| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * |
| 6 | * Copyright (C) 1997-2016, International Business Machines |
| 7 | * Corporation and others. All Rights Reserved. |
| 8 | * |
| 9 | ****************************************************************************** |
| 10 | * |
| 11 | * File CMEMORY.H |
| 12 | * |
| 13 | * Contains stdlib.h/string.h memory functions |
| 14 | * |
| 15 | * @author Bertrand A. Damiba |
| 16 | * |
| 17 | * Modification History: |
| 18 | * |
| 19 | * Date Name Description |
| 20 | * 6/20/98 Bertrand Created. |
| 21 | * 05/03/99 stephen Changed from functions to macros. |
| 22 | * |
| 23 | ****************************************************************************** |
| 24 | */ |
| 25 | |
| 26 | #ifndef CMEMORY_H |
| 27 | #define CMEMORY_H |
| 28 | |
| 29 | #include "unicode/utypes.h" |
| 30 | |
| 31 | #include <stddef.h> |
| 32 | #include <string.h> |
| 33 | #include "unicode/localpointer.h" |
| 34 | #include "uassert.h" |
| 35 | |
| 36 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 37 | #include <stdio.h> |
| 38 | #endif |
| 39 | |
| 40 | // uprv_memcpy and uprv_memmove |
| 41 | #if defined(__clang__) |
| 42 | #define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
| 43 | /* Suppress warnings about addresses that will never be NULL */ \ |
| 44 | _Pragma("clang diagnostic push") \ |
| 45 | _Pragma("clang diagnostic ignored \"-Waddress\"") \ |
| 46 | U_ASSERT(dst != NULL); \ |
| 47 | U_ASSERT(src != NULL); \ |
| 48 | _Pragma("clang diagnostic pop") \ |
| 49 | U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \ |
| 50 | } UPRV_BLOCK_MACRO_END |
| 51 | #define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
| 52 | /* Suppress warnings about addresses that will never be NULL */ \ |
| 53 | _Pragma("clang diagnostic push") \ |
| 54 | _Pragma("clang diagnostic ignored \"-Waddress\"") \ |
| 55 | U_ASSERT(dst != NULL); \ |
| 56 | U_ASSERT(src != NULL); \ |
| 57 | _Pragma("clang diagnostic pop") \ |
| 58 | U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \ |
| 59 | } UPRV_BLOCK_MACRO_END |
| 60 | #elif defined(__GNUC__) |
| 61 | #define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
| 62 | /* Suppress warnings about addresses that will never be NULL */ \ |
| 63 | _Pragma("GCC diagnostic push") \ |
| 64 | _Pragma("GCC diagnostic ignored \"-Waddress\"") \ |
| 65 | U_ASSERT(dst != NULL); \ |
| 66 | U_ASSERT(src != NULL); \ |
| 67 | _Pragma("GCC diagnostic pop") \ |
| 68 | U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \ |
| 69 | } UPRV_BLOCK_MACRO_END |
| 70 | #define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
| 71 | /* Suppress warnings about addresses that will never be NULL */ \ |
| 72 | _Pragma("GCC diagnostic push") \ |
| 73 | _Pragma("GCC diagnostic ignored \"-Waddress\"") \ |
| 74 | U_ASSERT(dst != NULL); \ |
| 75 | U_ASSERT(src != NULL); \ |
| 76 | _Pragma("GCC diagnostic pop") \ |
| 77 | U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \ |
| 78 | } UPRV_BLOCK_MACRO_END |
| 79 | #else |
| 80 | #define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
| 81 | U_ASSERT(dst != NULL); \ |
| 82 | U_ASSERT(src != NULL); \ |
| 83 | U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \ |
| 84 | } UPRV_BLOCK_MACRO_END |
| 85 | #define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
| 86 | U_ASSERT(dst != NULL); \ |
| 87 | U_ASSERT(src != NULL); \ |
| 88 | U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \ |
| 89 | } UPRV_BLOCK_MACRO_END |
| 90 | #endif |
| 91 | |
| 92 | /** |
| 93 | * \def UPRV_LENGTHOF |
| 94 | * Convenience macro to determine the length of a fixed array at compile-time. |
| 95 | * @param array A fixed length array |
| 96 | * @return The length of the array, in elements |
| 97 | * @internal |
| 98 | */ |
| 99 | #define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
| 100 | #define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size) |
| 101 | #define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size) |
| 102 | #define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num) |
| 103 | |
| 104 | U_CAPI void * U_EXPORT2 |
| 105 | uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1); |
| 106 | |
| 107 | U_CAPI void * U_EXPORT2 |
| 108 | uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2); |
| 109 | |
| 110 | U_CAPI void U_EXPORT2 |
| 111 | uprv_free(void *mem); |
| 112 | |
| 113 | U_CAPI void * U_EXPORT2 |
| 114 | uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2); |
| 115 | |
| 116 | /** |
| 117 | * Get the least significant bits of a pointer (a memory address). |
| 118 | * For example, with a mask of 3, the macro gets the 2 least significant bits, |
| 119 | * which will be 0 if the pointer is 32-bit (4-byte) aligned. |
| 120 | * |
| 121 | * uintptr_t is the most appropriate integer type to cast to. |
| 122 | */ |
| 123 | #define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask)) |
| 124 | |
| 125 | /** |
| 126 | * Create & return an instance of "type" in statically allocated storage. |
| 127 | * e.g. |
| 128 | * static std::mutex *myMutex = STATIC_NEW(std::mutex); |
| 129 | * To destroy an object created in this way, invoke the destructor explicitly, e.g. |
| 130 | * myMutex->~mutex(); |
| 131 | * DO NOT use delete. |
| 132 | * DO NOT use with class UMutex, which has specific support for static instances. |
| 133 | * |
| 134 | * STATIC_NEW is intended for use when |
| 135 | * - We want a static (or global) object. |
| 136 | * - We don't want it to ever be destructed, or to explicitly control destruction, |
| 137 | * to avoid use-after-destruction problems. |
| 138 | * - We want to avoid an ordinary heap allocated object, |
| 139 | * to avoid the possibility of memory allocation failures, and |
| 140 | * to avoid memory leak reports, from valgrind, for example. |
| 141 | * This is defined as a macro rather than a template function because each invocation |
| 142 | * must define distinct static storage for the object being returned. |
| 143 | */ |
| 144 | #define STATIC_NEW(type) [] () { \ |
| 145 | alignas(type) static char storage[sizeof(type)]; \ |
| 146 | return new(storage) type();} () |
| 147 | |
| 148 | /** |
| 149 | * Heap clean up function, called from u_cleanup() |
| 150 | * Clears any user heap functions from u_setMemoryFunctions() |
| 151 | * Does NOT deallocate any remaining allocated memory. |
| 152 | */ |
| 153 | U_CFUNC UBool |
| 154 | cmemory_cleanup(void); |
| 155 | |
| 156 | /** |
| 157 | * A function called by <TT>uhash_remove</TT>, |
| 158 | * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete |
| 159 | * an existing key or value. |
| 160 | * @param obj A key or value stored in a hashtable |
| 161 | * @see uprv_deleteUObject |
| 162 | */ |
| 163 | typedef void U_CALLCONV UObjectDeleter(void* obj); |
| 164 | |
| 165 | /** |
| 166 | * Deleter for UObject instances. |
| 167 | * Works for all subclasses of UObject because it has a virtual destructor. |
| 168 | */ |
| 169 | U_CAPI void U_EXPORT2 |
| 170 | uprv_deleteUObject(void *obj); |
| 171 | |
| 172 | #ifdef __cplusplus |
| 173 | |
| 174 | #include <utility> |
| 175 | #include "unicode/uobject.h" |
| 176 | |
| 177 | U_NAMESPACE_BEGIN |
| 178 | |
| 179 | /** |
| 180 | * "Smart pointer" class, deletes memory via uprv_free(). |
| 181 | * For most methods see the LocalPointerBase base class. |
| 182 | * Adds operator[] for array item access. |
| 183 | * |
| 184 | * @see LocalPointerBase |
| 185 | */ |
| 186 | template<typename T> |
| 187 | class LocalMemory : public LocalPointerBase<T> { |
| 188 | public: |
| 189 | using LocalPointerBase<T>::operator*; |
| 190 | using LocalPointerBase<T>::operator->; |
| 191 | /** |
| 192 | * Constructor takes ownership. |
| 193 | * @param p simple pointer to an array of T items that is adopted |
| 194 | */ |
| 195 | explicit LocalMemory(T *p=nullptr) : LocalPointerBase<T>(p) {} |
| 196 | /** |
| 197 | * Move constructor, leaves src with isNull(). |
| 198 | * @param src source smart pointer |
| 199 | */ |
| 200 | LocalMemory(LocalMemory<T> &&src) noexcept : LocalPointerBase<T>(src.ptr) { |
| 201 | src.ptr=nullptr; |
| 202 | } |
| 203 | /** |
| 204 | * Destructor deletes the memory it owns. |
| 205 | */ |
| 206 | ~LocalMemory() { |
| 207 | uprv_free(LocalPointerBase<T>::ptr); |
| 208 | } |
| 209 | /** |
| 210 | * Move assignment operator, leaves src with isNull(). |
| 211 | * The behavior is undefined if *this and src are the same object. |
| 212 | * @param src source smart pointer |
| 213 | * @return *this |
| 214 | */ |
| 215 | LocalMemory<T> &operator=(LocalMemory<T> &&src) noexcept { |
| 216 | uprv_free(LocalPointerBase<T>::ptr); |
| 217 | LocalPointerBase<T>::ptr=src.ptr; |
| 218 | src.ptr=nullptr; |
| 219 | return *this; |
| 220 | } |
| 221 | /** |
| 222 | * Swap pointers. |
| 223 | * @param other other smart pointer |
| 224 | */ |
| 225 | void swap(LocalMemory<T> &other) noexcept { |
| 226 | T *temp=LocalPointerBase<T>::ptr; |
| 227 | LocalPointerBase<T>::ptr=other.ptr; |
| 228 | other.ptr=temp; |
| 229 | } |
| 230 | /** |
| 231 | * Non-member LocalMemory swap function. |
| 232 | * @param p1 will get p2's pointer |
| 233 | * @param p2 will get p1's pointer |
| 234 | */ |
| 235 | friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) noexcept { |
| 236 | p1.swap(p2); |
| 237 | } |
| 238 | /** |
| 239 | * Deletes the array it owns, |
| 240 | * and adopts (takes ownership of) the one passed in. |
| 241 | * @param p simple pointer to an array of T items that is adopted |
| 242 | */ |
| 243 | void adoptInstead(T *p) { |
| 244 | uprv_free(LocalPointerBase<T>::ptr); |
| 245 | LocalPointerBase<T>::ptr=p; |
| 246 | } |
| 247 | /** |
| 248 | * Deletes the array it owns, allocates a new one and reset its bytes to 0. |
| 249 | * Returns the new array pointer. |
| 250 | * If the allocation fails, then the current array is unchanged and |
| 251 | * this method returns nullptr. |
| 252 | * @param newCapacity must be >0 |
| 253 | * @return the allocated array pointer, or nullptr if the allocation failed |
| 254 | */ |
| 255 | inline T *allocateInsteadAndReset(int32_t newCapacity=1); |
| 256 | /** |
| 257 | * Deletes the array it owns and allocates a new one, copying length T items. |
| 258 | * Returns the new array pointer. |
| 259 | * If the allocation fails, then the current array is unchanged and |
| 260 | * this method returns nullptr. |
| 261 | * @param newCapacity must be >0 |
| 262 | * @param length number of T items to be copied from the old array to the new one; |
| 263 | * must be no more than the capacity of the old array, |
| 264 | * which the caller must track because the LocalMemory does not track it |
| 265 | * @return the allocated array pointer, or nullptr if the allocation failed |
| 266 | */ |
| 267 | inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0); |
| 268 | /** |
| 269 | * Array item access (writable). |
| 270 | * No index bounds check. |
| 271 | * @param i array index |
| 272 | * @return reference to the array item |
| 273 | */ |
| 274 | T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; } |
| 275 | }; |
| 276 | |
| 277 | template<typename T> |
| 278 | inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) { |
| 279 | if(newCapacity>0) { |
| 280 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
| 281 | if(p!=nullptr) { |
| 282 | uprv_memset(p, 0, newCapacity*sizeof(T)); |
| 283 | uprv_free(LocalPointerBase<T>::ptr); |
| 284 | LocalPointerBase<T>::ptr=p; |
| 285 | } |
| 286 | return p; |
| 287 | } else { |
| 288 | return nullptr; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | |
| 293 | template<typename T> |
| 294 | inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) { |
| 295 | if(newCapacity>0) { |
| 296 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
| 297 | if(p!=nullptr) { |
| 298 | if(length>0) { |
| 299 | if(length>newCapacity) { |
| 300 | length=newCapacity; |
| 301 | } |
| 302 | uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T)); |
| 303 | } |
| 304 | uprv_free(LocalPointerBase<T>::ptr); |
| 305 | LocalPointerBase<T>::ptr=p; |
| 306 | } |
| 307 | return p; |
| 308 | } else { |
| 309 | return nullptr; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | /** |
| 314 | * Simple array/buffer management class using uprv_malloc() and uprv_free(). |
| 315 | * Provides an internal array with fixed capacity. Can alias another array |
| 316 | * or allocate one. |
| 317 | * |
| 318 | * The array address is properly aligned for type T. It might not be properly |
| 319 | * aligned for types larger than T (or larger than the largest subtype of T). |
| 320 | * |
| 321 | * Unlike LocalMemory and LocalArray, this class never adopts |
| 322 | * (takes ownership of) another array. |
| 323 | * |
| 324 | * WARNING: MaybeStackArray only works with primitive (plain-old data) types. |
| 325 | * It does NOT know how to call a destructor! If you work with classes with |
| 326 | * destructors, consider: |
| 327 | * |
| 328 | * - LocalArray in localpointer.h if you know the length ahead of time |
| 329 | * - MaybeStackVector if you know the length at runtime |
| 330 | */ |
| 331 | template<typename T, int32_t stackCapacity> |
| 332 | class MaybeStackArray { |
| 333 | public: |
| 334 | // No heap allocation. Use only on the stack. |
| 335 | static void* U_EXPORT2 operator new(size_t) noexcept = delete; |
| 336 | static void* U_EXPORT2 operator new[](size_t) noexcept = delete; |
| 337 | #if U_HAVE_PLACEMENT_NEW |
| 338 | static void* U_EXPORT2 operator new(size_t, void*) noexcept = delete; |
| 339 | #endif |
| 340 | |
| 341 | /** |
| 342 | * Default constructor initializes with internal T[stackCapacity] buffer. |
| 343 | */ |
| 344 | MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(false) {} |
| 345 | /** |
| 346 | * Automatically allocates the heap array if the argument is larger than the stack capacity. |
| 347 | * Intended for use when an approximate capacity is known at compile time but the true |
| 348 | * capacity is not known until runtime. |
| 349 | */ |
| 350 | MaybeStackArray(int32_t newCapacity, UErrorCode status) : MaybeStackArray() { |
| 351 | if (U_FAILURE(status)) { |
| 352 | return; |
| 353 | } |
| 354 | if (capacity < newCapacity) { |
| 355 | if (resize(newCapacity) == nullptr) { |
| 356 | status = U_MEMORY_ALLOCATION_ERROR; |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | /** |
| 361 | * Destructor deletes the array (if owned). |
| 362 | */ |
| 363 | ~MaybeStackArray() { releaseArray(); } |
| 364 | /** |
| 365 | * Move constructor: transfers ownership or copies the stack array. |
| 366 | */ |
| 367 | MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) noexcept; |
| 368 | /** |
| 369 | * Move assignment: transfers ownership or copies the stack array. |
| 370 | */ |
| 371 | MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) noexcept; |
| 372 | /** |
| 373 | * Returns the array capacity (number of T items). |
| 374 | * @return array capacity |
| 375 | */ |
| 376 | int32_t getCapacity() const { return capacity; } |
| 377 | /** |
| 378 | * Access without ownership change. |
| 379 | * @return the array pointer |
| 380 | */ |
| 381 | T *getAlias() const { return ptr; } |
| 382 | /** |
| 383 | * Returns the array limit. Simple convenience method. |
| 384 | * @return getAlias()+getCapacity() |
| 385 | */ |
| 386 | T *getArrayLimit() const { return getAlias()+capacity; } |
| 387 | // No "operator T *() const" because that can make |
| 388 | // expressions like mbs[index] ambiguous for some compilers. |
| 389 | /** |
| 390 | * Array item access (const). |
| 391 | * No index bounds check. |
| 392 | * @param i array index |
| 393 | * @return reference to the array item |
| 394 | */ |
| 395 | const T &operator[](ptrdiff_t i) const { return ptr[i]; } |
| 396 | /** |
| 397 | * Array item access (writable). |
| 398 | * No index bounds check. |
| 399 | * @param i array index |
| 400 | * @return reference to the array item |
| 401 | */ |
| 402 | T &operator[](ptrdiff_t i) { return ptr[i]; } |
| 403 | /** |
| 404 | * Deletes the array (if owned) and aliases another one, no transfer of ownership. |
| 405 | * If the arguments are illegal, then the current array is unchanged. |
| 406 | * @param otherArray must not be nullptr |
| 407 | * @param otherCapacity must be >0 |
| 408 | */ |
| 409 | void aliasInstead(T *otherArray, int32_t otherCapacity) { |
| 410 | if(otherArray!=nullptr && otherCapacity>0) { |
| 411 | releaseArray(); |
| 412 | ptr=otherArray; |
| 413 | capacity=otherCapacity; |
| 414 | needToRelease=false; |
| 415 | } |
| 416 | } |
| 417 | /** |
| 418 | * Deletes the array (if owned) and allocates a new one, copying length T items. |
| 419 | * Returns the new array pointer. |
| 420 | * If the allocation fails, then the current array is unchanged and |
| 421 | * this method returns nullptr. |
| 422 | * @param newCapacity can be less than or greater than the current capacity; |
| 423 | * must be >0 |
| 424 | * @param length number of T items to be copied from the old array to the new one |
| 425 | * @return the allocated array pointer, or nullptr if the allocation failed |
| 426 | */ |
| 427 | inline T *resize(int32_t newCapacity, int32_t length=0); |
| 428 | /** |
| 429 | * Gives up ownership of the array if owned, or else clones it, |
| 430 | * copying length T items; resets itself to the internal stack array. |
| 431 | * Returns nullptr if the allocation failed. |
| 432 | * @param length number of T items to copy when cloning, |
| 433 | * and capacity of the clone when cloning |
| 434 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
| 435 | * @return the array pointer; |
| 436 | * caller becomes responsible for deleting the array |
| 437 | */ |
| 438 | inline T *orphanOrClone(int32_t length, int32_t &resultCapacity); |
| 439 | |
| 440 | protected: |
| 441 | // Resizes the array to the size of src, then copies the contents of src. |
| 442 | void copyFrom(const MaybeStackArray &src, UErrorCode &status) { |
| 443 | if (U_FAILURE(status)) { |
| 444 | return; |
| 445 | } |
| 446 | if (this->resize(src.capacity, 0) == nullptr) { |
| 447 | status = U_MEMORY_ALLOCATION_ERROR; |
| 448 | return; |
| 449 | } |
| 450 | uprv_memcpy(this->ptr, src.ptr, (size_t)capacity * sizeof(T)); |
| 451 | } |
| 452 | |
| 453 | private: |
| 454 | T *ptr; |
| 455 | int32_t capacity; |
| 456 | UBool needToRelease; |
| 457 | T stackArray[stackCapacity]; |
| 458 | void releaseArray() { |
| 459 | if(needToRelease) { |
| 460 | uprv_free(ptr); |
| 461 | } |
| 462 | } |
| 463 | void resetToStackArray() { |
| 464 | ptr=stackArray; |
| 465 | capacity=stackCapacity; |
| 466 | needToRelease=false; |
| 467 | } |
| 468 | /* No comparison operators with other MaybeStackArray's. */ |
| 469 | bool operator==(const MaybeStackArray & /*other*/) = delete; |
| 470 | bool operator!=(const MaybeStackArray & /*other*/) = delete; |
| 471 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
| 472 | MaybeStackArray(const MaybeStackArray & /*other*/) = delete; |
| 473 | void operator=(const MaybeStackArray & /*other*/) = delete; |
| 474 | }; |
| 475 | |
| 476 | template<typename T, int32_t stackCapacity> |
| 477 | icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray( |
| 478 | MaybeStackArray <T, stackCapacity>&& src) noexcept |
| 479 | : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) { |
| 480 | if (src.ptr == src.stackArray) { |
| 481 | ptr = stackArray; |
| 482 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
| 483 | } else { |
| 484 | src.resetToStackArray(); // take ownership away from src |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | template<typename T, int32_t stackCapacity> |
| 489 | inline MaybeStackArray <T, stackCapacity>& |
| 490 | MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) noexcept { |
| 491 | releaseArray(); // in case this instance had its own memory allocated |
| 492 | capacity = src.capacity; |
| 493 | needToRelease = src.needToRelease; |
| 494 | if (src.ptr == src.stackArray) { |
| 495 | ptr = stackArray; |
| 496 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
| 497 | } else { |
| 498 | ptr = src.ptr; |
| 499 | src.resetToStackArray(); // take ownership away from src |
| 500 | } |
| 501 | return *this; |
| 502 | } |
| 503 | |
| 504 | template<typename T, int32_t stackCapacity> |
| 505 | inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) { |
| 506 | if(newCapacity>0) { |
| 507 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 508 | ::fprintf(::stderr, "MaybeStackArray (resize) alloc %d * %lu\n" , newCapacity, sizeof(T)); |
| 509 | #endif |
| 510 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
| 511 | if(p!=nullptr) { |
| 512 | if(length>0) { |
| 513 | if(length>capacity) { |
| 514 | length=capacity; |
| 515 | } |
| 516 | if(length>newCapacity) { |
| 517 | length=newCapacity; |
| 518 | } |
| 519 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
| 520 | } |
| 521 | releaseArray(); |
| 522 | ptr=p; |
| 523 | capacity=newCapacity; |
| 524 | needToRelease=true; |
| 525 | } |
| 526 | return p; |
| 527 | } else { |
| 528 | return nullptr; |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | template<typename T, int32_t stackCapacity> |
| 533 | inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) { |
| 534 | T *p; |
| 535 | if(needToRelease) { |
| 536 | p=ptr; |
| 537 | } else if(length<=0) { |
| 538 | return nullptr; |
| 539 | } else { |
| 540 | if(length>capacity) { |
| 541 | length=capacity; |
| 542 | } |
| 543 | p=(T *)uprv_malloc(length*sizeof(T)); |
| 544 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 545 | ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n" , length,sizeof(T)); |
| 546 | #endif |
| 547 | if(p==nullptr) { |
| 548 | return nullptr; |
| 549 | } |
| 550 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
| 551 | } |
| 552 | resultCapacity=length; |
| 553 | resetToStackArray(); |
| 554 | return p; |
| 555 | } |
| 556 | |
| 557 | /** |
| 558 | * Variant of MaybeStackArray that allocates a header struct and an array |
| 559 | * in one contiguous memory block, using uprv_malloc() and uprv_free(). |
| 560 | * Provides internal memory with fixed array capacity. Can alias another memory |
| 561 | * block or allocate one. |
| 562 | * The stackCapacity is the number of T items in the internal memory, |
| 563 | * not counting the H header. |
| 564 | * Unlike LocalMemory and LocalArray, this class never adopts |
| 565 | * (takes ownership of) another memory block. |
| 566 | */ |
| 567 | template<typename H, typename T, int32_t stackCapacity> |
| 568 | class MaybeStackHeaderAndArray { |
| 569 | public: |
| 570 | // No heap allocation. Use only on the stack. |
| 571 | static void* U_EXPORT2 operator new(size_t) noexcept = delete; |
| 572 | static void* U_EXPORT2 operator new[](size_t) noexcept = delete; |
| 573 | #if U_HAVE_PLACEMENT_NEW |
| 574 | static void* U_EXPORT2 operator new(size_t, void*) noexcept = delete; |
| 575 | #endif |
| 576 | |
| 577 | /** |
| 578 | * Default constructor initializes with internal H+T[stackCapacity] buffer. |
| 579 | */ |
| 580 | MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(false) {} |
| 581 | /** |
| 582 | * Destructor deletes the memory (if owned). |
| 583 | */ |
| 584 | ~MaybeStackHeaderAndArray() { releaseMemory(); } |
| 585 | /** |
| 586 | * Returns the array capacity (number of T items). |
| 587 | * @return array capacity |
| 588 | */ |
| 589 | int32_t getCapacity() const { return capacity; } |
| 590 | /** |
| 591 | * Access without ownership change. |
| 592 | * @return the header pointer |
| 593 | */ |
| 594 | H *getAlias() const { return ptr; } |
| 595 | /** |
| 596 | * Returns the array start. |
| 597 | * @return array start, same address as getAlias()+1 |
| 598 | */ |
| 599 | T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); } |
| 600 | /** |
| 601 | * Returns the array limit. |
| 602 | * @return array limit |
| 603 | */ |
| 604 | T *getArrayLimit() const { return getArrayStart()+capacity; } |
| 605 | /** |
| 606 | * Access without ownership change. Same as getAlias(). |
| 607 | * A class instance can be used directly in expressions that take a T *. |
| 608 | * @return the header pointer |
| 609 | */ |
| 610 | operator H *() const { return ptr; } |
| 611 | /** |
| 612 | * Array item access (writable). |
| 613 | * No index bounds check. |
| 614 | * @param i array index |
| 615 | * @return reference to the array item |
| 616 | */ |
| 617 | T &operator[](ptrdiff_t i) { return getArrayStart()[i]; } |
| 618 | /** |
| 619 | * Deletes the memory block (if owned) and aliases another one, no transfer of ownership. |
| 620 | * If the arguments are illegal, then the current memory is unchanged. |
| 621 | * @param otherArray must not be nullptr |
| 622 | * @param otherCapacity must be >0 |
| 623 | */ |
| 624 | void aliasInstead(H *otherMemory, int32_t otherCapacity) { |
| 625 | if(otherMemory!=nullptr && otherCapacity>0) { |
| 626 | releaseMemory(); |
| 627 | ptr=otherMemory; |
| 628 | capacity=otherCapacity; |
| 629 | needToRelease=false; |
| 630 | } |
| 631 | } |
| 632 | /** |
| 633 | * Deletes the memory block (if owned) and allocates a new one, |
| 634 | * copying the header and length T array items. |
| 635 | * Returns the new header pointer. |
| 636 | * If the allocation fails, then the current memory is unchanged and |
| 637 | * this method returns nullptr. |
| 638 | * @param newCapacity can be less than or greater than the current capacity; |
| 639 | * must be >0 |
| 640 | * @param length number of T items to be copied from the old array to the new one |
| 641 | * @return the allocated pointer, or nullptr if the allocation failed |
| 642 | */ |
| 643 | inline H *resize(int32_t newCapacity, int32_t length=0); |
| 644 | /** |
| 645 | * Gives up ownership of the memory if owned, or else clones it, |
| 646 | * copying the header and length T array items; resets itself to the internal memory. |
| 647 | * Returns nullptr if the allocation failed. |
| 648 | * @param length number of T items to copy when cloning, |
| 649 | * and array capacity of the clone when cloning |
| 650 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
| 651 | * @return the header pointer; |
| 652 | * caller becomes responsible for deleting the array |
| 653 | */ |
| 654 | inline H *orphanOrClone(int32_t length, int32_t &resultCapacity); |
| 655 | private: |
| 656 | H *ptr; |
| 657 | int32_t capacity; |
| 658 | UBool needToRelease; |
| 659 | // stackHeader must precede stackArray immediately. |
| 660 | H stackHeader; |
| 661 | T stackArray[stackCapacity]; |
| 662 | void releaseMemory() { |
| 663 | if(needToRelease) { |
| 664 | uprv_free(ptr); |
| 665 | } |
| 666 | } |
| 667 | /* No comparison operators with other MaybeStackHeaderAndArray's. */ |
| 668 | bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return false;} |
| 669 | bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return true;} |
| 670 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
| 671 | MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {} |
| 672 | void operator=(const MaybeStackHeaderAndArray & /*other*/) {} |
| 673 | }; |
| 674 | |
| 675 | template<typename H, typename T, int32_t stackCapacity> |
| 676 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity, |
| 677 | int32_t length) { |
| 678 | if(newCapacity>=0) { |
| 679 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 680 | ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n" , sizeof(H),newCapacity,sizeof(T)); |
| 681 | #endif |
| 682 | H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T)); |
| 683 | if(p!=nullptr) { |
| 684 | if(length<0) { |
| 685 | length=0; |
| 686 | } else if(length>0) { |
| 687 | if(length>capacity) { |
| 688 | length=capacity; |
| 689 | } |
| 690 | if(length>newCapacity) { |
| 691 | length=newCapacity; |
| 692 | } |
| 693 | } |
| 694 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
| 695 | releaseMemory(); |
| 696 | ptr=p; |
| 697 | capacity=newCapacity; |
| 698 | needToRelease=true; |
| 699 | } |
| 700 | return p; |
| 701 | } else { |
| 702 | return nullptr; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | template<typename H, typename T, int32_t stackCapacity> |
| 707 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length, |
| 708 | int32_t &resultCapacity) { |
| 709 | H *p; |
| 710 | if(needToRelease) { |
| 711 | p=ptr; |
| 712 | } else { |
| 713 | if(length<0) { |
| 714 | length=0; |
| 715 | } else if(length>capacity) { |
| 716 | length=capacity; |
| 717 | } |
| 718 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
| 719 | ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n" , sizeof(H),length,sizeof(T)); |
| 720 | #endif |
| 721 | p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T)); |
| 722 | if(p==nullptr) { |
| 723 | return nullptr; |
| 724 | } |
| 725 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
| 726 | } |
| 727 | resultCapacity=length; |
| 728 | ptr=&stackHeader; |
| 729 | capacity=stackCapacity; |
| 730 | needToRelease=false; |
| 731 | return p; |
| 732 | } |
| 733 | |
| 734 | /** |
| 735 | * A simple memory management class that creates new heap allocated objects (of |
| 736 | * any class that has a public constructor), keeps track of them and eventually |
| 737 | * deletes them all in its own destructor. |
| 738 | * |
| 739 | * A typical use-case would be code like this: |
| 740 | * |
| 741 | * MemoryPool<MyType> pool; |
| 742 | * |
| 743 | * MyType* o1 = pool.create(); |
| 744 | * if (o1 != nullptr) { |
| 745 | * foo(o1); |
| 746 | * } |
| 747 | * |
| 748 | * MyType* o2 = pool.create(1, 2, 3); |
| 749 | * if (o2 != nullptr) { |
| 750 | * bar(o2); |
| 751 | * } |
| 752 | * |
| 753 | * // MemoryPool will take care of deleting the MyType objects. |
| 754 | * |
| 755 | * It doesn't do anything more than that, and is intentionally kept minimalist. |
| 756 | */ |
| 757 | template<typename T, int32_t stackCapacity = 8> |
| 758 | class MemoryPool : public UMemory { |
| 759 | public: |
| 760 | MemoryPool() : fCount(0), fPool() {} |
| 761 | |
| 762 | ~MemoryPool() { |
| 763 | for (int32_t i = 0; i < fCount; ++i) { |
| 764 | delete fPool[i]; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | MemoryPool(const MemoryPool&) = delete; |
| 769 | MemoryPool& operator=(const MemoryPool&) = delete; |
| 770 | |
| 771 | MemoryPool(MemoryPool&& other) noexcept : fCount(other.fCount), |
| 772 | fPool(std::move(other.fPool)) { |
| 773 | other.fCount = 0; |
| 774 | } |
| 775 | |
| 776 | MemoryPool& operator=(MemoryPool&& other) noexcept { |
| 777 | // Since `this` may contain instances that need to be deleted, we can't |
| 778 | // just throw them away and replace them with `other`. The normal way of |
| 779 | // dealing with this in C++ is to swap `this` and `other`, rather than |
| 780 | // simply overwrite: the destruction of `other` can then take care of |
| 781 | // running MemoryPool::~MemoryPool() over the still-to-be-deallocated |
| 782 | // instances. |
| 783 | std::swap(fCount, other.fCount); |
| 784 | std::swap(fPool, other.fPool); |
| 785 | return *this; |
| 786 | } |
| 787 | |
| 788 | /** |
| 789 | * Creates a new object of typename T, by forwarding any and all arguments |
| 790 | * to the typename T constructor. |
| 791 | * |
| 792 | * @param args Arguments to be forwarded to the typename T constructor. |
| 793 | * @return A pointer to the newly created object, or nullptr on error. |
| 794 | */ |
| 795 | template<typename... Args> |
| 796 | T* create(Args&&... args) { |
| 797 | int32_t capacity = fPool.getCapacity(); |
| 798 | if (fCount == capacity && |
| 799 | fPool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity, |
| 800 | capacity) == nullptr) { |
| 801 | return nullptr; |
| 802 | } |
| 803 | return fPool[fCount++] = new T(std::forward<Args>(args)...); |
| 804 | } |
| 805 | |
| 806 | template <typename... Args> |
| 807 | T* createAndCheckErrorCode(UErrorCode &status, Args &&... args) { |
| 808 | if (U_FAILURE(status)) { |
| 809 | return nullptr; |
| 810 | } |
| 811 | T *pointer = this->create(args...); |
| 812 | if (U_SUCCESS(status) && pointer == nullptr) { |
| 813 | status = U_MEMORY_ALLOCATION_ERROR; |
| 814 | } |
| 815 | return pointer; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * @return Number of elements that have been allocated. |
| 820 | */ |
| 821 | int32_t count() const { |
| 822 | return fCount; |
| 823 | } |
| 824 | |
| 825 | protected: |
| 826 | int32_t fCount; |
| 827 | MaybeStackArray<T*, stackCapacity> fPool; |
| 828 | }; |
| 829 | |
| 830 | /** |
| 831 | * An internal Vector-like implementation based on MemoryPool. |
| 832 | * |
| 833 | * Heap-allocates each element and stores pointers. |
| 834 | * |
| 835 | * To append an item to the vector, use emplaceBack. |
| 836 | * |
| 837 | * MaybeStackVector<MyType> vector; |
| 838 | * MyType* element = vector.emplaceBack(); |
| 839 | * if (!element) { |
| 840 | * status = U_MEMORY_ALLOCATION_ERROR; |
| 841 | * } |
| 842 | * // do stuff with element |
| 843 | * |
| 844 | * To loop over the vector, use a for loop with indices: |
| 845 | * |
| 846 | * for (int32_t i = 0; i < vector.length(); i++) { |
| 847 | * MyType* element = vector[i]; |
| 848 | * } |
| 849 | */ |
| 850 | template<typename T, int32_t stackCapacity = 8> |
| 851 | class MaybeStackVector : protected MemoryPool<T, stackCapacity> { |
| 852 | public: |
| 853 | template<typename... Args> |
| 854 | T* emplaceBack(Args&&... args) { |
| 855 | return this->create(args...); |
| 856 | } |
| 857 | |
| 858 | template <typename... Args> |
| 859 | T *emplaceBackAndCheckErrorCode(UErrorCode &status, Args &&... args) { |
| 860 | return this->createAndCheckErrorCode(status, args...); |
| 861 | } |
| 862 | |
| 863 | int32_t length() const { |
| 864 | return this->fCount; |
| 865 | } |
| 866 | |
| 867 | T** getAlias() { |
| 868 | return this->fPool.getAlias(); |
| 869 | } |
| 870 | |
| 871 | const T *const *getAlias() const { |
| 872 | return this->fPool.getAlias(); |
| 873 | } |
| 874 | |
| 875 | /** |
| 876 | * Array item access (read-only). |
| 877 | * No index bounds check. |
| 878 | * @param i array index |
| 879 | * @return reference to the array item |
| 880 | */ |
| 881 | const T* operator[](ptrdiff_t i) const { |
| 882 | return this->fPool[i]; |
| 883 | } |
| 884 | |
| 885 | /** |
| 886 | * Array item access (writable). |
| 887 | * No index bounds check. |
| 888 | * @param i array index |
| 889 | * @return reference to the array item |
| 890 | */ |
| 891 | T* operator[](ptrdiff_t i) { |
| 892 | return this->fPool[i]; |
| 893 | } |
| 894 | }; |
| 895 | |
| 896 | |
| 897 | U_NAMESPACE_END |
| 898 | |
| 899 | #endif /* __cplusplus */ |
| 900 | #endif /* CMEMORY_H */ |
| 901 | |