1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * |
6 | * Copyright (C) 1997-2016, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ****************************************************************************** |
10 | * |
11 | * File CMEMORY.H |
12 | * |
13 | * Contains stdlib.h/string.h memory functions |
14 | * |
15 | * @author Bertrand A. Damiba |
16 | * |
17 | * Modification History: |
18 | * |
19 | * Date Name Description |
20 | * 6/20/98 Bertrand Created. |
21 | * 05/03/99 stephen Changed from functions to macros. |
22 | * |
23 | ****************************************************************************** |
24 | */ |
25 | |
26 | #ifndef CMEMORY_H |
27 | #define CMEMORY_H |
28 | |
29 | #include "unicode/utypes.h" |
30 | |
31 | #include <stddef.h> |
32 | #include <string.h> |
33 | #include "unicode/localpointer.h" |
34 | #include "uassert.h" |
35 | |
36 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
37 | #include <stdio.h> |
38 | #endif |
39 | |
40 | // uprv_memcpy and uprv_memmove |
41 | #if defined(__clang__) |
42 | #define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
43 | /* Suppress warnings about addresses that will never be NULL */ \ |
44 | _Pragma("clang diagnostic push") \ |
45 | _Pragma("clang diagnostic ignored \"-Waddress\"") \ |
46 | U_ASSERT(dst != NULL); \ |
47 | U_ASSERT(src != NULL); \ |
48 | _Pragma("clang diagnostic pop") \ |
49 | U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \ |
50 | } UPRV_BLOCK_MACRO_END |
51 | #define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
52 | /* Suppress warnings about addresses that will never be NULL */ \ |
53 | _Pragma("clang diagnostic push") \ |
54 | _Pragma("clang diagnostic ignored \"-Waddress\"") \ |
55 | U_ASSERT(dst != NULL); \ |
56 | U_ASSERT(src != NULL); \ |
57 | _Pragma("clang diagnostic pop") \ |
58 | U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \ |
59 | } UPRV_BLOCK_MACRO_END |
60 | #elif defined(__GNUC__) |
61 | #define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
62 | /* Suppress warnings about addresses that will never be NULL */ \ |
63 | _Pragma("GCC diagnostic push") \ |
64 | _Pragma("GCC diagnostic ignored \"-Waddress\"") \ |
65 | U_ASSERT(dst != NULL); \ |
66 | U_ASSERT(src != NULL); \ |
67 | _Pragma("GCC diagnostic pop") \ |
68 | U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \ |
69 | } UPRV_BLOCK_MACRO_END |
70 | #define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
71 | /* Suppress warnings about addresses that will never be NULL */ \ |
72 | _Pragma("GCC diagnostic push") \ |
73 | _Pragma("GCC diagnostic ignored \"-Waddress\"") \ |
74 | U_ASSERT(dst != NULL); \ |
75 | U_ASSERT(src != NULL); \ |
76 | _Pragma("GCC diagnostic pop") \ |
77 | U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \ |
78 | } UPRV_BLOCK_MACRO_END |
79 | #else |
80 | #define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
81 | U_ASSERT(dst != NULL); \ |
82 | U_ASSERT(src != NULL); \ |
83 | U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \ |
84 | } UPRV_BLOCK_MACRO_END |
85 | #define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \ |
86 | U_ASSERT(dst != NULL); \ |
87 | U_ASSERT(src != NULL); \ |
88 | U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \ |
89 | } UPRV_BLOCK_MACRO_END |
90 | #endif |
91 | |
92 | /** |
93 | * \def UPRV_LENGTHOF |
94 | * Convenience macro to determine the length of a fixed array at compile-time. |
95 | * @param array A fixed length array |
96 | * @return The length of the array, in elements |
97 | * @internal |
98 | */ |
99 | #define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
100 | #define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size) |
101 | #define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size) |
102 | #define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num) |
103 | |
104 | U_CAPI void * U_EXPORT2 |
105 | uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1); |
106 | |
107 | U_CAPI void * U_EXPORT2 |
108 | uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2); |
109 | |
110 | U_CAPI void U_EXPORT2 |
111 | uprv_free(void *mem); |
112 | |
113 | U_CAPI void * U_EXPORT2 |
114 | uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2); |
115 | |
116 | /** |
117 | * Get the least significant bits of a pointer (a memory address). |
118 | * For example, with a mask of 3, the macro gets the 2 least significant bits, |
119 | * which will be 0 if the pointer is 32-bit (4-byte) aligned. |
120 | * |
121 | * uintptr_t is the most appropriate integer type to cast to. |
122 | */ |
123 | #define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask)) |
124 | |
125 | /** |
126 | * Create & return an instance of "type" in statically allocated storage. |
127 | * e.g. |
128 | * static std::mutex *myMutex = STATIC_NEW(std::mutex); |
129 | * To destroy an object created in this way, invoke the destructor explicitly, e.g. |
130 | * myMutex->~mutex(); |
131 | * DO NOT use delete. |
132 | * DO NOT use with class UMutex, which has specific support for static instances. |
133 | * |
134 | * STATIC_NEW is intended for use when |
135 | * - We want a static (or global) object. |
136 | * - We don't want it to ever be destructed, or to explicitly control destruction, |
137 | * to avoid use-after-destruction problems. |
138 | * - We want to avoid an ordinary heap allocated object, |
139 | * to avoid the possibility of memory allocation failures, and |
140 | * to avoid memory leak reports, from valgrind, for example. |
141 | * This is defined as a macro rather than a template function because each invocation |
142 | * must define distinct static storage for the object being returned. |
143 | */ |
144 | #define STATIC_NEW(type) [] () { \ |
145 | alignas(type) static char storage[sizeof(type)]; \ |
146 | return new(storage) type();} () |
147 | |
148 | /** |
149 | * Heap clean up function, called from u_cleanup() |
150 | * Clears any user heap functions from u_setMemoryFunctions() |
151 | * Does NOT deallocate any remaining allocated memory. |
152 | */ |
153 | U_CFUNC UBool |
154 | cmemory_cleanup(void); |
155 | |
156 | /** |
157 | * A function called by <TT>uhash_remove</TT>, |
158 | * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete |
159 | * an existing key or value. |
160 | * @param obj A key or value stored in a hashtable |
161 | * @see uprv_deleteUObject |
162 | */ |
163 | typedef void U_CALLCONV UObjectDeleter(void* obj); |
164 | |
165 | /** |
166 | * Deleter for UObject instances. |
167 | * Works for all subclasses of UObject because it has a virtual destructor. |
168 | */ |
169 | U_CAPI void U_EXPORT2 |
170 | uprv_deleteUObject(void *obj); |
171 | |
172 | #ifdef __cplusplus |
173 | |
174 | #include <utility> |
175 | #include "unicode/uobject.h" |
176 | |
177 | U_NAMESPACE_BEGIN |
178 | |
179 | /** |
180 | * "Smart pointer" class, deletes memory via uprv_free(). |
181 | * For most methods see the LocalPointerBase base class. |
182 | * Adds operator[] for array item access. |
183 | * |
184 | * @see LocalPointerBase |
185 | */ |
186 | template<typename T> |
187 | class LocalMemory : public LocalPointerBase<T> { |
188 | public: |
189 | using LocalPointerBase<T>::operator*; |
190 | using LocalPointerBase<T>::operator->; |
191 | /** |
192 | * Constructor takes ownership. |
193 | * @param p simple pointer to an array of T items that is adopted |
194 | */ |
195 | explicit LocalMemory(T *p=nullptr) : LocalPointerBase<T>(p) {} |
196 | /** |
197 | * Move constructor, leaves src with isNull(). |
198 | * @param src source smart pointer |
199 | */ |
200 | LocalMemory(LocalMemory<T> &&src) noexcept : LocalPointerBase<T>(src.ptr) { |
201 | src.ptr=nullptr; |
202 | } |
203 | /** |
204 | * Destructor deletes the memory it owns. |
205 | */ |
206 | ~LocalMemory() { |
207 | uprv_free(LocalPointerBase<T>::ptr); |
208 | } |
209 | /** |
210 | * Move assignment operator, leaves src with isNull(). |
211 | * The behavior is undefined if *this and src are the same object. |
212 | * @param src source smart pointer |
213 | * @return *this |
214 | */ |
215 | LocalMemory<T> &operator=(LocalMemory<T> &&src) noexcept { |
216 | uprv_free(LocalPointerBase<T>::ptr); |
217 | LocalPointerBase<T>::ptr=src.ptr; |
218 | src.ptr=nullptr; |
219 | return *this; |
220 | } |
221 | /** |
222 | * Swap pointers. |
223 | * @param other other smart pointer |
224 | */ |
225 | void swap(LocalMemory<T> &other) noexcept { |
226 | T *temp=LocalPointerBase<T>::ptr; |
227 | LocalPointerBase<T>::ptr=other.ptr; |
228 | other.ptr=temp; |
229 | } |
230 | /** |
231 | * Non-member LocalMemory swap function. |
232 | * @param p1 will get p2's pointer |
233 | * @param p2 will get p1's pointer |
234 | */ |
235 | friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) noexcept { |
236 | p1.swap(p2); |
237 | } |
238 | /** |
239 | * Deletes the array it owns, |
240 | * and adopts (takes ownership of) the one passed in. |
241 | * @param p simple pointer to an array of T items that is adopted |
242 | */ |
243 | void adoptInstead(T *p) { |
244 | uprv_free(LocalPointerBase<T>::ptr); |
245 | LocalPointerBase<T>::ptr=p; |
246 | } |
247 | /** |
248 | * Deletes the array it owns, allocates a new one and reset its bytes to 0. |
249 | * Returns the new array pointer. |
250 | * If the allocation fails, then the current array is unchanged and |
251 | * this method returns nullptr. |
252 | * @param newCapacity must be >0 |
253 | * @return the allocated array pointer, or nullptr if the allocation failed |
254 | */ |
255 | inline T *allocateInsteadAndReset(int32_t newCapacity=1); |
256 | /** |
257 | * Deletes the array it owns and allocates a new one, copying length T items. |
258 | * Returns the new array pointer. |
259 | * If the allocation fails, then the current array is unchanged and |
260 | * this method returns nullptr. |
261 | * @param newCapacity must be >0 |
262 | * @param length number of T items to be copied from the old array to the new one; |
263 | * must be no more than the capacity of the old array, |
264 | * which the caller must track because the LocalMemory does not track it |
265 | * @return the allocated array pointer, or nullptr if the allocation failed |
266 | */ |
267 | inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0); |
268 | /** |
269 | * Array item access (writable). |
270 | * No index bounds check. |
271 | * @param i array index |
272 | * @return reference to the array item |
273 | */ |
274 | T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; } |
275 | }; |
276 | |
277 | template<typename T> |
278 | inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) { |
279 | if(newCapacity>0) { |
280 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
281 | if(p!=nullptr) { |
282 | uprv_memset(p, 0, newCapacity*sizeof(T)); |
283 | uprv_free(LocalPointerBase<T>::ptr); |
284 | LocalPointerBase<T>::ptr=p; |
285 | } |
286 | return p; |
287 | } else { |
288 | return nullptr; |
289 | } |
290 | } |
291 | |
292 | |
293 | template<typename T> |
294 | inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) { |
295 | if(newCapacity>0) { |
296 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
297 | if(p!=nullptr) { |
298 | if(length>0) { |
299 | if(length>newCapacity) { |
300 | length=newCapacity; |
301 | } |
302 | uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T)); |
303 | } |
304 | uprv_free(LocalPointerBase<T>::ptr); |
305 | LocalPointerBase<T>::ptr=p; |
306 | } |
307 | return p; |
308 | } else { |
309 | return nullptr; |
310 | } |
311 | } |
312 | |
313 | /** |
314 | * Simple array/buffer management class using uprv_malloc() and uprv_free(). |
315 | * Provides an internal array with fixed capacity. Can alias another array |
316 | * or allocate one. |
317 | * |
318 | * The array address is properly aligned for type T. It might not be properly |
319 | * aligned for types larger than T (or larger than the largest subtype of T). |
320 | * |
321 | * Unlike LocalMemory and LocalArray, this class never adopts |
322 | * (takes ownership of) another array. |
323 | * |
324 | * WARNING: MaybeStackArray only works with primitive (plain-old data) types. |
325 | * It does NOT know how to call a destructor! If you work with classes with |
326 | * destructors, consider: |
327 | * |
328 | * - LocalArray in localpointer.h if you know the length ahead of time |
329 | * - MaybeStackVector if you know the length at runtime |
330 | */ |
331 | template<typename T, int32_t stackCapacity> |
332 | class MaybeStackArray { |
333 | public: |
334 | // No heap allocation. Use only on the stack. |
335 | static void* U_EXPORT2 operator new(size_t) noexcept = delete; |
336 | static void* U_EXPORT2 operator new[](size_t) noexcept = delete; |
337 | #if U_HAVE_PLACEMENT_NEW |
338 | static void* U_EXPORT2 operator new(size_t, void*) noexcept = delete; |
339 | #endif |
340 | |
341 | /** |
342 | * Default constructor initializes with internal T[stackCapacity] buffer. |
343 | */ |
344 | MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(false) {} |
345 | /** |
346 | * Automatically allocates the heap array if the argument is larger than the stack capacity. |
347 | * Intended for use when an approximate capacity is known at compile time but the true |
348 | * capacity is not known until runtime. |
349 | */ |
350 | MaybeStackArray(int32_t newCapacity, UErrorCode status) : MaybeStackArray() { |
351 | if (U_FAILURE(status)) { |
352 | return; |
353 | } |
354 | if (capacity < newCapacity) { |
355 | if (resize(newCapacity) == nullptr) { |
356 | status = U_MEMORY_ALLOCATION_ERROR; |
357 | } |
358 | } |
359 | } |
360 | /** |
361 | * Destructor deletes the array (if owned). |
362 | */ |
363 | ~MaybeStackArray() { releaseArray(); } |
364 | /** |
365 | * Move constructor: transfers ownership or copies the stack array. |
366 | */ |
367 | MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) noexcept; |
368 | /** |
369 | * Move assignment: transfers ownership or copies the stack array. |
370 | */ |
371 | MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) noexcept; |
372 | /** |
373 | * Returns the array capacity (number of T items). |
374 | * @return array capacity |
375 | */ |
376 | int32_t getCapacity() const { return capacity; } |
377 | /** |
378 | * Access without ownership change. |
379 | * @return the array pointer |
380 | */ |
381 | T *getAlias() const { return ptr; } |
382 | /** |
383 | * Returns the array limit. Simple convenience method. |
384 | * @return getAlias()+getCapacity() |
385 | */ |
386 | T *getArrayLimit() const { return getAlias()+capacity; } |
387 | // No "operator T *() const" because that can make |
388 | // expressions like mbs[index] ambiguous for some compilers. |
389 | /** |
390 | * Array item access (const). |
391 | * No index bounds check. |
392 | * @param i array index |
393 | * @return reference to the array item |
394 | */ |
395 | const T &operator[](ptrdiff_t i) const { return ptr[i]; } |
396 | /** |
397 | * Array item access (writable). |
398 | * No index bounds check. |
399 | * @param i array index |
400 | * @return reference to the array item |
401 | */ |
402 | T &operator[](ptrdiff_t i) { return ptr[i]; } |
403 | /** |
404 | * Deletes the array (if owned) and aliases another one, no transfer of ownership. |
405 | * If the arguments are illegal, then the current array is unchanged. |
406 | * @param otherArray must not be nullptr |
407 | * @param otherCapacity must be >0 |
408 | */ |
409 | void aliasInstead(T *otherArray, int32_t otherCapacity) { |
410 | if(otherArray!=nullptr && otherCapacity>0) { |
411 | releaseArray(); |
412 | ptr=otherArray; |
413 | capacity=otherCapacity; |
414 | needToRelease=false; |
415 | } |
416 | } |
417 | /** |
418 | * Deletes the array (if owned) and allocates a new one, copying length T items. |
419 | * Returns the new array pointer. |
420 | * If the allocation fails, then the current array is unchanged and |
421 | * this method returns nullptr. |
422 | * @param newCapacity can be less than or greater than the current capacity; |
423 | * must be >0 |
424 | * @param length number of T items to be copied from the old array to the new one |
425 | * @return the allocated array pointer, or nullptr if the allocation failed |
426 | */ |
427 | inline T *resize(int32_t newCapacity, int32_t length=0); |
428 | /** |
429 | * Gives up ownership of the array if owned, or else clones it, |
430 | * copying length T items; resets itself to the internal stack array. |
431 | * Returns nullptr if the allocation failed. |
432 | * @param length number of T items to copy when cloning, |
433 | * and capacity of the clone when cloning |
434 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
435 | * @return the array pointer; |
436 | * caller becomes responsible for deleting the array |
437 | */ |
438 | inline T *orphanOrClone(int32_t length, int32_t &resultCapacity); |
439 | |
440 | protected: |
441 | // Resizes the array to the size of src, then copies the contents of src. |
442 | void copyFrom(const MaybeStackArray &src, UErrorCode &status) { |
443 | if (U_FAILURE(status)) { |
444 | return; |
445 | } |
446 | if (this->resize(src.capacity, 0) == nullptr) { |
447 | status = U_MEMORY_ALLOCATION_ERROR; |
448 | return; |
449 | } |
450 | uprv_memcpy(this->ptr, src.ptr, (size_t)capacity * sizeof(T)); |
451 | } |
452 | |
453 | private: |
454 | T *ptr; |
455 | int32_t capacity; |
456 | UBool needToRelease; |
457 | T stackArray[stackCapacity]; |
458 | void releaseArray() { |
459 | if(needToRelease) { |
460 | uprv_free(ptr); |
461 | } |
462 | } |
463 | void resetToStackArray() { |
464 | ptr=stackArray; |
465 | capacity=stackCapacity; |
466 | needToRelease=false; |
467 | } |
468 | /* No comparison operators with other MaybeStackArray's. */ |
469 | bool operator==(const MaybeStackArray & /*other*/) = delete; |
470 | bool operator!=(const MaybeStackArray & /*other*/) = delete; |
471 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
472 | MaybeStackArray(const MaybeStackArray & /*other*/) = delete; |
473 | void operator=(const MaybeStackArray & /*other*/) = delete; |
474 | }; |
475 | |
476 | template<typename T, int32_t stackCapacity> |
477 | icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray( |
478 | MaybeStackArray <T, stackCapacity>&& src) noexcept |
479 | : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) { |
480 | if (src.ptr == src.stackArray) { |
481 | ptr = stackArray; |
482 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
483 | } else { |
484 | src.resetToStackArray(); // take ownership away from src |
485 | } |
486 | } |
487 | |
488 | template<typename T, int32_t stackCapacity> |
489 | inline MaybeStackArray <T, stackCapacity>& |
490 | MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) noexcept { |
491 | releaseArray(); // in case this instance had its own memory allocated |
492 | capacity = src.capacity; |
493 | needToRelease = src.needToRelease; |
494 | if (src.ptr == src.stackArray) { |
495 | ptr = stackArray; |
496 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
497 | } else { |
498 | ptr = src.ptr; |
499 | src.resetToStackArray(); // take ownership away from src |
500 | } |
501 | return *this; |
502 | } |
503 | |
504 | template<typename T, int32_t stackCapacity> |
505 | inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) { |
506 | if(newCapacity>0) { |
507 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
508 | ::fprintf(::stderr, "MaybeStackArray (resize) alloc %d * %lu\n" , newCapacity, sizeof(T)); |
509 | #endif |
510 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
511 | if(p!=nullptr) { |
512 | if(length>0) { |
513 | if(length>capacity) { |
514 | length=capacity; |
515 | } |
516 | if(length>newCapacity) { |
517 | length=newCapacity; |
518 | } |
519 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
520 | } |
521 | releaseArray(); |
522 | ptr=p; |
523 | capacity=newCapacity; |
524 | needToRelease=true; |
525 | } |
526 | return p; |
527 | } else { |
528 | return nullptr; |
529 | } |
530 | } |
531 | |
532 | template<typename T, int32_t stackCapacity> |
533 | inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) { |
534 | T *p; |
535 | if(needToRelease) { |
536 | p=ptr; |
537 | } else if(length<=0) { |
538 | return nullptr; |
539 | } else { |
540 | if(length>capacity) { |
541 | length=capacity; |
542 | } |
543 | p=(T *)uprv_malloc(length*sizeof(T)); |
544 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
545 | ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n" , length,sizeof(T)); |
546 | #endif |
547 | if(p==nullptr) { |
548 | return nullptr; |
549 | } |
550 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
551 | } |
552 | resultCapacity=length; |
553 | resetToStackArray(); |
554 | return p; |
555 | } |
556 | |
557 | /** |
558 | * Variant of MaybeStackArray that allocates a header struct and an array |
559 | * in one contiguous memory block, using uprv_malloc() and uprv_free(). |
560 | * Provides internal memory with fixed array capacity. Can alias another memory |
561 | * block or allocate one. |
562 | * The stackCapacity is the number of T items in the internal memory, |
563 | * not counting the H header. |
564 | * Unlike LocalMemory and LocalArray, this class never adopts |
565 | * (takes ownership of) another memory block. |
566 | */ |
567 | template<typename H, typename T, int32_t stackCapacity> |
568 | class MaybeStackHeaderAndArray { |
569 | public: |
570 | // No heap allocation. Use only on the stack. |
571 | static void* U_EXPORT2 operator new(size_t) noexcept = delete; |
572 | static void* U_EXPORT2 operator new[](size_t) noexcept = delete; |
573 | #if U_HAVE_PLACEMENT_NEW |
574 | static void* U_EXPORT2 operator new(size_t, void*) noexcept = delete; |
575 | #endif |
576 | |
577 | /** |
578 | * Default constructor initializes with internal H+T[stackCapacity] buffer. |
579 | */ |
580 | MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(false) {} |
581 | /** |
582 | * Destructor deletes the memory (if owned). |
583 | */ |
584 | ~MaybeStackHeaderAndArray() { releaseMemory(); } |
585 | /** |
586 | * Returns the array capacity (number of T items). |
587 | * @return array capacity |
588 | */ |
589 | int32_t getCapacity() const { return capacity; } |
590 | /** |
591 | * Access without ownership change. |
592 | * @return the header pointer |
593 | */ |
594 | H *getAlias() const { return ptr; } |
595 | /** |
596 | * Returns the array start. |
597 | * @return array start, same address as getAlias()+1 |
598 | */ |
599 | T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); } |
600 | /** |
601 | * Returns the array limit. |
602 | * @return array limit |
603 | */ |
604 | T *getArrayLimit() const { return getArrayStart()+capacity; } |
605 | /** |
606 | * Access without ownership change. Same as getAlias(). |
607 | * A class instance can be used directly in expressions that take a T *. |
608 | * @return the header pointer |
609 | */ |
610 | operator H *() const { return ptr; } |
611 | /** |
612 | * Array item access (writable). |
613 | * No index bounds check. |
614 | * @param i array index |
615 | * @return reference to the array item |
616 | */ |
617 | T &operator[](ptrdiff_t i) { return getArrayStart()[i]; } |
618 | /** |
619 | * Deletes the memory block (if owned) and aliases another one, no transfer of ownership. |
620 | * If the arguments are illegal, then the current memory is unchanged. |
621 | * @param otherArray must not be nullptr |
622 | * @param otherCapacity must be >0 |
623 | */ |
624 | void aliasInstead(H *otherMemory, int32_t otherCapacity) { |
625 | if(otherMemory!=nullptr && otherCapacity>0) { |
626 | releaseMemory(); |
627 | ptr=otherMemory; |
628 | capacity=otherCapacity; |
629 | needToRelease=false; |
630 | } |
631 | } |
632 | /** |
633 | * Deletes the memory block (if owned) and allocates a new one, |
634 | * copying the header and length T array items. |
635 | * Returns the new header pointer. |
636 | * If the allocation fails, then the current memory is unchanged and |
637 | * this method returns nullptr. |
638 | * @param newCapacity can be less than or greater than the current capacity; |
639 | * must be >0 |
640 | * @param length number of T items to be copied from the old array to the new one |
641 | * @return the allocated pointer, or nullptr if the allocation failed |
642 | */ |
643 | inline H *resize(int32_t newCapacity, int32_t length=0); |
644 | /** |
645 | * Gives up ownership of the memory if owned, or else clones it, |
646 | * copying the header and length T array items; resets itself to the internal memory. |
647 | * Returns nullptr if the allocation failed. |
648 | * @param length number of T items to copy when cloning, |
649 | * and array capacity of the clone when cloning |
650 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
651 | * @return the header pointer; |
652 | * caller becomes responsible for deleting the array |
653 | */ |
654 | inline H *orphanOrClone(int32_t length, int32_t &resultCapacity); |
655 | private: |
656 | H *ptr; |
657 | int32_t capacity; |
658 | UBool needToRelease; |
659 | // stackHeader must precede stackArray immediately. |
660 | H stackHeader; |
661 | T stackArray[stackCapacity]; |
662 | void releaseMemory() { |
663 | if(needToRelease) { |
664 | uprv_free(ptr); |
665 | } |
666 | } |
667 | /* No comparison operators with other MaybeStackHeaderAndArray's. */ |
668 | bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return false;} |
669 | bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return true;} |
670 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
671 | MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {} |
672 | void operator=(const MaybeStackHeaderAndArray & /*other*/) {} |
673 | }; |
674 | |
675 | template<typename H, typename T, int32_t stackCapacity> |
676 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity, |
677 | int32_t length) { |
678 | if(newCapacity>=0) { |
679 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
680 | ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n" , sizeof(H),newCapacity,sizeof(T)); |
681 | #endif |
682 | H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T)); |
683 | if(p!=nullptr) { |
684 | if(length<0) { |
685 | length=0; |
686 | } else if(length>0) { |
687 | if(length>capacity) { |
688 | length=capacity; |
689 | } |
690 | if(length>newCapacity) { |
691 | length=newCapacity; |
692 | } |
693 | } |
694 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
695 | releaseMemory(); |
696 | ptr=p; |
697 | capacity=newCapacity; |
698 | needToRelease=true; |
699 | } |
700 | return p; |
701 | } else { |
702 | return nullptr; |
703 | } |
704 | } |
705 | |
706 | template<typename H, typename T, int32_t stackCapacity> |
707 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length, |
708 | int32_t &resultCapacity) { |
709 | H *p; |
710 | if(needToRelease) { |
711 | p=ptr; |
712 | } else { |
713 | if(length<0) { |
714 | length=0; |
715 | } else if(length>capacity) { |
716 | length=capacity; |
717 | } |
718 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
719 | ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n" , sizeof(H),length,sizeof(T)); |
720 | #endif |
721 | p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T)); |
722 | if(p==nullptr) { |
723 | return nullptr; |
724 | } |
725 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
726 | } |
727 | resultCapacity=length; |
728 | ptr=&stackHeader; |
729 | capacity=stackCapacity; |
730 | needToRelease=false; |
731 | return p; |
732 | } |
733 | |
734 | /** |
735 | * A simple memory management class that creates new heap allocated objects (of |
736 | * any class that has a public constructor), keeps track of them and eventually |
737 | * deletes them all in its own destructor. |
738 | * |
739 | * A typical use-case would be code like this: |
740 | * |
741 | * MemoryPool<MyType> pool; |
742 | * |
743 | * MyType* o1 = pool.create(); |
744 | * if (o1 != nullptr) { |
745 | * foo(o1); |
746 | * } |
747 | * |
748 | * MyType* o2 = pool.create(1, 2, 3); |
749 | * if (o2 != nullptr) { |
750 | * bar(o2); |
751 | * } |
752 | * |
753 | * // MemoryPool will take care of deleting the MyType objects. |
754 | * |
755 | * It doesn't do anything more than that, and is intentionally kept minimalist. |
756 | */ |
757 | template<typename T, int32_t stackCapacity = 8> |
758 | class MemoryPool : public UMemory { |
759 | public: |
760 | MemoryPool() : fCount(0), fPool() {} |
761 | |
762 | ~MemoryPool() { |
763 | for (int32_t i = 0; i < fCount; ++i) { |
764 | delete fPool[i]; |
765 | } |
766 | } |
767 | |
768 | MemoryPool(const MemoryPool&) = delete; |
769 | MemoryPool& operator=(const MemoryPool&) = delete; |
770 | |
771 | MemoryPool(MemoryPool&& other) noexcept : fCount(other.fCount), |
772 | fPool(std::move(other.fPool)) { |
773 | other.fCount = 0; |
774 | } |
775 | |
776 | MemoryPool& operator=(MemoryPool&& other) noexcept { |
777 | // Since `this` may contain instances that need to be deleted, we can't |
778 | // just throw them away and replace them with `other`. The normal way of |
779 | // dealing with this in C++ is to swap `this` and `other`, rather than |
780 | // simply overwrite: the destruction of `other` can then take care of |
781 | // running MemoryPool::~MemoryPool() over the still-to-be-deallocated |
782 | // instances. |
783 | std::swap(fCount, other.fCount); |
784 | std::swap(fPool, other.fPool); |
785 | return *this; |
786 | } |
787 | |
788 | /** |
789 | * Creates a new object of typename T, by forwarding any and all arguments |
790 | * to the typename T constructor. |
791 | * |
792 | * @param args Arguments to be forwarded to the typename T constructor. |
793 | * @return A pointer to the newly created object, or nullptr on error. |
794 | */ |
795 | template<typename... Args> |
796 | T* create(Args&&... args) { |
797 | int32_t capacity = fPool.getCapacity(); |
798 | if (fCount == capacity && |
799 | fPool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity, |
800 | capacity) == nullptr) { |
801 | return nullptr; |
802 | } |
803 | return fPool[fCount++] = new T(std::forward<Args>(args)...); |
804 | } |
805 | |
806 | template <typename... Args> |
807 | T* createAndCheckErrorCode(UErrorCode &status, Args &&... args) { |
808 | if (U_FAILURE(status)) { |
809 | return nullptr; |
810 | } |
811 | T *pointer = this->create(args...); |
812 | if (U_SUCCESS(status) && pointer == nullptr) { |
813 | status = U_MEMORY_ALLOCATION_ERROR; |
814 | } |
815 | return pointer; |
816 | } |
817 | |
818 | /** |
819 | * @return Number of elements that have been allocated. |
820 | */ |
821 | int32_t count() const { |
822 | return fCount; |
823 | } |
824 | |
825 | protected: |
826 | int32_t fCount; |
827 | MaybeStackArray<T*, stackCapacity> fPool; |
828 | }; |
829 | |
830 | /** |
831 | * An internal Vector-like implementation based on MemoryPool. |
832 | * |
833 | * Heap-allocates each element and stores pointers. |
834 | * |
835 | * To append an item to the vector, use emplaceBack. |
836 | * |
837 | * MaybeStackVector<MyType> vector; |
838 | * MyType* element = vector.emplaceBack(); |
839 | * if (!element) { |
840 | * status = U_MEMORY_ALLOCATION_ERROR; |
841 | * } |
842 | * // do stuff with element |
843 | * |
844 | * To loop over the vector, use a for loop with indices: |
845 | * |
846 | * for (int32_t i = 0; i < vector.length(); i++) { |
847 | * MyType* element = vector[i]; |
848 | * } |
849 | */ |
850 | template<typename T, int32_t stackCapacity = 8> |
851 | class MaybeStackVector : protected MemoryPool<T, stackCapacity> { |
852 | public: |
853 | template<typename... Args> |
854 | T* emplaceBack(Args&&... args) { |
855 | return this->create(args...); |
856 | } |
857 | |
858 | template <typename... Args> |
859 | T *emplaceBackAndCheckErrorCode(UErrorCode &status, Args &&... args) { |
860 | return this->createAndCheckErrorCode(status, args...); |
861 | } |
862 | |
863 | int32_t length() const { |
864 | return this->fCount; |
865 | } |
866 | |
867 | T** getAlias() { |
868 | return this->fPool.getAlias(); |
869 | } |
870 | |
871 | const T *const *getAlias() const { |
872 | return this->fPool.getAlias(); |
873 | } |
874 | |
875 | /** |
876 | * Array item access (read-only). |
877 | * No index bounds check. |
878 | * @param i array index |
879 | * @return reference to the array item |
880 | */ |
881 | const T* operator[](ptrdiff_t i) const { |
882 | return this->fPool[i]; |
883 | } |
884 | |
885 | /** |
886 | * Array item access (writable). |
887 | * No index bounds check. |
888 | * @param i array index |
889 | * @return reference to the array item |
890 | */ |
891 | T* operator[](ptrdiff_t i) { |
892 | return this->fPool[i]; |
893 | } |
894 | }; |
895 | |
896 | |
897 | U_NAMESPACE_END |
898 | |
899 | #endif /* __cplusplus */ |
900 | #endif /* CMEMORY_H */ |
901 | |