small, light-weight, objects that can be |
| 42 | * copied by value. If the collection / object being iterated on |
| 43 | * is writable, then the iterator returns lvalues, otherwise it |
| 44 | * returns rvalues. |
| 45 | * |
| 46 | * If iterator implementation implements operator!=, then it can be |
| 47 | * used in range-based for loop. That already happens if the iterator |
| 48 | * is random-access. Otherwise, the range-based for loop incurs |
| 49 | * one traversal to find end(), which can be avoided if written |
| 50 | * as a while-style for loop, or if iterator implements a faster |
| 51 | * __end__() method. */ |
| 52 | |
| 53 | /* |
| 54 | * Base classes for iterators. |
| 55 | */ |
| 56 | |
| 57 | /* Base class for all iterators. */ |
| 58 | template <typename iter_t, typename Item = typename iter_t::__item_t__> |
| 59 | struct hb_iter_t |
| 60 | { |
| 61 | typedef Item item_t; |
| 62 | constexpr unsigned get_item_size () const { return hb_static_size (Item); } |
| 63 | static constexpr bool is_iterator = true; |
| 64 | static constexpr bool is_random_access_iterator = false; |
| 65 | static constexpr bool is_sorted_iterator = false; |
| 66 | static constexpr bool has_fast_len = false; // Should be checked in combination with is_random_access_iterator. |
| 67 | |
| 68 | private: |
| 69 | /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ |
| 70 | const iter_t* thiz () const { return static_cast<const iter_t *> (this); } |
| 71 | iter_t* thiz () { return static_cast< iter_t *> (this); } |
| 72 | public: |
| 73 | |
| 74 | /* Operators. */ |
| 75 | iter_t iter () const { return *thiz(); } |
| 76 | iter_t operator + () const { return *thiz(); } |
| 77 | iter_t _begin () const { return *thiz(); } |
| 78 | iter_t begin () const { return _begin (); } |
| 79 | iter_t _end () const { return thiz()->__end__ (); } |
| 80 | iter_t end () const { return _end (); } |
| 81 | explicit operator bool () const { return thiz()->__more__ (); } |
| 82 | unsigned len () const { return thiz()->__len__ (); } |
| 83 | /* The following can only be enabled if item_t is reference type. Otherwise |
| 84 | * it will be returning pointer to temporary rvalue. */ |
| 85 | template <typename T = item_t, |
| 86 | hb_enable_if (std::is_reference<T>::value)> |
| 87 | hb_remove_reference<item_t>* operator -> () const { return std::addressof (**thiz()); } |
| 88 | item_t operator * () const { return thiz()->__item__ (); } |
| 89 | item_t operator * () { return thiz()->__item__ (); } |
| 90 | item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); } |
| 91 | item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); } |
| 92 | iter_t& operator += (unsigned count) & { thiz()->__forward__ (count); return *thiz(); } |
| 93 | iter_t operator += (unsigned count) && { thiz()->__forward__ (count); return *thiz(); } |
| 94 | iter_t& operator ++ () & { thiz()->__next__ (); return *thiz(); } |
| 95 | iter_t operator ++ () && { thiz()->__next__ (); return *thiz(); } |
| 96 | iter_t& operator -= (unsigned count) & { thiz()->__rewind__ (count); return *thiz(); } |
| 97 | iter_t operator -= (unsigned count) && { thiz()->__rewind__ (count); return *thiz(); } |
| 98 | iter_t& operator -- () & { thiz()->__prev__ (); return *thiz(); } |
| 99 | iter_t operator -- () && { thiz()->__prev__ (); return *thiz(); } |
| 100 | iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; } |
| 101 | friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; } |
| 102 | iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; } |
| 103 | iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; } |
| 104 | iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; } |
| 105 | template <typename T> |
| 106 | iter_t& operator >> (T &v) & { v = **thiz(); ++*thiz(); return *thiz(); } |
| 107 | template <typename T> |
| 108 | iter_t operator >> (T &v) && { v = **thiz(); ++*thiz(); return *thiz(); } |
| 109 | template <typename T> |
| 110 | iter_t& operator << (const T v) & { **thiz() = v; ++*thiz(); return *thiz(); } |
| 111 | template <typename T> |
| 112 | iter_t operator << (const T v) && { **thiz() = v; ++*thiz(); return *thiz(); } |
| 113 | |
| 114 | protected: |
| 115 | hb_iter_t () = default; |
| 116 | hb_iter_t (const hb_iter_t &o HB_UNUSED) = default; |
| 117 | hb_iter_t (hb_iter_t &&o HB_UNUSED) = default; |
| 118 | hb_iter_t& operator = (const hb_iter_t &o HB_UNUSED) = default; |
| 119 | hb_iter_t& operator = (hb_iter_t &&o HB_UNUSED) = default; |
| 120 | }; |
| 121 | |
| 122 | #define HB_ITER_USING(Name) \ |
| 123 | using item_t = typename Name::item_t; \ |
| 124 | using Name::_begin; \ |
| 125 | using Name::begin; \ |
| 126 | using Name::_end; \ |
| 127 | using Name::end; \ |
| 128 | using Name::get_item_size; \ |
| 129 | using Name::is_iterator; \ |
| 130 | using Name::iter; \ |
| 131 | using Name::operator bool; \ |
| 132 | using Name::len; \ |
| 133 | using Name::operator ->; \ |
| 134 | using Name::operator *; \ |
| 135 | using Name::operator []; \ |
| 136 | using Name::operator +=; \ |
| 137 | using Name::operator ++; \ |
| 138 | using Name::operator -=; \ |
| 139 | using Name::operator --; \ |
| 140 | using Name::operator +; \ |
| 141 | using Name::operator -; \ |
| 142 | using Name::operator >>; \ |
| 143 | using Name::operator <<; \ |
| 144 | static_assert (true, "") |
| 145 | |
| 146 | /* Returns iterator / item type of a type. */ |
| 147 | template <typename Iterable> |
| 148 | using hb_iter_type = decltype (hb_deref (hb_declval (Iterable)).iter ()); |
| 149 | template <typename Iterable> |
| 150 | using hb_item_type = decltype (*hb_deref (hb_declval (Iterable)).iter ()); |
| 151 | |
| 152 | |
| 153 | template <typename> struct hb_array_t; |
| 154 | template <typename> struct hb_sorted_array_t; |
| 155 | |
| 156 | struct |
| 157 | { |
| 158 | template <typename T> hb_iter_type<T> |
| 159 | operator () (T&& c) const |
| 160 | { return hb_deref (std::forward<T> (c)).iter (); } |
| 161 | |
| 162 | /* Specialization for C arrays. */ |
| 163 | |
| 164 | template <typename Type> inline hb_array_t<Type> |
| 165 | operator () (Type *array, unsigned int length) const |
| 166 | { return hb_array_t<Type> (array, length); } |
| 167 | |
| 168 | template <typename Type, unsigned int length> hb_array_t<Type> |
| 169 | operator () (Type (&array)[length]) const |
| 170 | { return hb_array_t<Type> (array, length); } |
| 171 | |
| 172 | } |
| 173 | HB_FUNCOBJ (hb_iter); |
| 174 | struct |
| 175 | { |
| 176 | template <typename T> auto |
| 177 | impl (T&& c, hb_priority<1>) const HB_RETURN (unsigned, c.len ()) |
| 178 | |
| 179 | template <typename T> auto |
| 180 | impl (T&& c, hb_priority<0>) const HB_RETURN (unsigned, c.len) |
| 181 | |
| 182 | public: |
| 183 | |
| 184 | template <typename T> auto |
| 185 | operator () (T&& c) const HB_RETURN (unsigned, impl (std::forward<T> (c), hb_prioritize)) |
| 186 | } |
| 187 | HB_FUNCOBJ (hb_len); |
| 188 | |
| 189 | /* Mixin to fill in what the subclass doesn't provide. */ |
| 190 | template <typename iter_t, typename item_t = typename iter_t::__item_t__> |
| 191 | struct hb_iter_fallback_mixin_t |
| 192 | { |
| 193 | private: |
| 194 | /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ |
| 195 | const iter_t* thiz () const { return static_cast<const iter_t *> (this); } |
| 196 | iter_t* thiz () { return static_cast< iter_t *> (this); } |
| 197 | public: |
| 198 | |
| 199 | /* Access: Implement __item__(), or __item_at__() if random-access. */ |
| 200 | item_t __item__ () const { return (*thiz())[0]; } |
| 201 | item_t __item_at__ (unsigned i) const { return *(*thiz() + i); } |
| 202 | |
| 203 | /* Termination: Implement __more__(), or __len__() if random-access. */ |
| 204 | bool __more__ () const { return bool (thiz()->len ()); } |
| 205 | unsigned __len__ () const |
| 206 | { iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; } return l; } |
| 207 | |
| 208 | /* Advancing: Implement __next__(), or __forward__() if random-access. */ |
| 209 | void __next__ () { *thiz() += 1; } |
| 210 | void __forward__ (unsigned n) { while (*thiz() && n--) ++*thiz(); } |
| 211 | |
| 212 | /* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */ |
| 213 | void __prev__ () { *thiz() -= 1; } |
| 214 | void __rewind__ (unsigned n) { while (*thiz() && n--) --*thiz(); } |
| 215 | |
| 216 | /* Range-based for: Implement __end__() if can be done faster, |
| 217 | * and operator!=. */ |
| 218 | iter_t __end__ () const |
| 219 | { |
| 220 | if (thiz()->is_random_access_iterator) |
| 221 | return *thiz() + thiz()->len (); |
| 222 | /* Above expression loops twice. Following loops once. */ |
| 223 | auto it = *thiz(); |
| 224 | while (it) ++it; |
| 225 | return it; |
| 226 | } |
| 227 | |
| 228 | protected: |
| 229 | hb_iter_fallback_mixin_t () = default; |
| 230 | hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; |
| 231 | hb_iter_fallback_mixin_t (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; |
| 232 | hb_iter_fallback_mixin_t& operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; |
| 233 | hb_iter_fallback_mixin_t& operator = (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; |
| 234 | }; |
| 235 | |
| 236 | template <typename iter_t, typename item_t = typename iter_t::__item_t__> |
| 237 | struct hb_iter_with_fallback_t : |
| 238 | hb_iter_t<iter_t, item_t>, |
| 239 | hb_iter_fallback_mixin_t<iter_t, item_t> |
| 240 | { |
| 241 | protected: |
| 242 | hb_iter_with_fallback_t () = default; |
| 243 | hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) = default; |
| 244 | hb_iter_with_fallback_t (hb_iter_with_fallback_t &&o HB_UNUSED) = default; |
| 245 | hb_iter_with_fallback_t& operator = (const hb_iter_with_fallback_t &o HB_UNUSED) = default; |
| 246 | hb_iter_with_fallback_t& operator = (hb_iter_with_fallback_t &&o HB_UNUSED) = default; |
| 247 | }; |
| 248 | |
| 249 | /* |
| 250 | * Meta-programming predicates. |
| 251 | */ |
| 252 | |
| 253 | /* hb_is_iterator() / hb_is_iterator_of() */ |
| 254 | |
| 255 | template<typename Iter, typename Item> |
| 256 | struct hb_is_iterator_of |
| 257 | { |
| 258 | template <typename Item2 = Item> |
| 259 | static hb_true_type impl (hb_priority<2>, hb_iter_t<Iter, hb_type_identity<Item2>> *); |
| 260 | static hb_false_type impl (hb_priority<0>, const void *); |
| 261 | |
| 262 | public: |
| 263 | static constexpr bool value = decltype (impl (hb_prioritize, hb_declval (Iter*)))::value; |
| 264 | }; |
| 265 | #define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value |
| 266 | #define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t) |
| 267 | #define hb_is_sorted_iterator_of(Iter, Item) (hb_is_iterator_of<Iter, Item>::value && Iter::is_sorted_iterator) |
| 268 | #define hb_is_sorted_iterator(Iter) hb_is_sorted_iterator_of (Iter, typename Iter::item_t) |
| 269 | |
| 270 | /* hb_is_iterable() */ |
| 271 | |
| 272 | template <typename T> |
| 273 | struct hb_is_iterable |
| 274 | { |
| 275 | private: |
| 276 | |
| 277 | template <typename U> |
| 278 | static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_type ()); |
| 279 | |
| 280 | template <typename> |
| 281 | static hb_false_type impl (hb_priority<0>); |
| 282 | |
| 283 | public: |
| 284 | static constexpr bool value = decltype (impl<T> (hb_prioritize))::value; |
| 285 | }; |
| 286 | #define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value |
| 287 | |
| 288 | /* hb_is_source_of() / hb_is_sink_of() */ |
| 289 | |
| 290 | template<typename Iter, typename Item> |
| 291 | struct hb_is_source_of |
| 292 | { |
| 293 | private: |
| 294 | template <typename Iter2 = Iter, |
| 295 | hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<const Item>))> |
| 296 | static hb_true_type impl (hb_priority<2>); |
| 297 | template <typename Iter2 = Iter> |
| 298 | static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) >> hb_declval (Item &), hb_true_type ()); |
| 299 | static hb_false_type impl (hb_priority<0>); |
| 300 | |
| 301 | public: |
| 302 | static constexpr bool value = decltype (impl (hb_prioritize))::value; |
| 303 | }; |
| 304 | #define hb_is_source_of(Iter, Item) hb_is_source_of<Iter, Item>::value |
| 305 | |
| 306 | template<typename Iter, typename Item> |
| 307 | struct hb_is_sink_of |
| 308 | { |
| 309 | private: |
| 310 | template <typename Iter2 = Iter, |
| 311 | hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<Item>))> |
| 312 | static hb_true_type impl (hb_priority<2>); |
| 313 | template <typename Iter2 = Iter> |
| 314 | static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) << hb_declval (Item), hb_true_type ()); |
| 315 | static hb_false_type impl (hb_priority<0>); |
| 316 | |
| 317 | public: |
| 318 | static constexpr bool value = decltype (impl (hb_prioritize))::value; |
| 319 | }; |
| 320 | #define hb_is_sink_of(Iter, Item) hb_is_sink_of<Iter, Item>::value |
| 321 | |
| 322 | /* This is commonly used, so define: */ |
| 323 | #define hb_is_sorted_source_of(Iter, Item) \ |
| 324 | (hb_is_source_of(Iter, Item) && Iter::is_sorted_iterator) |
| 325 | |
| 326 | |
| 327 | /* Range-based 'for' for iterables. */ |
| 328 | |
| 329 | template <typename Iterable, |
| 330 | hb_requires (hb_is_iterable (Iterable))> |
| 331 | static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) |
| 332 | |
| 333 | template <typename Iterable, |
| 334 | hb_requires (hb_is_iterable (Iterable))> |
| 335 | static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) |
| 336 | |
| 337 | /* begin()/end() are NOT looked up non-ADL. So each namespace must declare them. |
| 338 | * Do it for namespace OT. */ |
| 339 | namespace OT { |
| 340 | |
| 341 | template <typename Iterable, |
| 342 | hb_requires (hb_is_iterable (Iterable))> |
| 343 | static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) |
| 344 | |
| 345 | template <typename Iterable, |
| 346 | hb_requires (hb_is_iterable (Iterable))> |
| 347 | static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) |
| 348 | |
| 349 | } |
| 350 | |
| 351 | |
| 352 | /* |
| 353 | * Adaptors, combiners, etc. |
| 354 | */ |
| 355 | |
| 356 | template <typename Lhs, typename Rhs, |
| 357 | hb_requires (hb_is_iterator (Lhs))> |
| 358 | static inline auto |
| 359 | operator | (Lhs&& lhs, Rhs&& rhs) HB_AUTO_RETURN (std::forward<Rhs> (rhs) (std::forward<Lhs> (lhs))) |
| 360 | |
| 361 | /* hb_map(), hb_filter(), hb_reduce() */ |
| 362 | |
| 363 | enum class hb_function_sortedness_t { |
| 364 | NOT_SORTED, |
| 365 | RETAINS_SORTING, |
| 366 | SORTED, |
| 367 | }; |
| 368 | |
| 369 | template <typename Iter, typename Proj, hb_function_sortedness_t Sorted, |
| 370 | hb_requires (hb_is_iterator (Iter))> |
| 371 | struct hb_map_iter_t : |
| 372 | hb_iter_t<hb_map_iter_t<Iter, Proj, Sorted>, |
| 373 | decltype (hb_get (hb_declval (Proj), *hb_declval (Iter)))> |
| 374 | { |
| 375 | hb_map_iter_t (const Iter& it, Proj f_) : it (it), f (f_) {} |
| 376 | |
| 377 | typedef decltype (hb_get (hb_declval (Proj), *hb_declval (Iter))) __item_t__; |
| 378 | static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator; |
| 379 | static constexpr bool is_sorted_iterator = |
| 380 | Sorted == hb_function_sortedness_t::SORTED ? true : |
| 381 | Sorted == hb_function_sortedness_t::RETAINS_SORTING ? Iter::is_sorted_iterator : |
| 382 | false; |
| 383 | __item_t__ __item__ () const { return hb_get (f.get (), *it); } |
| 384 | __item_t__ __item_at__ (unsigned i) const { return hb_get (f.get (), it[i]); } |
| 385 | bool __more__ () const { return bool (it); } |
| 386 | unsigned __len__ () const { return it.len (); } |
| 387 | void __next__ () { ++it; } |
| 388 | void __forward__ (unsigned n) { it += n; } |
| 389 | void __prev__ () { --it; } |
| 390 | void __rewind__ (unsigned n) { it -= n; } |
| 391 | hb_map_iter_t __end__ () const { return hb_map_iter_t (it._end (), f); } |
| 392 | bool operator != (const hb_map_iter_t& o) const |
| 393 | { return it != o.it; } |
| 394 | |
| 395 | private: |
| 396 | Iter it; |
| 397 | mutable hb_reference_wrapper<Proj> f; |
| 398 | }; |
| 399 | |
| 400 | template <typename Proj, hb_function_sortedness_t Sorted> |
| 401 | struct hb_map_iter_factory_t |
| 402 | { |
| 403 | hb_map_iter_factory_t (Proj f) : f (f) {} |
| 404 | |
| 405 | template <typename Iter, |
| 406 | hb_requires (hb_is_iterator (Iter))> |
| 407 | hb_map_iter_t<Iter, Proj, Sorted> |
| 408 | operator () (Iter it) |
| 409 | { return hb_map_iter_t<Iter, Proj, Sorted> (it, f); } |
| 410 | |
| 411 | private: |
| 412 | Proj f; |
| 413 | }; |
| 414 | struct |
| 415 | { |
| 416 | template <typename Proj> |
| 417 | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> |
| 418 | operator () (Proj&& f) const |
| 419 | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> (f); } |
| 420 | } |
| 421 | HB_FUNCOBJ (hb_map); |
| 422 | struct |
| 423 | { |
| 424 | template <typename Proj> |
| 425 | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> |
| 426 | operator () (Proj&& f) const |
| 427 | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> (f); } |
| 428 | } |
| 429 | HB_FUNCOBJ (hb_map_retains_sorting); |
| 430 | struct |
| 431 | { |
| 432 | template <typename Proj> |
| 433 | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> |
| 434 | operator () (Proj&& f) const |
| 435 | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> (f); } |
| 436 | } |
| 437 | HB_FUNCOBJ (hb_map_sorted); |
| 438 | |
| 439 | template <typename Iter, typename Pred, typename Proj, |
| 440 | hb_requires (hb_is_iterator (Iter))> |
| 441 | struct hb_filter_iter_t : |
| 442 | hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>, |
| 443 | typename Iter::item_t> |
| 444 | { |
| 445 | hb_filter_iter_t (const Iter& it_, Pred p_, Proj f_) : it (it_), p (p_), f (f_) |
| 446 | { while (it && !hb_has (p.get (), hb_get (f.get (), *it))) ++it; } |
| 447 | |
| 448 | typedef typename Iter::item_t __item_t__; |
| 449 | static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator; |
| 450 | __item_t__ __item__ () const { return *it; } |
| 451 | bool __more__ () const { return bool (it); } |
| 452 | void __next__ () { do ++it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } |
| 453 | void __prev__ () { do --it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } |
| 454 | hb_filter_iter_t __end__ () const { return hb_filter_iter_t (it._end (), p, f); } |
| 455 | bool operator != (const hb_filter_iter_t& o) const |
| 456 | { return it != o.it; } |
| 457 | |
| 458 | private: |
| 459 | Iter it; |
| 460 | mutable hb_reference_wrapper<Pred> p; |
| 461 | mutable hb_reference_wrapper<Proj> f; |
| 462 | }; |
| 463 | template <typename Pred, typename Proj> |
| 464 | struct hb_filter_iter_factory_t |
| 465 | { |
| 466 | hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {} |
| 467 | |
| 468 | template <typename Iter, |
| 469 | hb_requires (hb_is_iterator (Iter))> |
| 470 | hb_filter_iter_t<Iter, Pred, Proj> |
| 471 | operator () (Iter it) |
| 472 | { return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); } |
| 473 | |
| 474 | private: |
| 475 | Pred p; |
| 476 | Proj f; |
| 477 | }; |
| 478 | struct |
| 479 | { |
| 480 | template <typename Pred = decltype ((hb_identity)), |
| 481 | typename Proj = decltype ((hb_identity))> |
| 482 | hb_filter_iter_factory_t<Pred, Proj> |
| 483 | operator () (Pred&& p = hb_identity, Proj&& f = hb_identity) const |
| 484 | { return hb_filter_iter_factory_t<Pred, Proj> (p, f); } |
| 485 | } |
| 486 | HB_FUNCOBJ (hb_filter); |
| 487 | |
| 488 | template <typename Redu, typename InitT> |
| 489 | struct hb_reduce_t |
| 490 | { |
| 491 | hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {} |
| 492 | |
| 493 | template <typename Iter, |
| 494 | hb_requires (hb_is_iterator (Iter)), |
| 495 | typename AccuT = hb_decay<decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>> |
| 496 | AccuT |
| 497 | operator () (Iter it) |
| 498 | { |
| 499 | AccuT value = init_value; |
| 500 | for (; it; ++it) |
| 501 | value = r (value, *it); |
| 502 | return value; |
| 503 | } |
| 504 | |
| 505 | private: |
| 506 | Redu r; |
| 507 | InitT init_value; |
| 508 | }; |
| 509 | struct |
| 510 | { |
| 511 | template <typename Redu, typename InitT> |
| 512 | hb_reduce_t<Redu, InitT> |
| 513 | operator () (Redu&& r, InitT init_value) const |
| 514 | { return hb_reduce_t<Redu, InitT> (r, init_value); } |
| 515 | } |
| 516 | HB_FUNCOBJ (hb_reduce); |
| 517 | |
| 518 | |
| 519 | /* hb_zip() */ |
| 520 | |
| 521 | template <typename A, typename B> |
| 522 | struct hb_zip_iter_t : |
| 523 | hb_iter_t<hb_zip_iter_t<A, B>, |
| 524 | hb_pair_t<typename A::item_t, typename B::item_t>> |
| 525 | { |
| 526 | hb_zip_iter_t () {} |
| 527 | hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {} |
| 528 | |
| 529 | typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__; |
| 530 | static constexpr bool is_random_access_iterator = |
| 531 | A::is_random_access_iterator && |
| 532 | B::is_random_access_iterator; |
| 533 | /* Note. The following categorization is only valid if A is strictly sorted, |
| 534 | * ie. does NOT have duplicates. Previously I tried to categorize sortedness |
| 535 | * more granularly, see commits: |
| 536 | * |
| 537 | * 513762849a683914fc266a17ddf38f133cccf072 |
| 538 | * 4d3cf2adb669c345cc43832d11689271995e160a |
| 539 | * |
| 540 | * However, that was not enough, since hb_sorted_array_t, hb_sorted_vector_t, |
| 541 | * SortedArrayOf, etc all needed to be updated to add more variants. At that |
| 542 | * point I saw it not worth the effort, and instead we now deem all sorted |
| 543 | * collections as essentially strictly-sorted for the purposes of zip. |
| 544 | * |
| 545 | * The above assumption is not as bad as it sounds. Our "sorted" comes with |
| 546 | * no guarantees. It's just a contract, put in place to help you remember, |
| 547 | * and think about, whether an iterator you receive is expected to be |
| 548 | * sorted or not. As such, it's not perfect by definition, and should not |
| 549 | * be treated so. The inaccuracy here just errs in the direction of being |
| 550 | * more permissive, so your code compiles instead of erring on the side of |
| 551 | * marking your zipped iterator unsorted in which case your code won't |
| 552 | * compile. |
| 553 | * |
| 554 | * This semantical limitation does NOT affect logic in any other place I |
| 555 | * know of as of this writing. |
| 556 | */ |
| 557 | static constexpr bool is_sorted_iterator = A::is_sorted_iterator; |
| 558 | |
| 559 | __item_t__ __item__ () const { return __item_t__ (*a, *b); } |
| 560 | __item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); } |
| 561 | bool __more__ () const { return bool (a) && bool (b); } |
| 562 | unsigned __len__ () const { return hb_min (a.len (), b.len ()); } |
| 563 | void __next__ () { ++a; ++b; } |
| 564 | void __forward__ (unsigned n) { a += n; b += n; } |
| 565 | void __prev__ () { --a; --b; } |
| 566 | void __rewind__ (unsigned n) { a -= n; b -= n; } |
| 567 | hb_zip_iter_t __end__ () const { return hb_zip_iter_t (a._end (), b._end ()); } |
| 568 | /* Note, we should stop if ANY of the iters reaches end. As such two compare |
| 569 | * unequal if both items are unequal, NOT if either is unequal. */ |
| 570 | bool operator != (const hb_zip_iter_t& o) const |
| 571 | { return a != o.a && b != o.b; } |
| 572 | |
| 573 | private: |
| 574 | A a; |
| 575 | B b; |
| 576 | }; |
| 577 | struct |
| 578 | { HB_PARTIALIZE(2); |
| 579 | template <typename A, typename B, |
| 580 | hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> |
| 581 | hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> |
| 582 | operator () (A&& a, B&& b) const |
| 583 | { return hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } |
| 584 | } |
| 585 | HB_FUNCOBJ (hb_zip); |
| 586 | |
| 587 | /* hb_concat() */ |
| 588 | |
| 589 | template <typename A, typename B> |
| 590 | struct hb_concat_iter_t : |
| 591 | hb_iter_t<hb_concat_iter_t<A, B>, typename A::item_t> |
| 592 | { |
| 593 | hb_concat_iter_t () {} |
| 594 | hb_concat_iter_t (A& a, B& b) : a (a), b (b) {} |
| 595 | hb_concat_iter_t (const A& a, const B& b) : a (a), b (b) {} |
| 596 | |
| 597 | |
| 598 | typedef typename A::item_t __item_t__; |
| 599 | static constexpr bool is_random_access_iterator = |
| 600 | A::is_random_access_iterator && |
| 601 | B::is_random_access_iterator; |
| 602 | static constexpr bool is_sorted_iterator = false; |
| 603 | |
| 604 | __item_t__ __item__ () const |
| 605 | { |
| 606 | if (!a) |
| 607 | return *b; |
| 608 | return *a; |
| 609 | } |
| 610 | |
| 611 | __item_t__ __item_at__ (unsigned i) const |
| 612 | { |
| 613 | unsigned a_len = a.len (); |
| 614 | if (i < a_len) |
| 615 | return a[i]; |
| 616 | return b[i - a_len]; |
| 617 | } |
| 618 | |
| 619 | bool __more__ () const { return bool (a) || bool (b); } |
| 620 | |
| 621 | unsigned __len__ () const { return a.len () + b.len (); } |
| 622 | |
| 623 | void __next__ () |
| 624 | { |
| 625 | if (a) |
| 626 | ++a; |
| 627 | else |
| 628 | ++b; |
| 629 | } |
| 630 | |
| 631 | void __forward__ (unsigned n) |
| 632 | { |
| 633 | if (!n) return; |
| 634 | if (!is_random_access_iterator) { |
| 635 | while (n-- && *this) { |
| 636 | (*this)++; |
| 637 | } |
| 638 | return; |
| 639 | } |
| 640 | |
| 641 | unsigned a_len = a.len (); |
| 642 | if (n > a_len) { |
| 643 | n -= a_len; |
| 644 | a.__forward__ (a_len); |
| 645 | b.__forward__ (n); |
| 646 | } else { |
| 647 | a.__forward__ (n); |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | hb_concat_iter_t __end__ () const { return hb_concat_iter_t (a._end (), b._end ()); } |
| 652 | bool operator != (const hb_concat_iter_t& o) const |
| 653 | { |
| 654 | return a != o.a |
| 655 | || b != o.b; |
| 656 | } |
| 657 | |
| 658 | private: |
| 659 | A a; |
| 660 | B b; |
| 661 | }; |
| 662 | struct |
| 663 | { HB_PARTIALIZE(2); |
| 664 | template <typename A, typename B, |
| 665 | hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> |
| 666 | hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> |
| 667 | operator () (A&& a, B&& b) const |
| 668 | { return hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } |
| 669 | } |
| 670 | HB_FUNCOBJ (hb_concat); |
| 671 | |
| 672 | /* hb_apply() */ |
| 673 | |
| 674 | template <typename Appl> |
| 675 | struct hb_apply_t |
| 676 | { |
| 677 | hb_apply_t (Appl a) : a (a) {} |
| 678 | |
| 679 | template <typename Iter, |
| 680 | hb_requires (hb_is_iterator (Iter))> |
| 681 | void operator () (Iter it) |
| 682 | { |
| 683 | for (; it; ++it) |
| 684 | (void) hb_invoke (a, *it); |
| 685 | } |
| 686 | |
| 687 | private: |
| 688 | Appl a; |
| 689 | }; |
| 690 | struct |
| 691 | { |
| 692 | template <typename Appl> hb_apply_t<Appl> |
| 693 | operator () (Appl&& a) const |
| 694 | { return hb_apply_t<Appl> (a); } |
| 695 | |
| 696 | template <typename Appl> hb_apply_t<Appl&> |
| 697 | operator () (Appl *a) const |
| 698 | { return hb_apply_t<Appl&> (*a); } |
| 699 | } |
| 700 | HB_FUNCOBJ (hb_apply); |
| 701 | |
| 702 | /* hb_range()/hb_iota()/hb_repeat() */ |
| 703 | |
| 704 | template <typename T, typename S> |
| 705 | struct hb_range_iter_t : |
| 706 | hb_iter_t<hb_range_iter_t<T, S>, T> |
| 707 | { |
| 708 | hb_range_iter_t (T start, T end_, S step) : v (start), end_ (end_for (start, end_, step)), step (step) {} |
| 709 | |
| 710 | typedef T __item_t__; |
| 711 | static constexpr bool is_random_access_iterator = true; |
| 712 | static constexpr bool is_sorted_iterator = true; |
| 713 | __item_t__ __item__ () const { return hb_ridentity (v); } |
| 714 | __item_t__ __item_at__ (unsigned j) const { return v + j * step; } |
| 715 | bool __more__ () const { return v != end_; } |
| 716 | unsigned __len__ () const { return !step ? UINT_MAX : (end_ - v) / step; } |
| 717 | void __next__ () { v += step; } |
| 718 | void __forward__ (unsigned n) { v += n * step; } |
| 719 | void __prev__ () { v -= step; } |
| 720 | void __rewind__ (unsigned n) { v -= n * step; } |
| 721 | hb_range_iter_t __end__ () const { return hb_range_iter_t (end_, end_, step); } |
| 722 | bool operator != (const hb_range_iter_t& o) const |
| 723 | { return v != o.v; } |
| 724 | |
| 725 | private: |
| 726 | static inline T end_for (T start, T end_, S step) |
| 727 | { |
| 728 | if (!step) |
| 729 | return end_; |
| 730 | auto res = (end_ - start) % step; |
| 731 | if (!res) |
| 732 | return end_; |
| 733 | end_ += step - res; |
| 734 | return end_; |
| 735 | } |
| 736 | |
| 737 | private: |
| 738 | T v; |
| 739 | T end_; |
| 740 | S step; |
| 741 | }; |
| 742 | struct |
| 743 | { |
| 744 | template <typename T = unsigned> hb_range_iter_t<T, unsigned> |
| 745 | operator () (T end = (unsigned) -1) const |
| 746 | { return hb_range_iter_t<T, unsigned> (0, end, 1u); } |
| 747 | |
| 748 | template <typename T, typename S = unsigned> hb_range_iter_t<T, S> |
| 749 | operator () (T start, T end, S step = 1u) const |
| 750 | { return hb_range_iter_t<T, S> (start, end, step); } |
| 751 | } |
| 752 | HB_FUNCOBJ (hb_range); |
| 753 | |
| 754 | template <typename T, typename S> |
| 755 | struct hb_iota_iter_t : |
| 756 | hb_iter_with_fallback_t<hb_iota_iter_t<T, S>, T> |
| 757 | { |
| 758 | hb_iota_iter_t (T start, S step) : v (start), step (step) {} |
| 759 | |
| 760 | private: |
| 761 | |
| 762 | template <typename S2 = S> |
| 763 | auto |
| 764 | inc (hb_type_identity<S2> s, hb_priority<1>) |
| 765 | -> hb_void_t<decltype (hb_invoke (std::forward<S2> (s), hb_declval<T&> ()))> |
| 766 | { v = hb_invoke (std::forward<S2> (s), v); } |
| 767 | |
| 768 | void |
| 769 | inc (S s, hb_priority<0>) |
| 770 | { v += s; } |
| 771 | |
| 772 | public: |
| 773 | |
| 774 | typedef T __item_t__; |
| 775 | static constexpr bool is_random_access_iterator = true; |
| 776 | static constexpr bool is_sorted_iterator = true; |
| 777 | __item_t__ __item__ () const { return hb_ridentity (v); } |
| 778 | bool __more__ () const { return true; } |
| 779 | unsigned __len__ () const { return UINT_MAX; } |
| 780 | void __next__ () { inc (step, hb_prioritize); } |
| 781 | void __prev__ () { v -= step; } |
| 782 | hb_iota_iter_t __end__ () const { return *this; } |
| 783 | bool operator != (const hb_iota_iter_t& o) const { return true; } |
| 784 | |
| 785 | private: |
| 786 | T v; |
| 787 | S step; |
| 788 | }; |
| 789 | struct |
| 790 | { |
| 791 | template <typename T = unsigned, typename S = unsigned> hb_iota_iter_t<T, S> |
| 792 | operator () (T start = 0u, S step = 1u) const |
| 793 | { return hb_iota_iter_t<T, S> (start, step); } |
| 794 | } |
| 795 | HB_FUNCOBJ (hb_iota); |
| 796 | |
| 797 | template <typename T> |
| 798 | struct hb_repeat_iter_t : |
| 799 | hb_iter_t<hb_repeat_iter_t<T>, T> |
| 800 | { |
| 801 | hb_repeat_iter_t (T value) : v (value) {} |
| 802 | |
| 803 | typedef T __item_t__; |
| 804 | static constexpr bool is_random_access_iterator = true; |
| 805 | static constexpr bool is_sorted_iterator = true; |
| 806 | __item_t__ __item__ () const { return v; } |
| 807 | __item_t__ __item_at__ (unsigned j) const { return v; } |
| 808 | bool __more__ () const { return true; } |
| 809 | unsigned __len__ () const { return UINT_MAX; } |
| 810 | void __next__ () {} |
| 811 | void __forward__ (unsigned) {} |
| 812 | void __prev__ () {} |
| 813 | void __rewind__ (unsigned) {} |
| 814 | hb_repeat_iter_t __end__ () const { return *this; } |
| 815 | bool operator != (const hb_repeat_iter_t& o) const { return true; } |
| 816 | |
| 817 | private: |
| 818 | T v; |
| 819 | }; |
| 820 | struct |
| 821 | { |
| 822 | template <typename T> hb_repeat_iter_t<T> |
| 823 | operator () (T value) const |
| 824 | { return hb_repeat_iter_t<T> (value); } |
| 825 | } |
| 826 | HB_FUNCOBJ (hb_repeat); |
| 827 | |
| 828 | /* hb_enumerate()/hb_take() */ |
| 829 | |
| 830 | struct |
| 831 | { |
| 832 | template <typename Iterable, |
| 833 | typename Index = unsigned, |
| 834 | hb_requires (hb_is_iterable (Iterable))> |
| 835 | auto operator () (Iterable&& it, Index start = 0u) const HB_AUTO_RETURN |
| 836 | ( hb_zip (hb_iota (start), it) ) |
| 837 | } |
| 838 | HB_FUNCOBJ (hb_enumerate); |
| 839 | |
| 840 | struct |
| 841 | { HB_PARTIALIZE(2); |
| 842 | template <typename Iterable, |
| 843 | hb_requires (hb_is_iterable (Iterable))> |
| 844 | auto operator () (Iterable&& it, unsigned count) const HB_AUTO_RETURN |
| 845 | ( hb_zip (hb_range (count), it) | hb_map_retains_sorting (hb_second) ) |
| 846 | |
| 847 | /* Specialization arrays. */ |
| 848 | |
| 849 | template <typename Type> inline hb_array_t<Type> |
| 850 | operator () (hb_array_t<Type> array, unsigned count) const |
| 851 | { return array.sub_array (0, count); } |
| 852 | |
| 853 | template <typename Type> inline hb_sorted_array_t<Type> |
| 854 | operator () (hb_sorted_array_t<Type> array, unsigned count) const |
| 855 | { return array.sub_array (0, count); } |
| 856 | } |
| 857 | HB_FUNCOBJ (hb_take); |
| 858 | |
| 859 | struct |
| 860 | { HB_PARTIALIZE(2); |
| 861 | template <typename Iter, |
| 862 | hb_requires (hb_is_iterator (Iter))> |
| 863 | auto operator () (Iter it, unsigned count) const HB_AUTO_RETURN |
| 864 | ( |
| 865 | + hb_iota (it, hb_add (count)) |
| 866 | | hb_map (hb_take (count)) |
| 867 | | hb_take ((hb_len (it) + count - 1) / count) |
| 868 | ) |
| 869 | } |
| 870 | HB_FUNCOBJ (hb_chop); |
| 871 | |
| 872 | /* hb_sink() */ |
| 873 | |
| 874 | template <typename Sink> |
| 875 | struct hb_sink_t |
| 876 | { |
| 877 | hb_sink_t (Sink s) : s (s) {} |
| 878 | |
| 879 | template <typename Iter, |
| 880 | hb_requires (hb_is_iterator (Iter))> |
| 881 | void operator () (Iter it) |
| 882 | { |
| 883 | for (; it; ++it) |
| 884 | s << *it; |
| 885 | } |
| 886 | |
| 887 | private: |
| 888 | Sink s; |
| 889 | }; |
| 890 | struct |
| 891 | { |
| 892 | template <typename Sink> hb_sink_t<Sink> |
| 893 | operator () (Sink&& s) const |
| 894 | { return hb_sink_t<Sink> (s); } |
| 895 | |
| 896 | template <typename Sink> hb_sink_t<Sink&> |
| 897 | operator () (Sink *s) const |
| 898 | { return hb_sink_t<Sink&> (*s); } |
| 899 | } |
| 900 | HB_FUNCOBJ (hb_sink); |
| 901 | |
| 902 | /* hb-drain: hb_sink to void / blackhole / /dev/null. */ |
| 903 | |
| 904 | struct |
| 905 | { |
| 906 | template <typename Iter, |
| 907 | hb_requires (hb_is_iterator (Iter))> |
| 908 | void operator () (Iter it) const |
| 909 | { |
| 910 | for (; it; ++it) |
| 911 | (void) *it; |
| 912 | } |
| 913 | } |
| 914 | HB_FUNCOBJ (hb_drain); |
| 915 | |
| 916 | /* hb_unzip(): unzip and sink to two sinks. */ |
| 917 | |
| 918 | template <typename Sink1, typename Sink2> |
| 919 | struct hb_unzip_t |
| 920 | { |
| 921 | hb_unzip_t (Sink1 s1, Sink2 s2) : s1 (s1), s2 (s2) {} |
| 922 | |
| 923 | template <typename Iter, |
| 924 | hb_requires (hb_is_iterator (Iter))> |
| 925 | void operator () (Iter it) |
| 926 | { |
| 927 | for (; it; ++it) |
| 928 | { |
| 929 | const auto &v = *it; |
| 930 | s1 << v.first; |
| 931 | s2 << v.second; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | private: |
| 936 | Sink1 s1; |
| 937 | Sink2 s2; |
| 938 | }; |
| 939 | struct |
| 940 | { |
| 941 | template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2> |
| 942 | operator () (Sink1&& s1, Sink2&& s2) const |
| 943 | { return hb_unzip_t<Sink1, Sink2> (s1, s2); } |
| 944 | |
| 945 | template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&> |
| 946 | operator () (Sink1 *s1, Sink2 *s2) const |
| 947 | { return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); } |
| 948 | } |
| 949 | HB_FUNCOBJ (hb_unzip); |
| 950 | |
| 951 | |
| 952 | /* hb-all, hb-any, hb-none. */ |
| 953 | |
| 954 | struct |
| 955 | { |
| 956 | template <typename Iterable, |
| 957 | typename Pred = decltype ((hb_identity)), |
| 958 | typename Proj = decltype ((hb_identity)), |
| 959 | hb_requires (hb_is_iterable (Iterable))> |
| 960 | bool operator () (Iterable&& c, |
| 961 | Pred&& p = hb_identity, |
| 962 | Proj&& f = hb_identity) const |
| 963 | { |
| 964 | for (auto it = hb_iter (c); it; ++it) |
| 965 | if (!hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) |
| 966 | return false; |
| 967 | return true; |
| 968 | } |
| 969 | } |
| 970 | HB_FUNCOBJ (hb_all); |
| 971 | struct |
| 972 | { |
| 973 | template <typename Iterable, |
| 974 | typename Pred = decltype ((hb_identity)), |
| 975 | typename Proj = decltype ((hb_identity)), |
| 976 | hb_requires (hb_is_iterable (Iterable))> |
| 977 | bool operator () (Iterable&& c, |
| 978 | Pred&& p = hb_identity, |
| 979 | Proj&& f = hb_identity) const |
| 980 | { |
| 981 | for (auto it = hb_iter (c); it; ++it) |
| 982 | if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) |
| 983 | return true; |
| 984 | return false; |
| 985 | } |
| 986 | } |
| 987 | HB_FUNCOBJ (hb_any); |
| 988 | struct |
| 989 | { |
| 990 | template <typename Iterable, |
| 991 | typename Pred = decltype ((hb_identity)), |
| 992 | typename Proj = decltype ((hb_identity)), |
| 993 | hb_requires (hb_is_iterable (Iterable))> |
| 994 | bool operator () (Iterable&& c, |
| 995 | Pred&& p = hb_identity, |
| 996 | Proj&& f = hb_identity) const |
| 997 | { |
| 998 | for (auto it = hb_iter (c); it; ++it) |
| 999 | if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) |
| 1000 | return false; |
| 1001 | return true; |
| 1002 | } |
| 1003 | } |
| 1004 | HB_FUNCOBJ (hb_none); |
| 1005 | |
| 1006 | /* |
| 1007 | * Algorithms operating on iterators. |
| 1008 | */ |
| 1009 | |
| 1010 | template <typename C, typename V, |
| 1011 | hb_requires (hb_is_iterable (C))> |
| 1012 | inline void |
| 1013 | hb_fill (C&& c, const V &v) |
| 1014 | { |
| 1015 | for (auto i = hb_iter (c); i; i++) |
| 1016 | *i = v; |
| 1017 | } |
| 1018 | |
| 1019 | template <typename S, typename D> |
| 1020 | inline void |
| 1021 | hb_copy (S&& is, D&& id) |
| 1022 | { |
| 1023 | hb_iter (is) | hb_sink (id); |
| 1024 | } |
| 1025 | |
| 1026 | |
| 1027 | #endif /* HB_ITER_HH */ |
| 1028 | |