| 1 | // © 2016 and later: Unicode, Inc. and others. | 
|---|
| 2 | // License & terms of use: http://www.unicode.org/copyright.html | 
|---|
| 3 | /* | 
|---|
| 4 | ********************************************************************** | 
|---|
| 5 | *   Copyright (C) 2000-2016, International Business Machines | 
|---|
| 6 | *   Corporation and others.  All Rights Reserved. | 
|---|
| 7 | ********************************************************************** | 
|---|
| 8 | *   file name:  ucnv2022.cpp | 
|---|
| 9 | *   encoding:   UTF-8 | 
|---|
| 10 | *   tab size:   8 (not used) | 
|---|
| 11 | *   indentation:4 | 
|---|
| 12 | * | 
|---|
| 13 | *   created on: 2000feb03 | 
|---|
| 14 | *   created by: Markus W. Scherer | 
|---|
| 15 | * | 
|---|
| 16 | *   Change history: | 
|---|
| 17 | * | 
|---|
| 18 | *   06/29/2000  helena  Major rewrite of the callback APIs. | 
|---|
| 19 | *   08/08/2000  Ram     Included support for ISO-2022-JP-2 | 
|---|
| 20 | *                       Changed implementation of toUnicode | 
|---|
| 21 | *                       function | 
|---|
| 22 | *   08/21/2000  Ram     Added support for ISO-2022-KR | 
|---|
| 23 | *   08/29/2000  Ram     Seperated implementation of EBCDIC to | 
|---|
| 24 | *                       ucnvebdc.c | 
|---|
| 25 | *   09/20/2000  Ram     Added support for ISO-2022-CN | 
|---|
| 26 | *                       Added implementations for getNextUChar() | 
|---|
| 27 | *                       for specific 2022 country variants. | 
|---|
| 28 | *   10/31/2000  Ram     Implemented offsets logic functions | 
|---|
| 29 | */ | 
|---|
| 30 |  | 
|---|
| 31 | #include "unicode/utypes.h" | 
|---|
| 32 |  | 
|---|
| 33 | #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION | 
|---|
| 34 |  | 
|---|
| 35 | #include "unicode/ucnv.h" | 
|---|
| 36 | #include "unicode/uset.h" | 
|---|
| 37 | #include "unicode/ucnv_err.h" | 
|---|
| 38 | #include "unicode/ucnv_cb.h" | 
|---|
| 39 | #include "unicode/utf16.h" | 
|---|
| 40 | #include "ucnv_imp.h" | 
|---|
| 41 | #include "ucnv_bld.h" | 
|---|
| 42 | #include "ucnv_cnv.h" | 
|---|
| 43 | #include "ucnvmbcs.h" | 
|---|
| 44 | #include "cstring.h" | 
|---|
| 45 | #include "cmemory.h" | 
|---|
| 46 | #include "uassert.h" | 
|---|
| 47 |  | 
|---|
| 48 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 49 | /* | 
|---|
| 50 | * I am disabling the generic ISO-2022 converter after proposing to do so on | 
|---|
| 51 | * the icu mailing list two days ago. | 
|---|
| 52 | * | 
|---|
| 53 | * Reasons: | 
|---|
| 54 | * 1. It does not fully support the ISO-2022/ECMA-35 specification with all of | 
|---|
| 55 | *    its designation sequences, single shifts with return to the previous state, | 
|---|
| 56 | *    switch-with-no-return to UTF-16BE or similar, etc. | 
|---|
| 57 | *    This is unlike the language-specific variants like ISO-2022-JP which | 
|---|
| 58 | *    require a much smaller repertoire of ISO-2022 features. | 
|---|
| 59 | *    These variants continue to be supported. | 
|---|
| 60 | * 2. I believe that no one is really using the generic ISO-2022 converter | 
|---|
| 61 | *    but rather always one of the language-specific variants. | 
|---|
| 62 | *    Note that ICU's generic ISO-2022 converter has always output one escape | 
|---|
| 63 | *    sequence followed by UTF-8 for the whole stream. | 
|---|
| 64 | * 3. Switching between subcharsets is extremely slow, because each time | 
|---|
| 65 | *    the previous converter is closed and a new one opened, | 
|---|
| 66 | *    without any kind of caching, least-recently-used list, etc. | 
|---|
| 67 | * 4. The code is currently buggy, and given the above it does not seem | 
|---|
| 68 | *    reasonable to spend the time on maintenance. | 
|---|
| 69 | * 5. ISO-2022 subcharsets should normally be used with 7-bit byte encodings. | 
|---|
| 70 | *    This means, for example, that when ISO-8859-7 is designated, the following | 
|---|
| 71 | *    ISO-2022 bytes 00..7f should be interpreted as ISO-8859-7 bytes 80..ff. | 
|---|
| 72 | *    The ICU ISO-2022 converter does not handle this - and has no information | 
|---|
| 73 | *    about which subconverter would have to be shifted vs. which is designed | 
|---|
| 74 | *    for 7-bit ISO-2022. | 
|---|
| 75 | * | 
|---|
| 76 | * Markus Scherer 2003-dec-03 | 
|---|
| 77 | */ | 
|---|
| 78 | #endif | 
|---|
| 79 |  | 
|---|
| 80 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 81 | static const char SHIFT_IN_STR[]  = "\x0F"; | 
|---|
| 82 | // static const char SHIFT_OUT_STR[] = "\x0E"; | 
|---|
| 83 | #endif | 
|---|
| 84 |  | 
|---|
| 85 | #define CR      0x0D | 
|---|
| 86 | #define LF      0x0A | 
|---|
| 87 | #define H_TAB   0x09 | 
|---|
| 88 | #define V_TAB   0x0B | 
|---|
| 89 | #define SPACE   0x20 | 
|---|
| 90 |  | 
|---|
| 91 | enum { | 
|---|
| 92 | HWKANA_START=0xff61, | 
|---|
| 93 | HWKANA_END=0xff9f | 
|---|
| 94 | }; | 
|---|
| 95 |  | 
|---|
| 96 | /* | 
|---|
| 97 | * 94-character sets with native byte values A1..FE are encoded in ISO 2022 | 
|---|
| 98 | * as bytes 21..7E. (Subtract 0x80.) | 
|---|
| 99 | * 96-character sets with native byte values A0..FF are encoded in ISO 2022 | 
|---|
| 100 | * as bytes 20..7F. (Subtract 0x80.) | 
|---|
| 101 | * Do not encode C1 control codes with native bytes 80..9F | 
|---|
| 102 | * as bytes 00..1F (C0 control codes). | 
|---|
| 103 | */ | 
|---|
| 104 | enum { | 
|---|
| 105 | GR94_START=0xa1, | 
|---|
| 106 | GR94_END=0xfe, | 
|---|
| 107 | GR96_START=0xa0, | 
|---|
| 108 | GR96_END=0xff | 
|---|
| 109 | }; | 
|---|
| 110 |  | 
|---|
| 111 | /* | 
|---|
| 112 | * ISO 2022 control codes must not be converted from Unicode | 
|---|
| 113 | * because they would mess up the byte stream. | 
|---|
| 114 | * The bit mask 0x0800c000 has bits set at bit positions 0xe, 0xf, 0x1b | 
|---|
| 115 | * corresponding to SO, SI, and ESC. | 
|---|
| 116 | */ | 
|---|
| 117 | #define IS_2022_CONTROL(c) (((c)<0x20) && (((uint32_t)1<<(c))&0x0800c000)!=0) | 
|---|
| 118 |  | 
|---|
| 119 | /* for ISO-2022-JP and -CN implementations */ | 
|---|
| 120 | typedef enum  { | 
|---|
| 121 | /* shared values */ | 
|---|
| 122 | INVALID_STATE=-1, | 
|---|
| 123 | ASCII = 0, | 
|---|
| 124 |  | 
|---|
| 125 | SS2_STATE=0x10, | 
|---|
| 126 | SS3_STATE, | 
|---|
| 127 |  | 
|---|
| 128 | /* JP */ | 
|---|
| 129 | ISO8859_1 = 1 , | 
|---|
| 130 | ISO8859_7 = 2 , | 
|---|
| 131 | JISX201  = 3, | 
|---|
| 132 | JISX208 = 4, | 
|---|
| 133 | JISX212 = 5, | 
|---|
| 134 | GB2312  =6, | 
|---|
| 135 | KSC5601 =7, | 
|---|
| 136 | HWKANA_7BIT=8,    /* Halfwidth Katakana 7 bit */ | 
|---|
| 137 |  | 
|---|
| 138 | /* CN */ | 
|---|
| 139 | /* the first few enum constants must keep their values because they correspond to myConverterArray[] */ | 
|---|
| 140 | GB2312_1=1, | 
|---|
| 141 | ISO_IR_165=2, | 
|---|
| 142 | CNS_11643=3, | 
|---|
| 143 |  | 
|---|
| 144 | /* | 
|---|
| 145 | * these are used in StateEnum and ISO2022State variables, | 
|---|
| 146 | * but CNS_11643 must be used to index into myConverterArray[] | 
|---|
| 147 | */ | 
|---|
| 148 | CNS_11643_0=0x20, | 
|---|
| 149 | CNS_11643_1, | 
|---|
| 150 | CNS_11643_2, | 
|---|
| 151 | CNS_11643_3, | 
|---|
| 152 | CNS_11643_4, | 
|---|
| 153 | CNS_11643_5, | 
|---|
| 154 | CNS_11643_6, | 
|---|
| 155 | CNS_11643_7 | 
|---|
| 156 | } StateEnum; | 
|---|
| 157 |  | 
|---|
| 158 | /* is the StateEnum charset value for a DBCS charset? */ | 
|---|
| 159 | #if UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 160 | #define IS_JP_DBCS(cs) (JISX208==(cs)) | 
|---|
| 161 | #else | 
|---|
| 162 | #define IS_JP_DBCS(cs) (JISX208<=(cs) && (cs)<=KSC5601) | 
|---|
| 163 | #endif | 
|---|
| 164 |  | 
|---|
| 165 | #define CSM(cs) ((uint16_t)1<<(cs)) | 
|---|
| 166 |  | 
|---|
| 167 | /* | 
|---|
| 168 | * Each of these charset masks (with index x) contains a bit for a charset in exact correspondence | 
|---|
| 169 | * to whether that charset is used in the corresponding version x of ISO_2022,locale=ja,version=x | 
|---|
| 170 | * | 
|---|
| 171 | * Note: The converter uses some leniency: | 
|---|
| 172 | * - The escape sequence ESC ( I for half-width 7-bit Katakana is recognized in | 
|---|
| 173 | *   all versions, not just JIS7 and JIS8. | 
|---|
| 174 | * - ICU does not distinguish between different versions of JIS X 0208. | 
|---|
| 175 | */ | 
|---|
| 176 | #if UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 177 | enum { MAX_JA_VERSION=0 }; | 
|---|
| 178 | #else | 
|---|
| 179 | enum { MAX_JA_VERSION=4 }; | 
|---|
| 180 | #endif | 
|---|
| 181 | static const uint16_t jpCharsetMasks[MAX_JA_VERSION+1]={ | 
|---|
| 182 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT), | 
|---|
| 183 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 184 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212), | 
|---|
| 185 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7), | 
|---|
| 186 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7), | 
|---|
| 187 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7) | 
|---|
| 188 | #endif | 
|---|
| 189 | }; | 
|---|
| 190 |  | 
|---|
| 191 | typedef enum { | 
|---|
| 192 | ASCII1=0, | 
|---|
| 193 | LATIN1, | 
|---|
| 194 | SBCS, | 
|---|
| 195 | DBCS, | 
|---|
| 196 | MBCS, | 
|---|
| 197 | HWKANA | 
|---|
| 198 | }Cnv2022Type; | 
|---|
| 199 |  | 
|---|
| 200 | typedef struct ISO2022State { | 
|---|
| 201 | int8_t cs[4];       /* charset number for SI (G0)/SO (G1)/SS2 (G2)/SS3 (G3) */ | 
|---|
| 202 | int8_t g;           /* 0..3 for G0..G3 (SI/SO/SS2/SS3) */ | 
|---|
| 203 | int8_t prevG;       /* g before single shift (SS2 or SS3) */ | 
|---|
| 204 | } ISO2022State; | 
|---|
| 205 |  | 
|---|
| 206 | #define UCNV_OPTIONS_VERSION_MASK 0xf | 
|---|
| 207 | #define UCNV_2022_MAX_CONVERTERS 10 | 
|---|
| 208 |  | 
|---|
| 209 | typedef struct{ | 
|---|
| 210 | UConverterSharedData *myConverterArray[UCNV_2022_MAX_CONVERTERS]; | 
|---|
| 211 | UConverter *currentConverter; | 
|---|
| 212 | Cnv2022Type currentType; | 
|---|
| 213 | ISO2022State toU2022State, fromU2022State; | 
|---|
| 214 | uint32_t key; | 
|---|
| 215 | uint32_t version; | 
|---|
| 216 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 217 | UBool isFirstBuffer; | 
|---|
| 218 | #endif | 
|---|
| 219 | UBool isEmptySegment; | 
|---|
| 220 | char name[30]; | 
|---|
| 221 | char locale[3]; | 
|---|
| 222 | }UConverterDataISO2022; | 
|---|
| 223 |  | 
|---|
| 224 | /* Protos */ | 
|---|
| 225 | /* ISO-2022 ----------------------------------------------------------------- */ | 
|---|
| 226 |  | 
|---|
| 227 | /*Forward declaration */ | 
|---|
| 228 | U_CFUNC void U_CALLCONV | 
|---|
| 229 | ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs * args, | 
|---|
| 230 | UErrorCode * err); | 
|---|
| 231 | U_CFUNC void U_CALLCONV | 
|---|
| 232 | ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs * args, | 
|---|
| 233 | UErrorCode * err); | 
|---|
| 234 |  | 
|---|
| 235 | #define ESC_2022 0x1B /*ESC*/ | 
|---|
| 236 |  | 
|---|
| 237 | typedef enum | 
|---|
| 238 | { | 
|---|
| 239 | INVALID_2022 = -1, /*Doesn't correspond to a valid iso 2022 escape sequence*/ | 
|---|
| 240 | VALID_NON_TERMINAL_2022 = 0, /*so far corresponds to a valid iso 2022 escape sequence*/ | 
|---|
| 241 | VALID_TERMINAL_2022 = 1, /*corresponds to a valid iso 2022 escape sequence*/ | 
|---|
| 242 | VALID_MAYBE_TERMINAL_2022 = 2 /*so far matches one iso 2022 escape sequence, but by adding more characters might match another escape sequence*/ | 
|---|
| 243 | } UCNV_TableStates_2022; | 
|---|
| 244 |  | 
|---|
| 245 | /* | 
|---|
| 246 | * The way these state transition arrays work is: | 
|---|
| 247 | * ex : ESC$B is the sequence for JISX208 | 
|---|
| 248 | *      a) First Iteration: char is ESC | 
|---|
| 249 | *          i) Get the value of ESC from normalize_esq_chars_2022[] with int value of ESC as index | 
|---|
| 250 | *             int x = normalize_esq_chars_2022[27] which is equal to 1 | 
|---|
| 251 | *         ii) Search for this value in escSeqStateTable_Key_2022[] | 
|---|
| 252 | *             value of x is stored at escSeqStateTable_Key_2022[0] | 
|---|
| 253 | *        iii) Save this index as offset | 
|---|
| 254 | *         iv) Get state of this sequence from escSeqStateTable_Value_2022[] | 
|---|
| 255 | *             escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022 | 
|---|
| 256 | *     b) Switch on this state and continue to next char | 
|---|
| 257 | *          i) Get the value of $ from normalize_esq_chars_2022[] with int value of $ as index | 
|---|
| 258 | *             which is normalize_esq_chars_2022[36] == 4 | 
|---|
| 259 | *         ii) x is currently 1(from above) | 
|---|
| 260 | *               x<<=5 -- x is now 32 | 
|---|
| 261 | *               x+=normalize_esq_chars_2022[36] | 
|---|
| 262 | *               now x is 36 | 
|---|
| 263 | *        iii) Search for this value in escSeqStateTable_Key_2022[] | 
|---|
| 264 | *             value of x is stored at escSeqStateTable_Key_2022[2], so offset is 2 | 
|---|
| 265 | *         iv) Get state of this sequence from escSeqStateTable_Value_2022[] | 
|---|
| 266 | *             escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022 | 
|---|
| 267 | *     c) Switch on this state and continue to next char | 
|---|
| 268 | *        i)  Get the value of B from normalize_esq_chars_2022[] with int value of B as index | 
|---|
| 269 | *        ii) x is currently 36 (from above) | 
|---|
| 270 | *            x<<=5 -- x is now 1152 | 
|---|
| 271 | *            x+=normalize_esq_chars_2022[66] | 
|---|
| 272 | *            now x is 1161 | 
|---|
| 273 | *       iii) Search for this value in escSeqStateTable_Key_2022[] | 
|---|
| 274 | *            value of x is stored at escSeqStateTable_Key_2022[21], so offset is 21 | 
|---|
| 275 | *        iv) Get state of this sequence from escSeqStateTable_Value_2022[21] | 
|---|
| 276 | *            escSeqStateTable_Value_2022[offset], which is VALID_TERMINAL_2022 | 
|---|
| 277 | *         v) Get the converter name form escSeqStateTable_Result_2022[21] which is JISX208 | 
|---|
| 278 | */ | 
|---|
| 279 |  | 
|---|
| 280 |  | 
|---|
| 281 | /*Below are the 3 arrays depicting a state transition table*/ | 
|---|
| 282 | static const int8_t normalize_esq_chars_2022[256] = { | 
|---|
| 283 | /*       0      1       2       3       4      5       6        7       8       9           */ | 
|---|
| 284 |  | 
|---|
| 285 | 0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 286 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 287 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,1      ,0      ,0 | 
|---|
| 288 | ,0     ,0      ,0      ,0      ,0      ,0      ,4      ,7      ,29      ,0 | 
|---|
| 289 | ,2     ,24     ,26     ,27     ,0      ,3      ,23     ,6      ,0      ,0 | 
|---|
| 290 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 291 | ,0     ,0      ,0      ,0      ,5      ,8      ,9      ,10     ,11     ,12 | 
|---|
| 292 | ,13    ,14     ,15     ,16     ,17     ,18     ,19     ,20     ,25     ,28 | 
|---|
| 293 | ,0     ,0      ,21     ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 294 | ,22    ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 295 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 296 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 297 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 298 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 299 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 300 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 301 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 302 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 303 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 304 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 305 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 306 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 307 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 308 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 309 | ,0     ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0      ,0 | 
|---|
| 310 | ,0     ,0      ,0      ,0      ,0      ,0 | 
|---|
| 311 | }; | 
|---|
| 312 |  | 
|---|
| 313 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 314 | /* | 
|---|
| 315 | * When the generic ISO-2022 converter is completely removed, not just disabled | 
|---|
| 316 | * per #ifdef, then the following state table and the associated tables that are | 
|---|
| 317 | * dimensioned with MAX_STATES_2022 should be trimmed. | 
|---|
| 318 | * | 
|---|
| 319 | * Especially, VALID_MAYBE_TERMINAL_2022 will not be used any more, and all of | 
|---|
| 320 | * the associated escape sequences starting with ESC ( B should be removed. | 
|---|
| 321 | * This includes the ones with key values 1097 and all of the ones above 1000000. | 
|---|
| 322 | * | 
|---|
| 323 | * For the latter, the tables can simply be truncated. | 
|---|
| 324 | * For the former, since the tables must be kept parallel, it is probably best | 
|---|
| 325 | * to simply duplicate an adjacent table cell, parallel in all tables. | 
|---|
| 326 | * | 
|---|
| 327 | * It may make sense to restructure the tables, especially by using small search | 
|---|
| 328 | * tables for the variants instead of indexing them parallel to the table here. | 
|---|
| 329 | */ | 
|---|
| 330 | #endif | 
|---|
| 331 |  | 
|---|
| 332 | #define MAX_STATES_2022 74 | 
|---|
| 333 | static const int32_t escSeqStateTable_Key_2022[MAX_STATES_2022] = { | 
|---|
| 334 | /*   0           1           2           3           4           5           6           7           8           9           */ | 
|---|
| 335 |  | 
|---|
| 336 | 1          ,34         ,36         ,39         ,55         ,57         ,60         ,61         ,1093       ,1096 | 
|---|
| 337 | ,1097       ,1098       ,1099       ,1100       ,1101       ,1102       ,1103       ,1104       ,1105       ,1106 | 
|---|
| 338 | ,1109       ,1154       ,1157       ,1160       ,1161       ,1176       ,1178       ,1179       ,1254       ,1257 | 
|---|
| 339 | ,1768       ,1773       ,1957       ,35105      ,36933      ,36936      ,36937      ,36938      ,36939      ,36940 | 
|---|
| 340 | ,36942      ,36943      ,36944      ,36945      ,36946      ,36947      ,36948      ,37640      ,37642      ,37644 | 
|---|
| 341 | ,37646      ,37711      ,37744      ,37745      ,37746      ,37747      ,37748      ,40133      ,40136      ,40138 | 
|---|
| 342 | ,40139      ,40140      ,40141      ,1123363    ,35947624   ,35947625   ,35947626   ,35947627   ,35947629   ,35947630 | 
|---|
| 343 | ,35947631   ,35947635   ,35947636   ,35947638 | 
|---|
| 344 | }; | 
|---|
| 345 |  | 
|---|
| 346 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 347 |  | 
|---|
| 348 | static const char* const escSeqStateTable_Result_2022[MAX_STATES_2022] = { | 
|---|
| 349 | /*  0                      1                        2                      3                   4                   5                        6                      7                       8                       9    */ | 
|---|
| 350 |  | 
|---|
| 351 | nullptr                   ,nullptr                   ,nullptr                   ,nullptr               ,nullptr               ,nullptr                   ,nullptr                   ,nullptr                   , "latin1", "latin1" | 
|---|
| 352 | , "latin1", "ibm-865", "ibm-865", "ibm-865", "ibm-865", "ibm-865", "ibm-865", "JISX0201", "JISX0201", "latin1" | 
|---|
| 353 | , "latin1",nullptr                   , "JISX-208", "ibm-5478", "JISX-208",nullptr                   ,nullptr                   ,nullptr                   ,nullptr                   , "UTF8" | 
|---|
| 354 | , "ISO-8859-1", "ISO-8859-7", "JIS-X-208",nullptr               , "ibm-955", "ibm-367", "ibm-952", "ibm-949", "JISX-212", "ibm-1383" | 
|---|
| 355 | , "ibm-952", "ibm-964", "ibm-964", "ibm-964", "ibm-964", "ibm-964", "ibm-964", "ibm-5478", "ibm-949", "ISO-IR-165" | 
|---|
| 356 | , "CNS-11643-1992,1", "CNS-11643-1992,2", "CNS-11643-1992,3", "CNS-11643-1992,4", "CNS-11643-1992,5", "CNS-11643-1992,6", "CNS-11643-1992,7", "UTF16_PlatformEndian", "UTF16_PlatformEndian", "UTF16_PlatformEndian" | 
|---|
| 357 | , "UTF16_PlatformEndian", "UTF16_PlatformEndian", "UTF16_PlatformEndian",nullptr               , "latin1", "ibm-912", "ibm-913", "ibm-914", "ibm-813", "ibm-1089" | 
|---|
| 358 | , "ibm-920", "ibm-915", "ibm-915", "latin1" | 
|---|
| 359 | }; | 
|---|
| 360 |  | 
|---|
| 361 | #endif | 
|---|
| 362 |  | 
|---|
| 363 | static const int8_t escSeqStateTable_Value_2022[MAX_STATES_2022] = { | 
|---|
| 364 | /*          0                           1                         2                             3                           4                           5                               6                        7                          8                           9       */ | 
|---|
| 365 | VALID_NON_TERMINAL_2022    ,VALID_NON_TERMINAL_2022    ,VALID_NON_TERMINAL_2022    ,VALID_NON_TERMINAL_2022     ,VALID_NON_TERMINAL_2022   ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_NON_TERMINAL_2022    ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 366 | ,VALID_MAYBE_TERMINAL_2022  ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 367 | ,VALID_TERMINAL_2022        ,VALID_NON_TERMINAL_2022    ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_NON_TERMINAL_2022    ,VALID_NON_TERMINAL_2022    ,VALID_NON_TERMINAL_2022    ,VALID_NON_TERMINAL_2022    ,VALID_TERMINAL_2022 | 
|---|
| 368 | ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_NON_TERMINAL_2022    ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 369 | ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 370 | ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 371 | ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_NON_TERMINAL_2022    ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 372 | ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022        ,VALID_TERMINAL_2022 | 
|---|
| 373 | }; | 
|---|
| 374 |  | 
|---|
| 375 | /* Type def for refactoring changeState_2022 code*/ | 
|---|
| 376 | typedef enum{ | 
|---|
| 377 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 378 | ISO_2022=0, | 
|---|
| 379 | #endif | 
|---|
| 380 | ISO_2022_JP=1, | 
|---|
| 381 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 382 | ISO_2022_KR=2, | 
|---|
| 383 | ISO_2022_CN=3 | 
|---|
| 384 | #endif | 
|---|
| 385 | } Variant2022; | 
|---|
| 386 |  | 
|---|
| 387 | /*********** ISO 2022 Converter Protos ***********/ | 
|---|
| 388 | static void U_CALLCONV | 
|---|
| 389 | _ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode); | 
|---|
| 390 |  | 
|---|
| 391 | static void U_CALLCONV | 
|---|
| 392 | _ISO2022Close(UConverter *converter); | 
|---|
| 393 |  | 
|---|
| 394 | static void U_CALLCONV | 
|---|
| 395 | _ISO2022Reset(UConverter *converter, UConverterResetChoice choice); | 
|---|
| 396 |  | 
|---|
| 397 | U_CDECL_BEGIN | 
|---|
| 398 | static const char * U_CALLCONV | 
|---|
| 399 | _ISO2022getName(const UConverter* cnv); | 
|---|
| 400 | U_CDECL_END | 
|---|
| 401 |  | 
|---|
| 402 | static void  U_CALLCONV | 
|---|
| 403 | _ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err); | 
|---|
| 404 |  | 
|---|
| 405 | U_CDECL_BEGIN | 
|---|
| 406 | static UConverter * U_CALLCONV | 
|---|
| 407 | _ISO_2022_SafeClone(const UConverter *cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status); | 
|---|
| 408 |  | 
|---|
| 409 | U_CDECL_END | 
|---|
| 410 |  | 
|---|
| 411 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 412 | static void U_CALLCONV | 
|---|
| 413 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, UErrorCode* err); | 
|---|
| 414 | #endif | 
|---|
| 415 |  | 
|---|
| 416 | namespace { | 
|---|
| 417 |  | 
|---|
| 418 | /*const UConverterSharedData _ISO2022Data;*/ | 
|---|
| 419 | extern const UConverterSharedData _ISO2022JPData; | 
|---|
| 420 |  | 
|---|
| 421 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 422 | extern const UConverterSharedData _ISO2022KRData; | 
|---|
| 423 | extern const UConverterSharedData _ISO2022CNData; | 
|---|
| 424 | #endif | 
|---|
| 425 |  | 
|---|
| 426 | }  // namespace | 
|---|
| 427 |  | 
|---|
| 428 | /*************** Converter implementations ******************/ | 
|---|
| 429 |  | 
|---|
| 430 | /* The purpose of this function is to get around gcc compiler warnings. */ | 
|---|
| 431 | static inline void | 
|---|
| 432 | fromUWriteUInt8(UConverter *cnv, | 
|---|
| 433 | const char *bytes, int32_t length, | 
|---|
| 434 | uint8_t **target, const char *targetLimit, | 
|---|
| 435 | int32_t **offsets, | 
|---|
| 436 | int32_t sourceIndex, | 
|---|
| 437 | UErrorCode *pErrorCode) | 
|---|
| 438 | { | 
|---|
| 439 | char *targetChars = (char *)*target; | 
|---|
| 440 | ucnv_fromUWriteBytes(cnv, bytes, length, &targetChars, targetLimit, | 
|---|
| 441 | offsets, sourceIndex, pErrorCode); | 
|---|
| 442 | *target = (uint8_t*)targetChars; | 
|---|
| 443 |  | 
|---|
| 444 | } | 
|---|
| 445 |  | 
|---|
| 446 | static inline void | 
|---|
| 447 | setInitialStateToUnicodeKR(UConverter* /*converter*/, UConverterDataISO2022 *myConverterData){ | 
|---|
| 448 | if(myConverterData->version == 1) { | 
|---|
| 449 | UConverter *cnv = myConverterData->currentConverter; | 
|---|
| 450 |  | 
|---|
| 451 | cnv->toUnicodeStatus=0;     /* offset */ | 
|---|
| 452 | cnv->mode=0;                /* state */ | 
|---|
| 453 | cnv->toULength=0;           /* byteIndex */ | 
|---|
| 454 | } | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | static inline void | 
|---|
| 458 | setInitialStateFromUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData){ | 
|---|
| 459 | /* in ISO-2022-KR the designator sequence appears only once | 
|---|
| 460 | * in a file so we append it only once | 
|---|
| 461 | */ | 
|---|
| 462 | if( converter->charErrorBufferLength==0){ | 
|---|
| 463 |  | 
|---|
| 464 | converter->charErrorBufferLength = 4; | 
|---|
| 465 | converter->charErrorBuffer[0] = 0x1b; | 
|---|
| 466 | converter->charErrorBuffer[1] = 0x24; | 
|---|
| 467 | converter->charErrorBuffer[2] = 0x29; | 
|---|
| 468 | converter->charErrorBuffer[3] = 0x43; | 
|---|
| 469 | } | 
|---|
| 470 | if(myConverterData->version == 1) { | 
|---|
| 471 | UConverter *cnv = myConverterData->currentConverter; | 
|---|
| 472 |  | 
|---|
| 473 | cnv->fromUChar32=0; | 
|---|
| 474 | cnv->fromUnicodeStatus=1;   /* prevLength */ | 
|---|
| 475 | } | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | static void U_CALLCONV | 
|---|
| 479 | _ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode){ | 
|---|
| 480 |  | 
|---|
| 481 | char myLocale[7]={' ',' ',' ',' ',' ',' ', '\0'}; | 
|---|
| 482 |  | 
|---|
| 483 | cnv->extraInfo = uprv_malloc (sizeof (UConverterDataISO2022)); | 
|---|
| 484 | if(cnv->extraInfo != nullptr) { | 
|---|
| 485 | UConverterNamePieces stackPieces; | 
|---|
| 486 | UConverterLoadArgs stackArgs=UCNV_LOAD_ARGS_INITIALIZER; | 
|---|
| 487 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo; | 
|---|
| 488 | uint32_t version; | 
|---|
| 489 |  | 
|---|
| 490 | stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable; | 
|---|
| 491 |  | 
|---|
| 492 | uprv_memset(myConverterData, 0, sizeof(UConverterDataISO2022)); | 
|---|
| 493 | myConverterData->currentType = ASCII1; | 
|---|
| 494 | cnv->fromUnicodeStatus =false; | 
|---|
| 495 | if(pArgs->locale){ | 
|---|
| 496 | uprv_strncpy(myLocale, pArgs->locale, sizeof(myLocale)-1); | 
|---|
| 497 | } | 
|---|
| 498 | version = pArgs->options & UCNV_OPTIONS_VERSION_MASK; | 
|---|
| 499 | myConverterData->version = version; | 
|---|
| 500 | if(myLocale[0]=='j' && (myLocale[1]=='a'|| myLocale[1]=='p') && | 
|---|
| 501 | (myLocale[2]=='_' || myLocale[2]=='\0')) | 
|---|
| 502 | { | 
|---|
| 503 | /* open the required converters and cache them */ | 
|---|
| 504 | if(version>MAX_JA_VERSION) { | 
|---|
| 505 | // ICU 55 fails to open a converter for an unsupported version. | 
|---|
| 506 | // Previously, it fell back to version 0, but that would yield | 
|---|
| 507 | // unexpected behavior. | 
|---|
| 508 | *errorCode = U_MISSING_RESOURCE_ERROR; | 
|---|
| 509 | return; | 
|---|
| 510 | } | 
|---|
| 511 | if(jpCharsetMasks[version]&CSM(ISO8859_7)) { | 
|---|
| 512 | myConverterData->myConverterArray[ISO8859_7] = | 
|---|
| 513 | ucnv_loadSharedData( "ISO8859_7", &stackPieces, &stackArgs, errorCode); | 
|---|
| 514 | } | 
|---|
| 515 | myConverterData->myConverterArray[JISX208] = | 
|---|
| 516 | ucnv_loadSharedData( "Shift-JIS", &stackPieces, &stackArgs, errorCode); | 
|---|
| 517 | if(jpCharsetMasks[version]&CSM(JISX212)) { | 
|---|
| 518 | myConverterData->myConverterArray[JISX212] = | 
|---|
| 519 | ucnv_loadSharedData( "jisx-212", &stackPieces, &stackArgs, errorCode); | 
|---|
| 520 | } | 
|---|
| 521 | if(jpCharsetMasks[version]&CSM(GB2312)) { | 
|---|
| 522 | myConverterData->myConverterArray[GB2312] = | 
|---|
| 523 | ucnv_loadSharedData( "ibm-5478", &stackPieces, &stackArgs, errorCode);   /* gb_2312_80-1 */ | 
|---|
| 524 | } | 
|---|
| 525 | if(jpCharsetMasks[version]&CSM(KSC5601)) { | 
|---|
| 526 | myConverterData->myConverterArray[KSC5601] = | 
|---|
| 527 | ucnv_loadSharedData( "ksc_5601", &stackPieces, &stackArgs, errorCode); | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 | /* set the function pointers to appropriate functions */ | 
|---|
| 531 | cnv->sharedData=(UConverterSharedData*)(&_ISO2022JPData); | 
|---|
| 532 | uprv_strcpy(myConverterData->locale, "ja"); | 
|---|
| 533 |  | 
|---|
| 534 | (void)uprv_strcpy(myConverterData->name, "ISO_2022,locale=ja,version="); | 
|---|
| 535 | size_t len = uprv_strlen(myConverterData->name); | 
|---|
| 536 | myConverterData->name[len]=(char)(myConverterData->version+(int)'0'); | 
|---|
| 537 | myConverterData->name[len+1]='\0'; | 
|---|
| 538 | } | 
|---|
| 539 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 540 | else if(myLocale[0]=='k' && (myLocale[1]=='o'|| myLocale[1]=='r') && | 
|---|
| 541 | (myLocale[2]=='_' || myLocale[2]=='\0')) | 
|---|
| 542 | { | 
|---|
| 543 | if(version>1) { | 
|---|
| 544 | // ICU 55 fails to open a converter for an unsupported version. | 
|---|
| 545 | // Previously, it fell back to version 0, but that would yield | 
|---|
| 546 | // unexpected behavior. | 
|---|
| 547 | *errorCode = U_MISSING_RESOURCE_ERROR; | 
|---|
| 548 | return; | 
|---|
| 549 | } | 
|---|
| 550 | const char *cnvName; | 
|---|
| 551 | if(version==1) { | 
|---|
| 552 | cnvName= "icu-internal-25546"; | 
|---|
| 553 | } else { | 
|---|
| 554 | cnvName= "ibm-949"; | 
|---|
| 555 | myConverterData->version=version=0; | 
|---|
| 556 | } | 
|---|
| 557 | if(pArgs->onlyTestIsLoadable) { | 
|---|
| 558 | ucnv_canCreateConverter(cnvName, errorCode);  /* errorCode carries result */ | 
|---|
| 559 | uprv_free(cnv->extraInfo); | 
|---|
| 560 | cnv->extraInfo=nullptr; | 
|---|
| 561 | return; | 
|---|
| 562 | } else { | 
|---|
| 563 | myConverterData->currentConverter=ucnv_open(cnvName, errorCode); | 
|---|
| 564 | if (U_FAILURE(*errorCode)) { | 
|---|
| 565 | _ISO2022Close(cnv); | 
|---|
| 566 | return; | 
|---|
| 567 | } | 
|---|
| 568 |  | 
|---|
| 569 | if(version==1) { | 
|---|
| 570 | (void)uprv_strcpy(myConverterData->name, "ISO_2022,locale=ko,version=1"); | 
|---|
| 571 | uprv_memcpy(cnv->subChars, myConverterData->currentConverter->subChars, 4); | 
|---|
| 572 | cnv->subCharLen = myConverterData->currentConverter->subCharLen; | 
|---|
| 573 | }else{ | 
|---|
| 574 | (void)uprv_strcpy(myConverterData->name, "ISO_2022,locale=ko,version=0"); | 
|---|
| 575 | } | 
|---|
| 576 |  | 
|---|
| 577 | /* initialize the state variables */ | 
|---|
| 578 | setInitialStateToUnicodeKR(cnv, myConverterData); | 
|---|
| 579 | setInitialStateFromUnicodeKR(cnv, myConverterData); | 
|---|
| 580 |  | 
|---|
| 581 | /* set the function pointers to appropriate functions */ | 
|---|
| 582 | cnv->sharedData=(UConverterSharedData*)&_ISO2022KRData; | 
|---|
| 583 | uprv_strcpy(myConverterData->locale, "ko"); | 
|---|
| 584 | } | 
|---|
| 585 | } | 
|---|
| 586 | else if(((myLocale[0]=='z' && myLocale[1]=='h') || (myLocale[0]=='c'&& myLocale[1]=='n'))&& | 
|---|
| 587 | (myLocale[2]=='_' || myLocale[2]=='\0')) | 
|---|
| 588 | { | 
|---|
| 589 | if(version>2) { | 
|---|
| 590 | // ICU 55 fails to open a converter for an unsupported version. | 
|---|
| 591 | // Previously, it fell back to version 0, but that would yield | 
|---|
| 592 | // unexpected behavior. | 
|---|
| 593 | *errorCode = U_MISSING_RESOURCE_ERROR; | 
|---|
| 594 | return; | 
|---|
| 595 | } | 
|---|
| 596 |  | 
|---|
| 597 | /* open the required converters and cache them */ | 
|---|
| 598 | myConverterData->myConverterArray[GB2312_1] = | 
|---|
| 599 | ucnv_loadSharedData( "ibm-5478", &stackPieces, &stackArgs, errorCode); | 
|---|
| 600 | if(version==1) { | 
|---|
| 601 | myConverterData->myConverterArray[ISO_IR_165] = | 
|---|
| 602 | ucnv_loadSharedData( "iso-ir-165", &stackPieces, &stackArgs, errorCode); | 
|---|
| 603 | } | 
|---|
| 604 | myConverterData->myConverterArray[CNS_11643] = | 
|---|
| 605 | ucnv_loadSharedData( "cns-11643-1992", &stackPieces, &stackArgs, errorCode); | 
|---|
| 606 |  | 
|---|
| 607 |  | 
|---|
| 608 | /* set the function pointers to appropriate functions */ | 
|---|
| 609 | cnv->sharedData=(UConverterSharedData*)&_ISO2022CNData; | 
|---|
| 610 | uprv_strcpy(myConverterData->locale, "cn"); | 
|---|
| 611 |  | 
|---|
| 612 | if (version==0){ | 
|---|
| 613 | myConverterData->version = 0; | 
|---|
| 614 | (void)uprv_strcpy(myConverterData->name, "ISO_2022,locale=zh,version=0"); | 
|---|
| 615 | }else if (version==1){ | 
|---|
| 616 | myConverterData->version = 1; | 
|---|
| 617 | (void)uprv_strcpy(myConverterData->name, "ISO_2022,locale=zh,version=1"); | 
|---|
| 618 | }else { | 
|---|
| 619 | myConverterData->version = 2; | 
|---|
| 620 | (void)uprv_strcpy(myConverterData->name, "ISO_2022,locale=zh,version=2"); | 
|---|
| 621 | } | 
|---|
| 622 | } | 
|---|
| 623 | #endif  // !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 624 | else{ | 
|---|
| 625 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 626 | myConverterData->isFirstBuffer = true; | 
|---|
| 627 |  | 
|---|
| 628 | /* append the UTF-8 escape sequence */ | 
|---|
| 629 | cnv->charErrorBufferLength = 3; | 
|---|
| 630 | cnv->charErrorBuffer[0] = 0x1b; | 
|---|
| 631 | cnv->charErrorBuffer[1] = 0x25; | 
|---|
| 632 | cnv->charErrorBuffer[2] = 0x42; | 
|---|
| 633 |  | 
|---|
| 634 | cnv->sharedData=(UConverterSharedData*)&_ISO2022Data; | 
|---|
| 635 | /* initialize the state variables */ | 
|---|
| 636 | uprv_strcpy(myConverterData->name, "ISO_2022"); | 
|---|
| 637 | #else | 
|---|
| 638 | *errorCode = U_MISSING_RESOURCE_ERROR; | 
|---|
| 639 | // Was U_UNSUPPORTED_ERROR but changed in ICU 55 to a more standard | 
|---|
| 640 | // data loading error code. | 
|---|
| 641 | return; | 
|---|
| 642 | #endif | 
|---|
| 643 | } | 
|---|
| 644 |  | 
|---|
| 645 | cnv->maxBytesPerUChar=cnv->sharedData->staticData->maxBytesPerChar; | 
|---|
| 646 |  | 
|---|
| 647 | if(U_FAILURE(*errorCode) || pArgs->onlyTestIsLoadable) { | 
|---|
| 648 | _ISO2022Close(cnv); | 
|---|
| 649 | } | 
|---|
| 650 | } else { | 
|---|
| 651 | *errorCode = U_MEMORY_ALLOCATION_ERROR; | 
|---|
| 652 | } | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 |  | 
|---|
| 656 | static void U_CALLCONV | 
|---|
| 657 | _ISO2022Close(UConverter *converter) { | 
|---|
| 658 | UConverterDataISO2022* myData =(UConverterDataISO2022 *) (converter->extraInfo); | 
|---|
| 659 | UConverterSharedData **array = myData->myConverterArray; | 
|---|
| 660 | int32_t i; | 
|---|
| 661 |  | 
|---|
| 662 | if (converter->extraInfo != nullptr) { | 
|---|
| 663 | /*close the array of converter pointers and free the memory*/ | 
|---|
| 664 | for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) { | 
|---|
| 665 | if(array[i]!=nullptr) { | 
|---|
| 666 | ucnv_unloadSharedDataIfReady(array[i]); | 
|---|
| 667 | } | 
|---|
| 668 | } | 
|---|
| 669 |  | 
|---|
| 670 | ucnv_close(myData->currentConverter); | 
|---|
| 671 |  | 
|---|
| 672 | if(!converter->isExtraLocal){ | 
|---|
| 673 | uprv_free (converter->extraInfo); | 
|---|
| 674 | converter->extraInfo = nullptr; | 
|---|
| 675 | } | 
|---|
| 676 | } | 
|---|
| 677 | } | 
|---|
| 678 |  | 
|---|
| 679 | static void U_CALLCONV | 
|---|
| 680 | _ISO2022Reset(UConverter *converter, UConverterResetChoice choice) { | 
|---|
| 681 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) (converter->extraInfo); | 
|---|
| 682 | if(choice<=UCNV_RESET_TO_UNICODE) { | 
|---|
| 683 | uprv_memset(&myConverterData->toU2022State, 0, sizeof(ISO2022State)); | 
|---|
| 684 | myConverterData->key = 0; | 
|---|
| 685 | myConverterData->isEmptySegment = false; | 
|---|
| 686 | } | 
|---|
| 687 | if(choice!=UCNV_RESET_TO_UNICODE) { | 
|---|
| 688 | uprv_memset(&myConverterData->fromU2022State, 0, sizeof(ISO2022State)); | 
|---|
| 689 | } | 
|---|
| 690 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 691 | if(myConverterData->locale[0] == 0){ | 
|---|
| 692 | if(choice<=UCNV_RESET_TO_UNICODE) { | 
|---|
| 693 | myConverterData->isFirstBuffer = true; | 
|---|
| 694 | myConverterData->key = 0; | 
|---|
| 695 | if (converter->mode == UCNV_SO){ | 
|---|
| 696 | ucnv_close (myConverterData->currentConverter); | 
|---|
| 697 | myConverterData->currentConverter=nullptr; | 
|---|
| 698 | } | 
|---|
| 699 | converter->mode = UCNV_SI; | 
|---|
| 700 | } | 
|---|
| 701 | if(choice!=UCNV_RESET_TO_UNICODE) { | 
|---|
| 702 | /* re-append UTF-8 escape sequence */ | 
|---|
| 703 | converter->charErrorBufferLength = 3; | 
|---|
| 704 | converter->charErrorBuffer[0] = 0x1b; | 
|---|
| 705 | converter->charErrorBuffer[1] = 0x28; | 
|---|
| 706 | converter->charErrorBuffer[2] = 0x42; | 
|---|
| 707 | } | 
|---|
| 708 | } | 
|---|
| 709 | else | 
|---|
| 710 | #endif | 
|---|
| 711 | { | 
|---|
| 712 | /* reset the state variables */ | 
|---|
| 713 | if(myConverterData->locale[0] == 'k'){ | 
|---|
| 714 | if(choice<=UCNV_RESET_TO_UNICODE) { | 
|---|
| 715 | setInitialStateToUnicodeKR(converter, myConverterData); | 
|---|
| 716 | } | 
|---|
| 717 | if(choice!=UCNV_RESET_TO_UNICODE) { | 
|---|
| 718 | setInitialStateFromUnicodeKR(converter, myConverterData); | 
|---|
| 719 | } | 
|---|
| 720 | } | 
|---|
| 721 | } | 
|---|
| 722 | } | 
|---|
| 723 |  | 
|---|
| 724 | U_CDECL_BEGIN | 
|---|
| 725 |  | 
|---|
| 726 | static const char * U_CALLCONV | 
|---|
| 727 | _ISO2022getName(const UConverter* cnv){ | 
|---|
| 728 | if(cnv->extraInfo){ | 
|---|
| 729 | UConverterDataISO2022* myData= (UConverterDataISO2022*)cnv->extraInfo; | 
|---|
| 730 | return myData->name; | 
|---|
| 731 | } | 
|---|
| 732 | return nullptr; | 
|---|
| 733 | } | 
|---|
| 734 |  | 
|---|
| 735 | U_CDECL_END | 
|---|
| 736 |  | 
|---|
| 737 |  | 
|---|
| 738 | /*************** to unicode *******************/ | 
|---|
| 739 | /**************************************************************************** | 
|---|
| 740 | * Recognized escape sequences are | 
|---|
| 741 | * <ESC>(B  ASCII | 
|---|
| 742 | * <ESC>.A  ISO-8859-1 | 
|---|
| 743 | * <ESC>.F  ISO-8859-7 | 
|---|
| 744 | * <ESC>(J  JISX-201 | 
|---|
| 745 | * <ESC>(I  JISX-201 | 
|---|
| 746 | * <ESC>$B  JISX-208 | 
|---|
| 747 | * <ESC>$@  JISX-208 | 
|---|
| 748 | * <ESC>$(D JISX-212 | 
|---|
| 749 | * <ESC>$A  GB2312 | 
|---|
| 750 | * <ESC>$(C KSC5601 | 
|---|
| 751 | */ | 
|---|
| 752 | static const int8_t nextStateToUnicodeJP[MAX_STATES_2022]= { | 
|---|
| 753 | /*      0                1               2               3               4               5               6               7               8               9    */ | 
|---|
| 754 | INVALID_STATE   ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,SS2_STATE      ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 755 | ,ASCII          ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,JISX201        ,HWKANA_7BIT    ,JISX201        ,INVALID_STATE | 
|---|
| 756 | ,INVALID_STATE  ,INVALID_STATE  ,JISX208        ,GB2312         ,JISX208        ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 757 | ,ISO8859_1      ,ISO8859_7      ,JISX208        ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,KSC5601        ,JISX212        ,INVALID_STATE | 
|---|
| 758 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 759 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 760 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 761 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 762 | }; | 
|---|
| 763 |  | 
|---|
| 764 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 765 | /*************** to unicode *******************/ | 
|---|
| 766 | static const int8_t nextStateToUnicodeCN[MAX_STATES_2022]= { | 
|---|
| 767 | /*      0                1               2               3               4               5               6               7               8               9    */ | 
|---|
| 768 | INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,SS2_STATE      ,SS3_STATE      ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 769 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 770 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 771 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 772 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,GB2312_1       ,INVALID_STATE  ,ISO_IR_165 | 
|---|
| 773 | ,CNS_11643_1    ,CNS_11643_2    ,CNS_11643_3    ,CNS_11643_4    ,CNS_11643_5    ,CNS_11643_6    ,CNS_11643_7    ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 774 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 775 | ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE  ,INVALID_STATE | 
|---|
| 776 | }; | 
|---|
| 777 | #endif | 
|---|
| 778 |  | 
|---|
| 779 |  | 
|---|
| 780 | static UCNV_TableStates_2022 | 
|---|
| 781 | getKey_2022(char c,int32_t* key,int32_t* offset){ | 
|---|
| 782 | int32_t togo; | 
|---|
| 783 | int32_t low = 0; | 
|---|
| 784 | int32_t hi = MAX_STATES_2022; | 
|---|
| 785 | int32_t oldmid=0; | 
|---|
| 786 |  | 
|---|
| 787 | togo = normalize_esq_chars_2022[(uint8_t)c]; | 
|---|
| 788 | if(togo == 0) { | 
|---|
| 789 | /* not a valid character anywhere in an escape sequence */ | 
|---|
| 790 | *key = 0; | 
|---|
| 791 | *offset = 0; | 
|---|
| 792 | return INVALID_2022; | 
|---|
| 793 | } | 
|---|
| 794 | togo = (*key << 5) + togo; | 
|---|
| 795 |  | 
|---|
| 796 | while (hi != low)  /*binary search*/{ | 
|---|
| 797 |  | 
|---|
| 798 | int32_t mid = (hi+low) >> 1; /*Finds median*/ | 
|---|
| 799 |  | 
|---|
| 800 | if (mid == oldmid) | 
|---|
| 801 | break; | 
|---|
| 802 |  | 
|---|
| 803 | if (escSeqStateTable_Key_2022[mid] > togo){ | 
|---|
| 804 | hi = mid; | 
|---|
| 805 | } | 
|---|
| 806 | else if (escSeqStateTable_Key_2022[mid] < togo){ | 
|---|
| 807 | low = mid; | 
|---|
| 808 | } | 
|---|
| 809 | else /*we found it*/{ | 
|---|
| 810 | *key = togo; | 
|---|
| 811 | *offset = mid; | 
|---|
| 812 | return (UCNV_TableStates_2022)escSeqStateTable_Value_2022[mid]; | 
|---|
| 813 | } | 
|---|
| 814 | oldmid = mid; | 
|---|
| 815 |  | 
|---|
| 816 | } | 
|---|
| 817 |  | 
|---|
| 818 | *key = 0; | 
|---|
| 819 | *offset = 0; | 
|---|
| 820 | return INVALID_2022; | 
|---|
| 821 | } | 
|---|
| 822 |  | 
|---|
| 823 | /*runs through a state machine to determine the escape sequence - codepage correspondence | 
|---|
| 824 | */ | 
|---|
| 825 | static void | 
|---|
| 826 | changeState_2022(UConverter* _this, | 
|---|
| 827 | const char** source, | 
|---|
| 828 | const char* sourceLimit, | 
|---|
| 829 | Variant2022 var, | 
|---|
| 830 | UErrorCode* err){ | 
|---|
| 831 | UCNV_TableStates_2022 value; | 
|---|
| 832 | UConverterDataISO2022* myData2022 = ((UConverterDataISO2022*)_this->extraInfo); | 
|---|
| 833 | uint32_t key = myData2022->key; | 
|---|
| 834 | int32_t offset = 0; | 
|---|
| 835 | int8_t initialToULength = _this->toULength; | 
|---|
| 836 | char c; | 
|---|
| 837 |  | 
|---|
| 838 | value = VALID_NON_TERMINAL_2022; | 
|---|
| 839 | while (*source < sourceLimit) { | 
|---|
| 840 | c = *(*source)++; | 
|---|
| 841 | _this->toUBytes[_this->toULength++]=(uint8_t)c; | 
|---|
| 842 | value = getKey_2022(c,(int32_t *) &key, &offset); | 
|---|
| 843 |  | 
|---|
| 844 | switch (value){ | 
|---|
| 845 |  | 
|---|
| 846 | case VALID_NON_TERMINAL_2022 : | 
|---|
| 847 | /* continue with the loop */ | 
|---|
| 848 | break; | 
|---|
| 849 |  | 
|---|
| 850 | case VALID_TERMINAL_2022: | 
|---|
| 851 | key = 0; | 
|---|
| 852 | goto DONE; | 
|---|
| 853 |  | 
|---|
| 854 | case INVALID_2022: | 
|---|
| 855 | goto DONE; | 
|---|
| 856 |  | 
|---|
| 857 | case VALID_MAYBE_TERMINAL_2022: | 
|---|
| 858 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 859 | /* ESC ( B is ambiguous only for ISO_2022 itself */ | 
|---|
| 860 | if(var == ISO_2022) { | 
|---|
| 861 | /* discard toUBytes[] for ESC ( B because this sequence is correct and complete */ | 
|---|
| 862 | _this->toULength = 0; | 
|---|
| 863 |  | 
|---|
| 864 | /* TODO need to indicate that ESC ( B was seen; if failure, then need to replay from source or from MBCS-style replay */ | 
|---|
| 865 |  | 
|---|
| 866 | /* continue with the loop */ | 
|---|
| 867 | value = VALID_NON_TERMINAL_2022; | 
|---|
| 868 | break; | 
|---|
| 869 | } else | 
|---|
| 870 | #endif | 
|---|
| 871 | { | 
|---|
| 872 | /* not ISO_2022 itself, finish here */ | 
|---|
| 873 | value = VALID_TERMINAL_2022; | 
|---|
| 874 | key = 0; | 
|---|
| 875 | goto DONE; | 
|---|
| 876 | } | 
|---|
| 877 | } | 
|---|
| 878 | } | 
|---|
| 879 |  | 
|---|
| 880 | DONE: | 
|---|
| 881 | myData2022->key = key; | 
|---|
| 882 |  | 
|---|
| 883 | if (value == VALID_NON_TERMINAL_2022) { | 
|---|
| 884 | /* indicate that the escape sequence is incomplete: key!=0 */ | 
|---|
| 885 | return; | 
|---|
| 886 | } else if (value == INVALID_2022 ) { | 
|---|
| 887 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 888 | } else /* value == VALID_TERMINAL_2022 */ { | 
|---|
| 889 | switch(var){ | 
|---|
| 890 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 891 | case ISO_2022: | 
|---|
| 892 | { | 
|---|
| 893 | const char *chosenConverterName = escSeqStateTable_Result_2022[offset]; | 
|---|
| 894 | if(chosenConverterName == nullptr) { | 
|---|
| 895 | /* SS2 or SS3 */ | 
|---|
| 896 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 897 | _this->toUCallbackReason = UCNV_UNASSIGNED; | 
|---|
| 898 | return; | 
|---|
| 899 | } | 
|---|
| 900 |  | 
|---|
| 901 | _this->mode = UCNV_SI; | 
|---|
| 902 | ucnv_close(myData2022->currentConverter); | 
|---|
| 903 | myData2022->currentConverter = myUConverter = ucnv_open(chosenConverterName, err); | 
|---|
| 904 | if(U_SUCCESS(*err)) { | 
|---|
| 905 | myUConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP; | 
|---|
| 906 | _this->mode = UCNV_SO; | 
|---|
| 907 | } | 
|---|
| 908 | break; | 
|---|
| 909 | } | 
|---|
| 910 | #endif | 
|---|
| 911 | case ISO_2022_JP: | 
|---|
| 912 | { | 
|---|
| 913 | StateEnum tempState=(StateEnum)nextStateToUnicodeJP[offset]; | 
|---|
| 914 | switch(tempState) { | 
|---|
| 915 | case INVALID_STATE: | 
|---|
| 916 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 917 | break; | 
|---|
| 918 | case SS2_STATE: | 
|---|
| 919 | if(myData2022->toU2022State.cs[2]!=0) { | 
|---|
| 920 | if(myData2022->toU2022State.g<2) { | 
|---|
| 921 | myData2022->toU2022State.prevG=myData2022->toU2022State.g; | 
|---|
| 922 | } | 
|---|
| 923 | myData2022->toU2022State.g=2; | 
|---|
| 924 | } else { | 
|---|
| 925 | /* illegal to have SS2 before a matching designator */ | 
|---|
| 926 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 927 | } | 
|---|
| 928 | break; | 
|---|
| 929 | /* case SS3_STATE: not used in ISO-2022-JP-x */ | 
|---|
| 930 | case ISO8859_1: | 
|---|
| 931 | case ISO8859_7: | 
|---|
| 932 | if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) { | 
|---|
| 933 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 934 | } else { | 
|---|
| 935 | /* G2 charset for SS2 */ | 
|---|
| 936 | myData2022->toU2022State.cs[2]=(int8_t)tempState; | 
|---|
| 937 | } | 
|---|
| 938 | break; | 
|---|
| 939 | default: | 
|---|
| 940 | if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) { | 
|---|
| 941 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 942 | } else { | 
|---|
| 943 | /* G0 charset */ | 
|---|
| 944 | myData2022->toU2022State.cs[0]=(int8_t)tempState; | 
|---|
| 945 | } | 
|---|
| 946 | break; | 
|---|
| 947 | } | 
|---|
| 948 | } | 
|---|
| 949 | break; | 
|---|
| 950 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 951 | case ISO_2022_CN: | 
|---|
| 952 | { | 
|---|
| 953 | StateEnum tempState=(StateEnum)nextStateToUnicodeCN[offset]; | 
|---|
| 954 | switch(tempState) { | 
|---|
| 955 | case INVALID_STATE: | 
|---|
| 956 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 957 | break; | 
|---|
| 958 | case SS2_STATE: | 
|---|
| 959 | if(myData2022->toU2022State.cs[2]!=0) { | 
|---|
| 960 | if(myData2022->toU2022State.g<2) { | 
|---|
| 961 | myData2022->toU2022State.prevG=myData2022->toU2022State.g; | 
|---|
| 962 | } | 
|---|
| 963 | myData2022->toU2022State.g=2; | 
|---|
| 964 | } else { | 
|---|
| 965 | /* illegal to have SS2 before a matching designator */ | 
|---|
| 966 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 967 | } | 
|---|
| 968 | break; | 
|---|
| 969 | case SS3_STATE: | 
|---|
| 970 | if(myData2022->toU2022State.cs[3]!=0) { | 
|---|
| 971 | if(myData2022->toU2022State.g<2) { | 
|---|
| 972 | myData2022->toU2022State.prevG=myData2022->toU2022State.g; | 
|---|
| 973 | } | 
|---|
| 974 | myData2022->toU2022State.g=3; | 
|---|
| 975 | } else { | 
|---|
| 976 | /* illegal to have SS3 before a matching designator */ | 
|---|
| 977 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 978 | } | 
|---|
| 979 | break; | 
|---|
| 980 | case ISO_IR_165: | 
|---|
| 981 | if(myData2022->version==0) { | 
|---|
| 982 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 983 | break; | 
|---|
| 984 | } | 
|---|
| 985 | U_FALLTHROUGH; | 
|---|
| 986 | case GB2312_1: | 
|---|
| 987 | U_FALLTHROUGH; | 
|---|
| 988 | case CNS_11643_1: | 
|---|
| 989 | myData2022->toU2022State.cs[1]=(int8_t)tempState; | 
|---|
| 990 | break; | 
|---|
| 991 | case CNS_11643_2: | 
|---|
| 992 | myData2022->toU2022State.cs[2]=(int8_t)tempState; | 
|---|
| 993 | break; | 
|---|
| 994 | default: | 
|---|
| 995 | /* other CNS 11643 planes */ | 
|---|
| 996 | if(myData2022->version==0) { | 
|---|
| 997 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 998 | } else { | 
|---|
| 999 | myData2022->toU2022State.cs[3]=(int8_t)tempState; | 
|---|
| 1000 | } | 
|---|
| 1001 | break; | 
|---|
| 1002 | } | 
|---|
| 1003 | } | 
|---|
| 1004 | break; | 
|---|
| 1005 | case ISO_2022_KR: | 
|---|
| 1006 | if(offset==0x30){ | 
|---|
| 1007 | /* nothing to be done, just accept this one escape sequence */ | 
|---|
| 1008 | } else { | 
|---|
| 1009 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | 
|---|
| 1010 | } | 
|---|
| 1011 | break; | 
|---|
| 1012 | #endif  // !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 1013 |  | 
|---|
| 1014 | default: | 
|---|
| 1015 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 1016 | break; | 
|---|
| 1017 | } | 
|---|
| 1018 | } | 
|---|
| 1019 | if(U_SUCCESS(*err)) { | 
|---|
| 1020 | _this->toULength = 0; | 
|---|
| 1021 | } else if(*err==U_ILLEGAL_ESCAPE_SEQUENCE) { | 
|---|
| 1022 | if(_this->toULength>1) { | 
|---|
| 1023 | /* | 
|---|
| 1024 | * Ticket 5691: consistent illegal sequences: | 
|---|
| 1025 | * - We include at least the first byte (ESC) in the illegal sequence. | 
|---|
| 1026 | * - If any of the non-initial bytes could be the start of a character, | 
|---|
| 1027 | *   we stop the illegal sequence before the first one of those. | 
|---|
| 1028 | *   In escape sequences, all following bytes are "printable", that is, | 
|---|
| 1029 | *   unless they are completely illegal (>7f in SBCS, outside 21..7e in DBCS), | 
|---|
| 1030 | *   they are valid single/lead bytes. | 
|---|
| 1031 | *   For simplicity, we always only report the initial ESC byte as the | 
|---|
| 1032 | *   illegal sequence and back out all other bytes we looked at. | 
|---|
| 1033 | */ | 
|---|
| 1034 | /* Back out some bytes. */ | 
|---|
| 1035 | int8_t backOutDistance=_this->toULength-1; | 
|---|
| 1036 | int8_t bytesFromThisBuffer=_this->toULength-initialToULength; | 
|---|
| 1037 | if(backOutDistance<=bytesFromThisBuffer) { | 
|---|
| 1038 | /* same as initialToULength<=1 */ | 
|---|
| 1039 | *source-=backOutDistance; | 
|---|
| 1040 | } else { | 
|---|
| 1041 | /* Back out bytes from the previous buffer: Need to replay them. */ | 
|---|
| 1042 | _this->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); | 
|---|
| 1043 | /* same as -(initialToULength-1) */ | 
|---|
| 1044 | /* preToULength is negative! */ | 
|---|
| 1045 | uprv_memcpy(_this->preToU, _this->toUBytes+1, -_this->preToULength); | 
|---|
| 1046 | *source-=bytesFromThisBuffer; | 
|---|
| 1047 | } | 
|---|
| 1048 | _this->toULength=1; | 
|---|
| 1049 | } | 
|---|
| 1050 | } else if(*err==U_UNSUPPORTED_ESCAPE_SEQUENCE) { | 
|---|
| 1051 | _this->toUCallbackReason = UCNV_UNASSIGNED; | 
|---|
| 1052 | } | 
|---|
| 1053 | } | 
|---|
| 1054 |  | 
|---|
| 1055 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 1056 | /*Checks the characters of the buffer against valid 2022 escape sequences | 
|---|
| 1057 | *if the match we return a pointer to the initial start of the sequence otherwise | 
|---|
| 1058 | *we return sourceLimit | 
|---|
| 1059 | */ | 
|---|
| 1060 | /*for 2022 looks ahead in the stream | 
|---|
| 1061 | *to determine the longest possible convertible | 
|---|
| 1062 | *data stream | 
|---|
| 1063 | */ | 
|---|
| 1064 | static inline const char* | 
|---|
| 1065 | getEndOfBuffer_2022(const char** source, | 
|---|
| 1066 | const char* sourceLimit, | 
|---|
| 1067 | UBool /*flush*/){ | 
|---|
| 1068 |  | 
|---|
| 1069 | const char* mySource = *source; | 
|---|
| 1070 |  | 
|---|
| 1071 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 1072 | if (*source >= sourceLimit) | 
|---|
| 1073 | return sourceLimit; | 
|---|
| 1074 |  | 
|---|
| 1075 | do{ | 
|---|
| 1076 |  | 
|---|
| 1077 | if (*mySource == ESC_2022){ | 
|---|
| 1078 | int8_t i; | 
|---|
| 1079 | int32_t key = 0; | 
|---|
| 1080 | int32_t offset; | 
|---|
| 1081 | UCNV_TableStates_2022 value = VALID_NON_TERMINAL_2022; | 
|---|
| 1082 |  | 
|---|
| 1083 | /* Kludge: I could not | 
|---|
| 1084 | * figure out the reason for validating an escape sequence | 
|---|
| 1085 | * twice - once here and once in changeState_2022(). | 
|---|
| 1086 | * is it possible to have an ESC character in a ISO2022 | 
|---|
| 1087 | * byte stream which is valid in a code page? Is it legal? | 
|---|
| 1088 | */ | 
|---|
| 1089 | for (i=0; | 
|---|
| 1090 | (mySource+i < sourceLimit)&&(value == VALID_NON_TERMINAL_2022); | 
|---|
| 1091 | i++) { | 
|---|
| 1092 | value =  getKey_2022(*(mySource+i), &key, &offset); | 
|---|
| 1093 | } | 
|---|
| 1094 | if (value > 0 || *mySource==ESC_2022) | 
|---|
| 1095 | return mySource; | 
|---|
| 1096 |  | 
|---|
| 1097 | if ((value == VALID_NON_TERMINAL_2022)&&(!flush) ) | 
|---|
| 1098 | return sourceLimit; | 
|---|
| 1099 | } | 
|---|
| 1100 | }while (++mySource < sourceLimit); | 
|---|
| 1101 |  | 
|---|
| 1102 | return sourceLimit; | 
|---|
| 1103 | #else | 
|---|
| 1104 | while(mySource < sourceLimit && *mySource != ESC_2022) { | 
|---|
| 1105 | ++mySource; | 
|---|
| 1106 | } | 
|---|
| 1107 | return mySource; | 
|---|
| 1108 | #endif | 
|---|
| 1109 | } | 
|---|
| 1110 | #endif | 
|---|
| 1111 |  | 
|---|
| 1112 | /* This inline function replicates code in _MBCSFromUChar32() function in ucnvmbcs.c | 
|---|
| 1113 | * any future change in _MBCSFromUChar32() function should be reflected here. | 
|---|
| 1114 | * @return number of bytes in *value; negative number if fallback; 0 if no mapping | 
|---|
| 1115 | */ | 
|---|
| 1116 | static inline int32_t | 
|---|
| 1117 | MBCS_FROM_UCHAR32_ISO2022(UConverterSharedData* sharedData, | 
|---|
| 1118 | UChar32 c, | 
|---|
| 1119 | uint32_t* value, | 
|---|
| 1120 | UBool useFallback, | 
|---|
| 1121 | int outputType) | 
|---|
| 1122 | { | 
|---|
| 1123 | const int32_t *cx; | 
|---|
| 1124 | const uint16_t *table; | 
|---|
| 1125 | uint32_t stage2Entry; | 
|---|
| 1126 | uint32_t myValue; | 
|---|
| 1127 | int32_t length; | 
|---|
| 1128 | const uint8_t *p; | 
|---|
| 1129 | /* | 
|---|
| 1130 | * TODO(markus): Use and require new, faster MBCS conversion table structures. | 
|---|
| 1131 | * Use internal version of ucnv_open() that verifies that the new structures are available, | 
|---|
| 1132 | * else U_INTERNAL_PROGRAM_ERROR. | 
|---|
| 1133 | */ | 
|---|
| 1134 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | 
|---|
| 1135 | if(c<0x10000 || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | 
|---|
| 1136 | table=sharedData->mbcs.fromUnicodeTable; | 
|---|
| 1137 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | 
|---|
| 1138 | /* get the bytes and the length for the output */ | 
|---|
| 1139 | if(outputType==MBCS_OUTPUT_2){ | 
|---|
| 1140 | myValue=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | 
|---|
| 1141 | if(myValue<=0xff) { | 
|---|
| 1142 | length=1; | 
|---|
| 1143 | } else { | 
|---|
| 1144 | length=2; | 
|---|
| 1145 | } | 
|---|
| 1146 | } else /* outputType==MBCS_OUTPUT_3 */ { | 
|---|
| 1147 | p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | 
|---|
| 1148 | myValue=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | 
|---|
| 1149 | if(myValue<=0xff) { | 
|---|
| 1150 | length=1; | 
|---|
| 1151 | } else if(myValue<=0xffff) { | 
|---|
| 1152 | length=2; | 
|---|
| 1153 | } else { | 
|---|
| 1154 | length=3; | 
|---|
| 1155 | } | 
|---|
| 1156 | } | 
|---|
| 1157 | /* is this code point assigned, or do we use fallbacks? */ | 
|---|
| 1158 | if((stage2Entry&(1<<(16+(c&0xf))))!=0) { | 
|---|
| 1159 | /* assigned */ | 
|---|
| 1160 | *value=myValue; | 
|---|
| 1161 | return length; | 
|---|
| 1162 | } else if(FROM_U_USE_FALLBACK(useFallback, c) && myValue!=0) { | 
|---|
| 1163 | /* | 
|---|
| 1164 | * We allow a 0 byte output if the "assigned" bit is set for this entry. | 
|---|
| 1165 | * There is no way with this data structure for fallback output | 
|---|
| 1166 | * to be a zero byte. | 
|---|
| 1167 | */ | 
|---|
| 1168 | *value=myValue; | 
|---|
| 1169 | return -length; | 
|---|
| 1170 | } | 
|---|
| 1171 | } | 
|---|
| 1172 |  | 
|---|
| 1173 | cx=sharedData->mbcs.extIndexes; | 
|---|
| 1174 | if(cx!=nullptr) { | 
|---|
| 1175 | return ucnv_extSimpleMatchFromU(cx, c, value, useFallback); | 
|---|
| 1176 | } | 
|---|
| 1177 |  | 
|---|
| 1178 | /* unassigned */ | 
|---|
| 1179 | return 0; | 
|---|
| 1180 | } | 
|---|
| 1181 |  | 
|---|
| 1182 | /* This inline function replicates code in _MBCSSingleFromUChar32() function in ucnvmbcs.c | 
|---|
| 1183 | * any future change in _MBCSSingleFromUChar32() function should be reflected here. | 
|---|
| 1184 | * @param retval pointer to output byte | 
|---|
| 1185 | * @return 1 roundtrip byte  0 no mapping  -1 fallback byte | 
|---|
| 1186 | */ | 
|---|
| 1187 | static inline int32_t | 
|---|
| 1188 | MBCS_SINGLE_FROM_UCHAR32(UConverterSharedData* sharedData, | 
|---|
| 1189 | UChar32 c, | 
|---|
| 1190 | uint32_t* retval, | 
|---|
| 1191 | UBool useFallback) | 
|---|
| 1192 | { | 
|---|
| 1193 | const uint16_t *table; | 
|---|
| 1194 | int32_t value; | 
|---|
| 1195 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | 
|---|
| 1196 | if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | 
|---|
| 1197 | return 0; | 
|---|
| 1198 | } | 
|---|
| 1199 | /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ | 
|---|
| 1200 | table=sharedData->mbcs.fromUnicodeTable; | 
|---|
| 1201 | /* get the byte for the output */ | 
|---|
| 1202 | value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); | 
|---|
| 1203 | /* is this code point assigned, or do we use fallbacks? */ | 
|---|
| 1204 | *retval=(uint32_t)(value&0xff); | 
|---|
| 1205 | if(value>=0xf00) { | 
|---|
| 1206 | return 1;  /* roundtrip */ | 
|---|
| 1207 | } else if(useFallback ? value>=0x800 : value>=0xc00) { | 
|---|
| 1208 | return -1;  /* fallback taken */ | 
|---|
| 1209 | } else { | 
|---|
| 1210 | return 0;  /* no mapping */ | 
|---|
| 1211 | } | 
|---|
| 1212 | } | 
|---|
| 1213 |  | 
|---|
| 1214 | /* | 
|---|
| 1215 | * Check that the result is a 2-byte value with each byte in the range A1..FE | 
|---|
| 1216 | * (strict EUC DBCS) before accepting it and subtracting 0x80 from each byte | 
|---|
| 1217 | * to move it to the ISO 2022 range 21..7E. | 
|---|
| 1218 | * Return 0 if out of range. | 
|---|
| 1219 | */ | 
|---|
| 1220 | static inline uint32_t | 
|---|
| 1221 | _2022FromGR94DBCS(uint32_t value) { | 
|---|
| 1222 | if( (uint16_t)(value - 0xa1a1) <= (0xfefe - 0xa1a1) && | 
|---|
| 1223 | (uint8_t)(value - 0xa1) <= (0xfe - 0xa1) | 
|---|
| 1224 | ) { | 
|---|
| 1225 | return value - 0x8080;  /* shift down to 21..7e byte range */ | 
|---|
| 1226 | } else { | 
|---|
| 1227 | return 0;  /* not valid for ISO 2022 */ | 
|---|
| 1228 | } | 
|---|
| 1229 | } | 
|---|
| 1230 |  | 
|---|
| 1231 | #if 0 /* 5691: Call sites now check for validity. They can just += 0x8080 after that. */ | 
|---|
| 1232 | /* | 
|---|
| 1233 | * This method does the reverse of _2022FromGR94DBCS(). Given the 2022 code point, it returns the | 
|---|
| 1234 | * 2 byte value that is in the range A1..FE for each byte. Otherwise it returns the 2022 code point | 
|---|
| 1235 | * unchanged. | 
|---|
| 1236 | */ | 
|---|
| 1237 | static inline uint32_t | 
|---|
| 1238 | _2022ToGR94DBCS(uint32_t value) { | 
|---|
| 1239 | uint32_t returnValue = value + 0x8080; | 
|---|
| 1240 | if( (uint16_t)(returnValue - 0xa1a1) <= (0xfefe - 0xa1a1) && | 
|---|
| 1241 | (uint8_t)(returnValue - 0xa1) <= (0xfe - 0xa1)) { | 
|---|
| 1242 | return returnValue; | 
|---|
| 1243 | } else { | 
|---|
| 1244 | return value; | 
|---|
| 1245 | } | 
|---|
| 1246 | } | 
|---|
| 1247 | #endif | 
|---|
| 1248 |  | 
|---|
| 1249 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 1250 |  | 
|---|
| 1251 | /********************************************************************************** | 
|---|
| 1252 | *  ISO-2022 Converter | 
|---|
| 1253 | * | 
|---|
| 1254 | * | 
|---|
| 1255 | */ | 
|---|
| 1256 |  | 
|---|
| 1257 | static void U_CALLCONV | 
|---|
| 1258 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, | 
|---|
| 1259 | UErrorCode* err){ | 
|---|
| 1260 | const char* mySourceLimit, *realSourceLimit; | 
|---|
| 1261 | const char* sourceStart; | 
|---|
| 1262 | const char16_t* myTargetStart; | 
|---|
| 1263 | UConverter* saveThis; | 
|---|
| 1264 | UConverterDataISO2022* myData; | 
|---|
| 1265 | int8_t length; | 
|---|
| 1266 |  | 
|---|
| 1267 | saveThis = args->converter; | 
|---|
| 1268 | myData=((UConverterDataISO2022*)(saveThis->extraInfo)); | 
|---|
| 1269 |  | 
|---|
| 1270 | realSourceLimit = args->sourceLimit; | 
|---|
| 1271 | while (args->source < realSourceLimit) { | 
|---|
| 1272 | if(myData->key == 0) { /* are we in the middle of an escape sequence? */ | 
|---|
| 1273 | /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/ | 
|---|
| 1274 | mySourceLimit = getEndOfBuffer_2022(&(args->source), realSourceLimit, args->flush); | 
|---|
| 1275 |  | 
|---|
| 1276 | if(args->source < mySourceLimit) { | 
|---|
| 1277 | if(myData->currentConverter==nullptr) { | 
|---|
| 1278 | myData->currentConverter = ucnv_open( "ASCII",err); | 
|---|
| 1279 | if(U_FAILURE(*err)){ | 
|---|
| 1280 | return; | 
|---|
| 1281 | } | 
|---|
| 1282 |  | 
|---|
| 1283 | myData->currentConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP; | 
|---|
| 1284 | saveThis->mode = UCNV_SO; | 
|---|
| 1285 | } | 
|---|
| 1286 |  | 
|---|
| 1287 | /* convert to before the ESC or until the end of the buffer */ | 
|---|
| 1288 | myData->isFirstBuffer=false; | 
|---|
| 1289 | sourceStart = args->source; | 
|---|
| 1290 | myTargetStart = args->target; | 
|---|
| 1291 | args->converter = myData->currentConverter; | 
|---|
| 1292 | ucnv_toUnicode(args->converter, | 
|---|
| 1293 | &args->target, | 
|---|
| 1294 | args->targetLimit, | 
|---|
| 1295 | &args->source, | 
|---|
| 1296 | mySourceLimit, | 
|---|
| 1297 | args->offsets, | 
|---|
| 1298 | (UBool)(args->flush && mySourceLimit == realSourceLimit), | 
|---|
| 1299 | err); | 
|---|
| 1300 | args->converter = saveThis; | 
|---|
| 1301 |  | 
|---|
| 1302 | if (*err == U_BUFFER_OVERFLOW_ERROR) { | 
|---|
| 1303 | /* move the overflow buffer */ | 
|---|
| 1304 | length = saveThis->UCharErrorBufferLength = myData->currentConverter->UCharErrorBufferLength; | 
|---|
| 1305 | myData->currentConverter->UCharErrorBufferLength = 0; | 
|---|
| 1306 | if(length > 0) { | 
|---|
| 1307 | uprv_memcpy(saveThis->UCharErrorBuffer, | 
|---|
| 1308 | myData->currentConverter->UCharErrorBuffer, | 
|---|
| 1309 | length*U_SIZEOF_UCHAR); | 
|---|
| 1310 | } | 
|---|
| 1311 | return; | 
|---|
| 1312 | } | 
|---|
| 1313 |  | 
|---|
| 1314 | /* | 
|---|
| 1315 | * At least one of: | 
|---|
| 1316 | * -Error while converting | 
|---|
| 1317 | * -Done with entire buffer | 
|---|
| 1318 | * -Need to write offsets or update the current offset | 
|---|
| 1319 | *  (leave that up to the code in ucnv.c) | 
|---|
| 1320 | * | 
|---|
| 1321 | * or else we just stopped at an ESC byte and continue with changeState_2022() | 
|---|
| 1322 | */ | 
|---|
| 1323 | if (U_FAILURE(*err) || | 
|---|
| 1324 | (args->source == realSourceLimit) || | 
|---|
| 1325 | (args->offsets != nullptr && (args->target != myTargetStart || args->source != sourceStart) || | 
|---|
| 1326 | (mySourceLimit < realSourceLimit && myData->currentConverter->toULength > 0)) | 
|---|
| 1327 | ) { | 
|---|
| 1328 | /* copy partial or error input for truncated detection and error handling */ | 
|---|
| 1329 | if(U_FAILURE(*err)) { | 
|---|
| 1330 | length = saveThis->invalidCharLength = myData->currentConverter->invalidCharLength; | 
|---|
| 1331 | if(length > 0) { | 
|---|
| 1332 | uprv_memcpy(saveThis->invalidCharBuffer, myData->currentConverter->invalidCharBuffer, length); | 
|---|
| 1333 | } | 
|---|
| 1334 | } else { | 
|---|
| 1335 | length = saveThis->toULength = myData->currentConverter->toULength; | 
|---|
| 1336 | if(length > 0) { | 
|---|
| 1337 | uprv_memcpy(saveThis->toUBytes, myData->currentConverter->toUBytes, length); | 
|---|
| 1338 | if(args->source < mySourceLimit) { | 
|---|
| 1339 | *err = U_TRUNCATED_CHAR_FOUND; /* truncated input before ESC */ | 
|---|
| 1340 | } | 
|---|
| 1341 | } | 
|---|
| 1342 | } | 
|---|
| 1343 | return; | 
|---|
| 1344 | } | 
|---|
| 1345 | } | 
|---|
| 1346 | } | 
|---|
| 1347 |  | 
|---|
| 1348 | sourceStart = args->source; | 
|---|
| 1349 | changeState_2022(args->converter, | 
|---|
| 1350 | &(args->source), | 
|---|
| 1351 | realSourceLimit, | 
|---|
| 1352 | ISO_2022, | 
|---|
| 1353 | err); | 
|---|
| 1354 | if (U_FAILURE(*err) || (args->source != sourceStart && args->offsets != nullptr)) { | 
|---|
| 1355 | /* let the ucnv.c code update its current offset */ | 
|---|
| 1356 | return; | 
|---|
| 1357 | } | 
|---|
| 1358 | } | 
|---|
| 1359 | } | 
|---|
| 1360 |  | 
|---|
| 1361 | #endif | 
|---|
| 1362 |  | 
|---|
| 1363 | /* | 
|---|
| 1364 | * To Unicode Callback helper function | 
|---|
| 1365 | */ | 
|---|
| 1366 | static void | 
|---|
| 1367 | toUnicodeCallback(UConverter *cnv, | 
|---|
| 1368 | const uint32_t sourceChar, const uint32_t targetUniChar, | 
|---|
| 1369 | UErrorCode* err){ | 
|---|
| 1370 | if(sourceChar>0xff){ | 
|---|
| 1371 | cnv->toUBytes[0] = (uint8_t)(sourceChar>>8); | 
|---|
| 1372 | cnv->toUBytes[1] = (uint8_t)sourceChar; | 
|---|
| 1373 | cnv->toULength = 2; | 
|---|
| 1374 | } | 
|---|
| 1375 | else{ | 
|---|
| 1376 | cnv->toUBytes[0] =(char) sourceChar; | 
|---|
| 1377 | cnv->toULength = 1; | 
|---|
| 1378 | } | 
|---|
| 1379 |  | 
|---|
| 1380 | if(targetUniChar == (missingCharMarker-1/*0xfffe*/)){ | 
|---|
| 1381 | *err = U_INVALID_CHAR_FOUND; | 
|---|
| 1382 | } | 
|---|
| 1383 | else{ | 
|---|
| 1384 | *err = U_ILLEGAL_CHAR_FOUND; | 
|---|
| 1385 | } | 
|---|
| 1386 | } | 
|---|
| 1387 |  | 
|---|
| 1388 | /**************************************ISO-2022-JP*************************************************/ | 
|---|
| 1389 |  | 
|---|
| 1390 | /************************************** IMPORTANT ************************************************** | 
|---|
| 1391 | * The UConverter_fromUnicode_ISO2022_JP converter does not use ucnv_fromUnicode() functions for SBCS,DBCS and | 
|---|
| 1392 | * MBCS; instead, the values are obtained directly by calling _MBCSFromUChar32(). | 
|---|
| 1393 | * The converter iterates over each Unicode codepoint | 
|---|
| 1394 | * to obtain the equivalent codepoints from the codepages supported. Since the source buffer is | 
|---|
| 1395 | * processed one char at a time it would make sense to reduce the extra processing a canned converter | 
|---|
| 1396 | * would do as far as possible. | 
|---|
| 1397 | * | 
|---|
| 1398 | * If the implementation of these macros or structure of sharedData struct change in the future, make | 
|---|
| 1399 | * sure that ISO-2022 is also changed. | 
|---|
| 1400 | *************************************************************************************************** | 
|---|
| 1401 | */ | 
|---|
| 1402 |  | 
|---|
| 1403 | /*************************************************************************************************** | 
|---|
| 1404 | * Rules for ISO-2022-jp encoding | 
|---|
| 1405 | * (i)   Escape sequences must be fully contained within a line they should not | 
|---|
| 1406 | *       span new lines or CRs | 
|---|
| 1407 | * (ii)  If the last character on a line is represented by two bytes then an ASCII or | 
|---|
| 1408 | *       JIS-Roman character escape sequence should follow before the line terminates | 
|---|
| 1409 | * (iii) If the first character on the line is represented by two bytes then a two | 
|---|
| 1410 | *       byte character escape sequence should precede it | 
|---|
| 1411 | * (iv)  If no escape sequence is encountered then the characters are ASCII | 
|---|
| 1412 | * (v)   Latin(ISO-8859-1) and Greek(ISO-8859-7) characters must be designated to G2, | 
|---|
| 1413 | *       and invoked with SS2 (ESC N). | 
|---|
| 1414 | * (vi)  If there is any G0 designation in text, there must be a switch to | 
|---|
| 1415 | *       ASCII or to JIS X 0201-Roman before a space character (but not | 
|---|
| 1416 | *       necessarily before "ESC 4/14 2/0" or "ESC N ' '") or control | 
|---|
| 1417 | *       characters such as tab or CRLF. | 
|---|
| 1418 | * (vi)  Supported encodings: | 
|---|
| 1419 | *          ASCII, JISX201, JISX208, JISX212, GB2312, KSC5601, ISO-8859-1,ISO-8859-7 | 
|---|
| 1420 | * | 
|---|
| 1421 | *  source : RFC-1554 | 
|---|
| 1422 | * | 
|---|
| 1423 | *          JISX201, JISX208,JISX212 : new .cnv data files created | 
|---|
| 1424 | *          KSC5601 : alias to ibm-949 mapping table | 
|---|
| 1425 | *          GB2312 : alias to ibm-1386 mapping table | 
|---|
| 1426 | *          ISO-8859-1 : Algorithmic implemented as LATIN1 case | 
|---|
| 1427 | *          ISO-8859-7 : alias to ibm-9409 mapping table | 
|---|
| 1428 | */ | 
|---|
| 1429 |  | 
|---|
| 1430 | /* preference order of JP charsets */ | 
|---|
| 1431 | static const StateEnum jpCharsetPref[]={ | 
|---|
| 1432 | ASCII, | 
|---|
| 1433 | JISX201, | 
|---|
| 1434 | ISO8859_1, | 
|---|
| 1435 | JISX208, | 
|---|
| 1436 | ISO8859_7, | 
|---|
| 1437 | JISX212, | 
|---|
| 1438 | GB2312, | 
|---|
| 1439 | KSC5601, | 
|---|
| 1440 | HWKANA_7BIT | 
|---|
| 1441 | }; | 
|---|
| 1442 |  | 
|---|
| 1443 | /* | 
|---|
| 1444 | * The escape sequences must be in order of the enum constants like JISX201  = 3, | 
|---|
| 1445 | * not in order of jpCharsetPref[]! | 
|---|
| 1446 | */ | 
|---|
| 1447 | static const char escSeqChars[][6] ={ | 
|---|
| 1448 | "\x1B\x28\x42",         /* <ESC>(B  ASCII       */ | 
|---|
| 1449 | "\x1B\x2E\x41",         /* <ESC>.A  ISO-8859-1  */ | 
|---|
| 1450 | "\x1B\x2E\x46",         /* <ESC>.F  ISO-8859-7  */ | 
|---|
| 1451 | "\x1B\x28\x4A",         /* <ESC>(J  JISX-201    */ | 
|---|
| 1452 | "\x1B\x24\x42",         /* <ESC>$B  JISX-208    */ | 
|---|
| 1453 | "\x1B\x24\x28\x44",     /* <ESC>$(D JISX-212    */ | 
|---|
| 1454 | "\x1B\x24\x41",         /* <ESC>$A  GB2312      */ | 
|---|
| 1455 | "\x1B\x24\x28\x43",     /* <ESC>$(C KSC5601     */ | 
|---|
| 1456 | "\x1B\x28\x49"/* <ESC>(I  HWKANA_7BIT */ | 
|---|
| 1457 |  | 
|---|
| 1458 | }; | 
|---|
| 1459 | static  const int8_t escSeqCharsLen[] ={ | 
|---|
| 1460 | 3, /* length of <ESC>(B  ASCII       */ | 
|---|
| 1461 | 3, /* length of <ESC>.A  ISO-8859-1  */ | 
|---|
| 1462 | 3, /* length of <ESC>.F  ISO-8859-7  */ | 
|---|
| 1463 | 3, /* length of <ESC>(J  JISX-201    */ | 
|---|
| 1464 | 3, /* length of <ESC>$B  JISX-208    */ | 
|---|
| 1465 | 4, /* length of <ESC>$(D JISX-212    */ | 
|---|
| 1466 | 3, /* length of <ESC>$A  GB2312      */ | 
|---|
| 1467 | 4, /* length of <ESC>$(C KSC5601     */ | 
|---|
| 1468 | 3  /* length of <ESC>(I  HWKANA_7BIT */ | 
|---|
| 1469 | }; | 
|---|
| 1470 |  | 
|---|
| 1471 | /* | 
|---|
| 1472 | * The iteration over various code pages works this way: | 
|---|
| 1473 | * i)   Get the currentState from myConverterData->currentState | 
|---|
| 1474 | * ii)  Check if the character is mapped to a valid character in the currentState | 
|---|
| 1475 | *      Yes ->  a) set the initIterState to currentState | 
|---|
| 1476 | *       b) remain in this state until an invalid character is found | 
|---|
| 1477 | *      No  ->  a) go to the next code page and find the character | 
|---|
| 1478 | * iii) Before changing the state increment the current state check if the current state | 
|---|
| 1479 | *      is equal to the intitIteration state | 
|---|
| 1480 | *      Yes ->  A character that cannot be represented in any of the supported encodings | 
|---|
| 1481 | *       break and return a U_INVALID_CHARACTER error | 
|---|
| 1482 | *      No  ->  Continue and find the character in next code page | 
|---|
| 1483 | * | 
|---|
| 1484 | * | 
|---|
| 1485 | * TODO: Implement a priority technique where the users are allowed to set the priority of code pages | 
|---|
| 1486 | */ | 
|---|
| 1487 |  | 
|---|
| 1488 | /* Map 00..7F to Unicode according to JIS X 0201. */ | 
|---|
| 1489 | static inline uint32_t | 
|---|
| 1490 | jisx201ToU(uint32_t value) { | 
|---|
| 1491 | if(value < 0x5c) { | 
|---|
| 1492 | return value; | 
|---|
| 1493 | } else if(value == 0x5c) { | 
|---|
| 1494 | return 0xa5; | 
|---|
| 1495 | } else if(value == 0x7e) { | 
|---|
| 1496 | return 0x203e; | 
|---|
| 1497 | } else /* value <= 0x7f */ { | 
|---|
| 1498 | return value; | 
|---|
| 1499 | } | 
|---|
| 1500 | } | 
|---|
| 1501 |  | 
|---|
| 1502 | /* Map Unicode to 00..7F according to JIS X 0201. Return U+FFFE if unmappable. */ | 
|---|
| 1503 | static inline uint32_t | 
|---|
| 1504 | jisx201FromU(uint32_t value) { | 
|---|
| 1505 | if(value<=0x7f) { | 
|---|
| 1506 | if(value!=0x5c && value!=0x7e) { | 
|---|
| 1507 | return value; | 
|---|
| 1508 | } | 
|---|
| 1509 | } else if(value==0xa5) { | 
|---|
| 1510 | return 0x5c; | 
|---|
| 1511 | } else if(value==0x203e) { | 
|---|
| 1512 | return 0x7e; | 
|---|
| 1513 | } | 
|---|
| 1514 | return 0xfffe; | 
|---|
| 1515 | } | 
|---|
| 1516 |  | 
|---|
| 1517 | /* | 
|---|
| 1518 | * Take a valid Shift-JIS byte pair, check that it is in the range corresponding | 
|---|
| 1519 | * to JIS X 0208, and convert it to a pair of 21..7E bytes. | 
|---|
| 1520 | * Return 0 if the byte pair is out of range. | 
|---|
| 1521 | */ | 
|---|
| 1522 | static inline uint32_t | 
|---|
| 1523 | _2022FromSJIS(uint32_t value) { | 
|---|
| 1524 | uint8_t trail; | 
|---|
| 1525 |  | 
|---|
| 1526 | if(value > 0xEFFC) { | 
|---|
| 1527 | return 0;  /* beyond JIS X 0208 */ | 
|---|
| 1528 | } | 
|---|
| 1529 |  | 
|---|
| 1530 | trail = (uint8_t)value; | 
|---|
| 1531 |  | 
|---|
| 1532 | value &= 0xff00;  /* lead byte */ | 
|---|
| 1533 | if(value <= 0x9f00) { | 
|---|
| 1534 | value -= 0x7000; | 
|---|
| 1535 | } else /* 0xe000 <= value <= 0xef00 */ { | 
|---|
| 1536 | value -= 0xb000; | 
|---|
| 1537 | } | 
|---|
| 1538 | value <<= 1; | 
|---|
| 1539 |  | 
|---|
| 1540 | if(trail <= 0x9e) { | 
|---|
| 1541 | value -= 0x100; | 
|---|
| 1542 | if(trail <= 0x7e) { | 
|---|
| 1543 | value |= trail - 0x1f; | 
|---|
| 1544 | } else { | 
|---|
| 1545 | value |= trail - 0x20; | 
|---|
| 1546 | } | 
|---|
| 1547 | } else /* trail <= 0xfc */ { | 
|---|
| 1548 | value |= trail - 0x7e; | 
|---|
| 1549 | } | 
|---|
| 1550 | return value; | 
|---|
| 1551 | } | 
|---|
| 1552 |  | 
|---|
| 1553 | /* | 
|---|
| 1554 | * Convert a pair of JIS X 0208 21..7E bytes to Shift-JIS. | 
|---|
| 1555 | * If either byte is outside 21..7E make sure that the result is not valid | 
|---|
| 1556 | * for Shift-JIS so that the converter catches it. | 
|---|
| 1557 | * Some invalid byte values already turn into equally invalid Shift-JIS | 
|---|
| 1558 | * byte values and need not be tested explicitly. | 
|---|
| 1559 | */ | 
|---|
| 1560 | static inline void | 
|---|
| 1561 | _2022ToSJIS(uint8_t c1, uint8_t c2, char bytes[2]) { | 
|---|
| 1562 | if(c1&1) { | 
|---|
| 1563 | ++c1; | 
|---|
| 1564 | if(c2 <= 0x5f) { | 
|---|
| 1565 | c2 += 0x1f; | 
|---|
| 1566 | } else if(c2 <= 0x7e) { | 
|---|
| 1567 | c2 += 0x20; | 
|---|
| 1568 | } else { | 
|---|
| 1569 | c2 = 0;  /* invalid */ | 
|---|
| 1570 | } | 
|---|
| 1571 | } else { | 
|---|
| 1572 | if((uint8_t)(c2-0x21) <= ((0x7e)-0x21)) { | 
|---|
| 1573 | c2 += 0x7e; | 
|---|
| 1574 | } else { | 
|---|
| 1575 | c2 = 0;  /* invalid */ | 
|---|
| 1576 | } | 
|---|
| 1577 | } | 
|---|
| 1578 | c1 >>= 1; | 
|---|
| 1579 | if(c1 <= 0x2f) { | 
|---|
| 1580 | c1 += 0x70; | 
|---|
| 1581 | } else if(c1 <= 0x3f) { | 
|---|
| 1582 | c1 += 0xb0; | 
|---|
| 1583 | } else { | 
|---|
| 1584 | c1 = 0;  /* invalid */ | 
|---|
| 1585 | } | 
|---|
| 1586 | bytes[0] = (char)c1; | 
|---|
| 1587 | bytes[1] = (char)c2; | 
|---|
| 1588 | } | 
|---|
| 1589 |  | 
|---|
| 1590 | /* | 
|---|
| 1591 | * JIS X 0208 has fallbacks from Unicode half-width Katakana to full-width (DBCS) | 
|---|
| 1592 | * Katakana. | 
|---|
| 1593 | * Now that we use a Shift-JIS table for JIS X 0208 we need to hardcode these fallbacks | 
|---|
| 1594 | * because Shift-JIS roundtrips half-width Katakana to single bytes. | 
|---|
| 1595 | * These were the only fallbacks in ICU's jisx-208.ucm file. | 
|---|
| 1596 | */ | 
|---|
| 1597 | static const uint16_t hwkana_fb[HWKANA_END - HWKANA_START + 1] = { | 
|---|
| 1598 | 0x2123,  /* U+FF61 */ | 
|---|
| 1599 | 0x2156, | 
|---|
| 1600 | 0x2157, | 
|---|
| 1601 | 0x2122, | 
|---|
| 1602 | 0x2126, | 
|---|
| 1603 | 0x2572, | 
|---|
| 1604 | 0x2521, | 
|---|
| 1605 | 0x2523, | 
|---|
| 1606 | 0x2525, | 
|---|
| 1607 | 0x2527, | 
|---|
| 1608 | 0x2529, | 
|---|
| 1609 | 0x2563, | 
|---|
| 1610 | 0x2565, | 
|---|
| 1611 | 0x2567, | 
|---|
| 1612 | 0x2543, | 
|---|
| 1613 | 0x213C,  /* U+FF70 */ | 
|---|
| 1614 | 0x2522, | 
|---|
| 1615 | 0x2524, | 
|---|
| 1616 | 0x2526, | 
|---|
| 1617 | 0x2528, | 
|---|
| 1618 | 0x252A, | 
|---|
| 1619 | 0x252B, | 
|---|
| 1620 | 0x252D, | 
|---|
| 1621 | 0x252F, | 
|---|
| 1622 | 0x2531, | 
|---|
| 1623 | 0x2533, | 
|---|
| 1624 | 0x2535, | 
|---|
| 1625 | 0x2537, | 
|---|
| 1626 | 0x2539, | 
|---|
| 1627 | 0x253B, | 
|---|
| 1628 | 0x253D, | 
|---|
| 1629 | 0x253F,  /* U+FF80 */ | 
|---|
| 1630 | 0x2541, | 
|---|
| 1631 | 0x2544, | 
|---|
| 1632 | 0x2546, | 
|---|
| 1633 | 0x2548, | 
|---|
| 1634 | 0x254A, | 
|---|
| 1635 | 0x254B, | 
|---|
| 1636 | 0x254C, | 
|---|
| 1637 | 0x254D, | 
|---|
| 1638 | 0x254E, | 
|---|
| 1639 | 0x254F, | 
|---|
| 1640 | 0x2552, | 
|---|
| 1641 | 0x2555, | 
|---|
| 1642 | 0x2558, | 
|---|
| 1643 | 0x255B, | 
|---|
| 1644 | 0x255E, | 
|---|
| 1645 | 0x255F,  /* U+FF90 */ | 
|---|
| 1646 | 0x2560, | 
|---|
| 1647 | 0x2561, | 
|---|
| 1648 | 0x2562, | 
|---|
| 1649 | 0x2564, | 
|---|
| 1650 | 0x2566, | 
|---|
| 1651 | 0x2568, | 
|---|
| 1652 | 0x2569, | 
|---|
| 1653 | 0x256A, | 
|---|
| 1654 | 0x256B, | 
|---|
| 1655 | 0x256C, | 
|---|
| 1656 | 0x256D, | 
|---|
| 1657 | 0x256F, | 
|---|
| 1658 | 0x2573, | 
|---|
| 1659 | 0x212B, | 
|---|
| 1660 | 0x212C   /* U+FF9F */ | 
|---|
| 1661 | }; | 
|---|
| 1662 |  | 
|---|
| 1663 | static void U_CALLCONV | 
|---|
| 1664 | UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err) { | 
|---|
| 1665 | UConverter *cnv = args->converter; | 
|---|
| 1666 | UConverterDataISO2022 *converterData; | 
|---|
| 1667 | ISO2022State *pFromU2022State; | 
|---|
| 1668 | uint8_t *target = (uint8_t *) args->target; | 
|---|
| 1669 | const uint8_t *targetLimit = (const uint8_t *) args->targetLimit; | 
|---|
| 1670 | const char16_t* source = args->source; | 
|---|
| 1671 | const char16_t* sourceLimit = args->sourceLimit; | 
|---|
| 1672 | int32_t* offsets = args->offsets; | 
|---|
| 1673 | UChar32 sourceChar; | 
|---|
| 1674 | char buffer[8]; | 
|---|
| 1675 | int32_t len, outLen; | 
|---|
| 1676 | int8_t choices[10]; | 
|---|
| 1677 | int32_t choiceCount; | 
|---|
| 1678 | uint32_t targetValue = 0; | 
|---|
| 1679 | UBool useFallback; | 
|---|
| 1680 |  | 
|---|
| 1681 | int32_t i; | 
|---|
| 1682 | int8_t cs, g; | 
|---|
| 1683 |  | 
|---|
| 1684 | /* set up the state */ | 
|---|
| 1685 | converterData     = (UConverterDataISO2022*)cnv->extraInfo; | 
|---|
| 1686 | pFromU2022State   = &converterData->fromU2022State; | 
|---|
| 1687 |  | 
|---|
| 1688 | choiceCount = 0; | 
|---|
| 1689 |  | 
|---|
| 1690 | /* check if the last codepoint of previous buffer was a lead surrogate*/ | 
|---|
| 1691 | if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) { | 
|---|
| 1692 | goto getTrail; | 
|---|
| 1693 | } | 
|---|
| 1694 |  | 
|---|
| 1695 | while(source < sourceLimit) { | 
|---|
| 1696 | if(target < targetLimit) { | 
|---|
| 1697 |  | 
|---|
| 1698 | sourceChar  = *(source++); | 
|---|
| 1699 | /*check if the char is a First surrogate*/ | 
|---|
| 1700 | if(U16_IS_SURROGATE(sourceChar)) { | 
|---|
| 1701 | if(U16_IS_SURROGATE_LEAD(sourceChar)) { | 
|---|
| 1702 | getTrail: | 
|---|
| 1703 | /*look ahead to find the trail surrogate*/ | 
|---|
| 1704 | if(source < sourceLimit) { | 
|---|
| 1705 | /* test the following code unit */ | 
|---|
| 1706 | char16_t trail=(char16_t) *source; | 
|---|
| 1707 | if(U16_IS_TRAIL(trail)) { | 
|---|
| 1708 | source++; | 
|---|
| 1709 | sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); | 
|---|
| 1710 | cnv->fromUChar32=0x00; | 
|---|
| 1711 | /* convert this supplementary code point */ | 
|---|
| 1712 | /* exit this condition tree */ | 
|---|
| 1713 | } else { | 
|---|
| 1714 | /* this is an unmatched lead code unit (1st surrogate) */ | 
|---|
| 1715 | /* callback(illegal) */ | 
|---|
| 1716 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 1717 | cnv->fromUChar32=sourceChar; | 
|---|
| 1718 | break; | 
|---|
| 1719 | } | 
|---|
| 1720 | } else { | 
|---|
| 1721 | /* no more input */ | 
|---|
| 1722 | cnv->fromUChar32=sourceChar; | 
|---|
| 1723 | break; | 
|---|
| 1724 | } | 
|---|
| 1725 | } else { | 
|---|
| 1726 | /* this is an unmatched trail code unit (2nd surrogate) */ | 
|---|
| 1727 | /* callback(illegal) */ | 
|---|
| 1728 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 1729 | cnv->fromUChar32=sourceChar; | 
|---|
| 1730 | break; | 
|---|
| 1731 | } | 
|---|
| 1732 | } | 
|---|
| 1733 |  | 
|---|
| 1734 | /* do not convert SO/SI/ESC */ | 
|---|
| 1735 | if(IS_2022_CONTROL(sourceChar)) { | 
|---|
| 1736 | /* callback(illegal) */ | 
|---|
| 1737 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 1738 | cnv->fromUChar32=sourceChar; | 
|---|
| 1739 | break; | 
|---|
| 1740 | } | 
|---|
| 1741 |  | 
|---|
| 1742 | /* do the conversion */ | 
|---|
| 1743 |  | 
|---|
| 1744 | if(choiceCount == 0) { | 
|---|
| 1745 | uint16_t csm; | 
|---|
| 1746 |  | 
|---|
| 1747 | /* | 
|---|
| 1748 | * The csm variable keeps track of which charsets are allowed | 
|---|
| 1749 | * and not used yet while building the choices[]. | 
|---|
| 1750 | */ | 
|---|
| 1751 | csm = jpCharsetMasks[converterData->version]; | 
|---|
| 1752 | choiceCount = 0; | 
|---|
| 1753 |  | 
|---|
| 1754 | /* JIS7/8: try single-byte half-width Katakana before JISX208 */ | 
|---|
| 1755 | if(converterData->version == 3 || converterData->version == 4) { | 
|---|
| 1756 | choices[choiceCount++] = (int8_t)HWKANA_7BIT; | 
|---|
| 1757 | } | 
|---|
| 1758 | /* Do not try single-byte half-width Katakana for other versions. */ | 
|---|
| 1759 | csm &= ~CSM(HWKANA_7BIT); | 
|---|
| 1760 |  | 
|---|
| 1761 | /* try the current G0 charset */ | 
|---|
| 1762 | choices[choiceCount++] = cs = pFromU2022State->cs[0]; | 
|---|
| 1763 | csm &= ~CSM(cs); | 
|---|
| 1764 |  | 
|---|
| 1765 | /* try the current G2 charset */ | 
|---|
| 1766 | if((cs = pFromU2022State->cs[2]) != 0) { | 
|---|
| 1767 | choices[choiceCount++] = cs; | 
|---|
| 1768 | csm &= ~CSM(cs); | 
|---|
| 1769 | } | 
|---|
| 1770 |  | 
|---|
| 1771 | /* try all the other possible charsets */ | 
|---|
| 1772 | for(i = 0; i < UPRV_LENGTHOF(jpCharsetPref); ++i) { | 
|---|
| 1773 | cs = (int8_t)jpCharsetPref[i]; | 
|---|
| 1774 | if(CSM(cs) & csm) { | 
|---|
| 1775 | choices[choiceCount++] = cs; | 
|---|
| 1776 | csm &= ~CSM(cs); | 
|---|
| 1777 | } | 
|---|
| 1778 | } | 
|---|
| 1779 | } | 
|---|
| 1780 |  | 
|---|
| 1781 | cs = g = 0; | 
|---|
| 1782 | /* | 
|---|
| 1783 | * len==0: no mapping found yet | 
|---|
| 1784 | * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks | 
|---|
| 1785 | * len>0: found a roundtrip result, done | 
|---|
| 1786 | */ | 
|---|
| 1787 | len = 0; | 
|---|
| 1788 | /* | 
|---|
| 1789 | * We will turn off useFallback after finding a fallback, | 
|---|
| 1790 | * but we still get fallbacks from PUA code points as usual. | 
|---|
| 1791 | * Therefore, we will also need to check that we don't overwrite | 
|---|
| 1792 | * an early fallback with a later one. | 
|---|
| 1793 | */ | 
|---|
| 1794 | useFallback = cnv->useFallback; | 
|---|
| 1795 |  | 
|---|
| 1796 | for(i = 0; i < choiceCount && len <= 0; ++i) { | 
|---|
| 1797 | uint32_t value; | 
|---|
| 1798 | int32_t len2; | 
|---|
| 1799 | int8_t cs0 = choices[i]; | 
|---|
| 1800 | switch(cs0) { | 
|---|
| 1801 | case ASCII: | 
|---|
| 1802 | if(sourceChar <= 0x7f) { | 
|---|
| 1803 | targetValue = (uint32_t)sourceChar; | 
|---|
| 1804 | len = 1; | 
|---|
| 1805 | cs = cs0; | 
|---|
| 1806 | g = 0; | 
|---|
| 1807 | } | 
|---|
| 1808 | break; | 
|---|
| 1809 | case ISO8859_1: | 
|---|
| 1810 | if(GR96_START <= sourceChar && sourceChar <= GR96_END) { | 
|---|
| 1811 | targetValue = (uint32_t)sourceChar - 0x80; | 
|---|
| 1812 | len = 1; | 
|---|
| 1813 | cs = cs0; | 
|---|
| 1814 | g = 2; | 
|---|
| 1815 | } | 
|---|
| 1816 | break; | 
|---|
| 1817 | case HWKANA_7BIT: | 
|---|
| 1818 | if((uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) { | 
|---|
| 1819 | if(converterData->version==3) { | 
|---|
| 1820 | /* JIS7: use G1 (SO) */ | 
|---|
| 1821 | /* Shift U+FF61..U+FF9F to bytes 21..5F. */ | 
|---|
| 1822 | targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0x21)); | 
|---|
| 1823 | len = 1; | 
|---|
| 1824 | pFromU2022State->cs[1] = cs = cs0; /* do not output an escape sequence */ | 
|---|
| 1825 | g = 1; | 
|---|
| 1826 | } else if(converterData->version==4) { | 
|---|
| 1827 | /* JIS8: use 8-bit bytes with any single-byte charset, see escape sequence output below */ | 
|---|
| 1828 | /* Shift U+FF61..U+FF9F to bytes A1..DF. */ | 
|---|
| 1829 | targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0xa1)); | 
|---|
| 1830 | len = 1; | 
|---|
| 1831 |  | 
|---|
| 1832 | cs = pFromU2022State->cs[0]; | 
|---|
| 1833 | if(IS_JP_DBCS(cs)) { | 
|---|
| 1834 | /* switch from a DBCS charset to JISX201 */ | 
|---|
| 1835 | cs = (int8_t)JISX201; | 
|---|
| 1836 | } | 
|---|
| 1837 | /* else stay in the current G0 charset */ | 
|---|
| 1838 | g = 0; | 
|---|
| 1839 | } | 
|---|
| 1840 | /* else do not use HWKANA_7BIT with other versions */ | 
|---|
| 1841 | } | 
|---|
| 1842 | break; | 
|---|
| 1843 | case JISX201: | 
|---|
| 1844 | /* G0 SBCS */ | 
|---|
| 1845 | value = jisx201FromU(sourceChar); | 
|---|
| 1846 | if(value <= 0x7f) { | 
|---|
| 1847 | targetValue = value; | 
|---|
| 1848 | len = 1; | 
|---|
| 1849 | cs = cs0; | 
|---|
| 1850 | g = 0; | 
|---|
| 1851 | useFallback = false; | 
|---|
| 1852 | } | 
|---|
| 1853 | break; | 
|---|
| 1854 | case JISX208: | 
|---|
| 1855 | /* G0 DBCS from Shift-JIS table */ | 
|---|
| 1856 | len2 = MBCS_FROM_UCHAR32_ISO2022( | 
|---|
| 1857 | converterData->myConverterArray[cs0], | 
|---|
| 1858 | sourceChar, &value, | 
|---|
| 1859 | useFallback, MBCS_OUTPUT_2); | 
|---|
| 1860 | if(len2 == 2 || (len2 == -2 && len == 0)) {  /* only accept DBCS: abs(len)==2 */ | 
|---|
| 1861 | value = _2022FromSJIS(value); | 
|---|
| 1862 | if(value != 0) { | 
|---|
| 1863 | targetValue = value; | 
|---|
| 1864 | len = len2; | 
|---|
| 1865 | cs = cs0; | 
|---|
| 1866 | g = 0; | 
|---|
| 1867 | useFallback = false; | 
|---|
| 1868 | } | 
|---|
| 1869 | } else if(len == 0 && useFallback && | 
|---|
| 1870 | (uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) { | 
|---|
| 1871 | targetValue = hwkana_fb[sourceChar - HWKANA_START]; | 
|---|
| 1872 | len = -2; | 
|---|
| 1873 | cs = cs0; | 
|---|
| 1874 | g = 0; | 
|---|
| 1875 | useFallback = false; | 
|---|
| 1876 | } | 
|---|
| 1877 | break; | 
|---|
| 1878 | case ISO8859_7: | 
|---|
| 1879 | /* G0 SBCS forced to 7-bit output */ | 
|---|
| 1880 | len2 = MBCS_SINGLE_FROM_UCHAR32( | 
|---|
| 1881 | converterData->myConverterArray[cs0], | 
|---|
| 1882 | sourceChar, &value, | 
|---|
| 1883 | useFallback); | 
|---|
| 1884 | if(len2 != 0 && !(len2 < 0 && len != 0) && GR96_START <= value && value <= GR96_END) { | 
|---|
| 1885 | targetValue = value - 0x80; | 
|---|
| 1886 | len = len2; | 
|---|
| 1887 | cs = cs0; | 
|---|
| 1888 | g = 2; | 
|---|
| 1889 | useFallback = false; | 
|---|
| 1890 | } | 
|---|
| 1891 | break; | 
|---|
| 1892 | default: | 
|---|
| 1893 | /* G0 DBCS */ | 
|---|
| 1894 | len2 = MBCS_FROM_UCHAR32_ISO2022( | 
|---|
| 1895 | converterData->myConverterArray[cs0], | 
|---|
| 1896 | sourceChar, &value, | 
|---|
| 1897 | useFallback, MBCS_OUTPUT_2); | 
|---|
| 1898 | if(len2 == 2 || (len2 == -2 && len == 0)) {  /* only accept DBCS: abs(len)==2 */ | 
|---|
| 1899 | if(cs0 == KSC5601) { | 
|---|
| 1900 | /* | 
|---|
| 1901 | * Check for valid bytes for the encoding scheme. | 
|---|
| 1902 | * This is necessary because the sub-converter (windows-949) | 
|---|
| 1903 | * has a broader encoding scheme than is valid for 2022. | 
|---|
| 1904 | */ | 
|---|
| 1905 | value = _2022FromGR94DBCS(value); | 
|---|
| 1906 | if(value == 0) { | 
|---|
| 1907 | break; | 
|---|
| 1908 | } | 
|---|
| 1909 | } | 
|---|
| 1910 | targetValue = value; | 
|---|
| 1911 | len = len2; | 
|---|
| 1912 | cs = cs0; | 
|---|
| 1913 | g = 0; | 
|---|
| 1914 | useFallback = false; | 
|---|
| 1915 | } | 
|---|
| 1916 | break; | 
|---|
| 1917 | } | 
|---|
| 1918 | } | 
|---|
| 1919 |  | 
|---|
| 1920 | if(len != 0) { | 
|---|
| 1921 | if(len < 0) { | 
|---|
| 1922 | len = -len;  /* fallback */ | 
|---|
| 1923 | } | 
|---|
| 1924 | outLen = 0; /* count output bytes */ | 
|---|
| 1925 |  | 
|---|
| 1926 | /* write SI if necessary (only for JIS7) */ | 
|---|
| 1927 | if(pFromU2022State->g == 1 && g == 0) { | 
|---|
| 1928 | buffer[outLen++] = UCNV_SI; | 
|---|
| 1929 | pFromU2022State->g = 0; | 
|---|
| 1930 | } | 
|---|
| 1931 |  | 
|---|
| 1932 | /* write the designation sequence if necessary */ | 
|---|
| 1933 | if(cs != pFromU2022State->cs[g]) { | 
|---|
| 1934 | int32_t escLen = escSeqCharsLen[cs]; | 
|---|
| 1935 | uprv_memcpy(buffer + outLen, escSeqChars[cs], escLen); | 
|---|
| 1936 | outLen += escLen; | 
|---|
| 1937 | pFromU2022State->cs[g] = cs; | 
|---|
| 1938 |  | 
|---|
| 1939 | /* invalidate the choices[] */ | 
|---|
| 1940 | choiceCount = 0; | 
|---|
| 1941 | } | 
|---|
| 1942 |  | 
|---|
| 1943 | /* write the shift sequence if necessary */ | 
|---|
| 1944 | if(g != pFromU2022State->g) { | 
|---|
| 1945 | switch(g) { | 
|---|
| 1946 | /* case 0 handled before writing escapes */ | 
|---|
| 1947 | case 1: | 
|---|
| 1948 | buffer[outLen++] = UCNV_SO; | 
|---|
| 1949 | pFromU2022State->g = 1; | 
|---|
| 1950 | break; | 
|---|
| 1951 | default: /* case 2 */ | 
|---|
| 1952 | buffer[outLen++] = 0x1b; | 
|---|
| 1953 | buffer[outLen++] = 0x4e; | 
|---|
| 1954 | break; | 
|---|
| 1955 | /* no case 3: no SS3 in ISO-2022-JP-x */ | 
|---|
| 1956 | } | 
|---|
| 1957 | } | 
|---|
| 1958 |  | 
|---|
| 1959 | /* write the output bytes */ | 
|---|
| 1960 | if(len == 1) { | 
|---|
| 1961 | buffer[outLen++] = (char)targetValue; | 
|---|
| 1962 | } else /* len == 2 */ { | 
|---|
| 1963 | buffer[outLen++] = (char)(targetValue >> 8); | 
|---|
| 1964 | buffer[outLen++] = (char)targetValue; | 
|---|
| 1965 | } | 
|---|
| 1966 | } else { | 
|---|
| 1967 | /* | 
|---|
| 1968 | * if we cannot find the character after checking all codepages | 
|---|
| 1969 | * then this is an error | 
|---|
| 1970 | */ | 
|---|
| 1971 | *err = U_INVALID_CHAR_FOUND; | 
|---|
| 1972 | cnv->fromUChar32=sourceChar; | 
|---|
| 1973 | break; | 
|---|
| 1974 | } | 
|---|
| 1975 |  | 
|---|
| 1976 | if(sourceChar == CR || sourceChar == LF) { | 
|---|
| 1977 | /* reset the G2 state at the end of a line (conversion got us into ASCII or JISX201 already) */ | 
|---|
| 1978 | pFromU2022State->cs[2] = 0; | 
|---|
| 1979 | choiceCount = 0; | 
|---|
| 1980 | } | 
|---|
| 1981 |  | 
|---|
| 1982 | /* output outLen>0 bytes in buffer[] */ | 
|---|
| 1983 | if(outLen == 1) { | 
|---|
| 1984 | *target++ = buffer[0]; | 
|---|
| 1985 | if(offsets) { | 
|---|
| 1986 | *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */ | 
|---|
| 1987 | } | 
|---|
| 1988 | } else if(outLen == 2 && (target + 2) <= targetLimit) { | 
|---|
| 1989 | *target++ = buffer[0]; | 
|---|
| 1990 | *target++ = buffer[1]; | 
|---|
| 1991 | if(offsets) { | 
|---|
| 1992 | int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar)); | 
|---|
| 1993 | *offsets++ = sourceIndex; | 
|---|
| 1994 | *offsets++ = sourceIndex; | 
|---|
| 1995 | } | 
|---|
| 1996 | } else { | 
|---|
| 1997 | fromUWriteUInt8( | 
|---|
| 1998 | cnv, | 
|---|
| 1999 | buffer, outLen, | 
|---|
| 2000 | &target, (const char *)targetLimit, | 
|---|
| 2001 | &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)), | 
|---|
| 2002 | err); | 
|---|
| 2003 | if(U_FAILURE(*err)) { | 
|---|
| 2004 | break; | 
|---|
| 2005 | } | 
|---|
| 2006 | } | 
|---|
| 2007 | } /* end if(myTargetIndex<myTargetLength) */ | 
|---|
| 2008 | else{ | 
|---|
| 2009 | *err =U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2010 | break; | 
|---|
| 2011 | } | 
|---|
| 2012 |  | 
|---|
| 2013 | }/* end while(mySourceIndex<mySourceLength) */ | 
|---|
| 2014 |  | 
|---|
| 2015 | /* | 
|---|
| 2016 | * the end of the input stream and detection of truncated input | 
|---|
| 2017 | * are handled by the framework, but for ISO-2022-JP conversion | 
|---|
| 2018 | * we need to be in ASCII mode at the very end | 
|---|
| 2019 | * | 
|---|
| 2020 | * conditions: | 
|---|
| 2021 | *   successful | 
|---|
| 2022 | *   in SO mode or not in ASCII mode | 
|---|
| 2023 | *   end of input and no truncated input | 
|---|
| 2024 | */ | 
|---|
| 2025 | if( U_SUCCESS(*err) && | 
|---|
| 2026 | (pFromU2022State->g!=0 || pFromU2022State->cs[0]!=ASCII) && | 
|---|
| 2027 | args->flush && source>=sourceLimit && cnv->fromUChar32==0 | 
|---|
| 2028 | ) { | 
|---|
| 2029 | int32_t sourceIndex; | 
|---|
| 2030 |  | 
|---|
| 2031 | outLen = 0; | 
|---|
| 2032 |  | 
|---|
| 2033 | if(pFromU2022State->g != 0) { | 
|---|
| 2034 | buffer[outLen++] = UCNV_SI; | 
|---|
| 2035 | pFromU2022State->g = 0; | 
|---|
| 2036 | } | 
|---|
| 2037 |  | 
|---|
| 2038 | if(pFromU2022State->cs[0] != ASCII) { | 
|---|
| 2039 | int32_t escLen = escSeqCharsLen[ASCII]; | 
|---|
| 2040 | uprv_memcpy(buffer + outLen, escSeqChars[ASCII], escLen); | 
|---|
| 2041 | outLen += escLen; | 
|---|
| 2042 | pFromU2022State->cs[0] = (int8_t)ASCII; | 
|---|
| 2043 | } | 
|---|
| 2044 |  | 
|---|
| 2045 | /* get the source index of the last input character */ | 
|---|
| 2046 | /* | 
|---|
| 2047 | * TODO this would be simpler and more reliable if we used a pair | 
|---|
| 2048 | * of sourceIndex/prevSourceIndex like in ucnvmbcs.c | 
|---|
| 2049 | * so that we could simply use the prevSourceIndex here; | 
|---|
| 2050 | * this code gives an incorrect result for the rare case of an unmatched | 
|---|
| 2051 | * trail surrogate that is alone in the last buffer of the text stream | 
|---|
| 2052 | */ | 
|---|
| 2053 | sourceIndex=(int32_t)(source-args->source); | 
|---|
| 2054 | if(sourceIndex>0) { | 
|---|
| 2055 | --sourceIndex; | 
|---|
| 2056 | if( U16_IS_TRAIL(args->source[sourceIndex]) && | 
|---|
| 2057 | (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) | 
|---|
| 2058 | ) { | 
|---|
| 2059 | --sourceIndex; | 
|---|
| 2060 | } | 
|---|
| 2061 | } else { | 
|---|
| 2062 | sourceIndex=-1; | 
|---|
| 2063 | } | 
|---|
| 2064 |  | 
|---|
| 2065 | fromUWriteUInt8( | 
|---|
| 2066 | cnv, | 
|---|
| 2067 | buffer, outLen, | 
|---|
| 2068 | &target, (const char *)targetLimit, | 
|---|
| 2069 | &offsets, sourceIndex, | 
|---|
| 2070 | err); | 
|---|
| 2071 | } | 
|---|
| 2072 |  | 
|---|
| 2073 | /*save the state and return */ | 
|---|
| 2074 | args->source = source; | 
|---|
| 2075 | args->target = (char*)target; | 
|---|
| 2076 | } | 
|---|
| 2077 |  | 
|---|
| 2078 | /*************** to unicode *******************/ | 
|---|
| 2079 |  | 
|---|
| 2080 | static void U_CALLCONV | 
|---|
| 2081 | UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, | 
|---|
| 2082 | UErrorCode* err){ | 
|---|
| 2083 | char tempBuf[2]; | 
|---|
| 2084 | const char *mySource = (char *) args->source; | 
|---|
| 2085 | char16_t *myTarget = args->target; | 
|---|
| 2086 | const char *mySourceLimit = args->sourceLimit; | 
|---|
| 2087 | uint32_t targetUniChar = 0x0000; | 
|---|
| 2088 | uint32_t mySourceChar = 0x0000; | 
|---|
| 2089 | uint32_t tmpSourceChar = 0x0000; | 
|---|
| 2090 | UConverterDataISO2022* myData; | 
|---|
| 2091 | ISO2022State *pToU2022State; | 
|---|
| 2092 | StateEnum cs; | 
|---|
| 2093 |  | 
|---|
| 2094 | myData=(UConverterDataISO2022*)(args->converter->extraInfo); | 
|---|
| 2095 | pToU2022State = &myData->toU2022State; | 
|---|
| 2096 |  | 
|---|
| 2097 | if(myData->key != 0) { | 
|---|
| 2098 | /* continue with a partial escape sequence */ | 
|---|
| 2099 | goto escape; | 
|---|
| 2100 | } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { | 
|---|
| 2101 | /* continue with a partial double-byte character */ | 
|---|
| 2102 | mySourceChar = args->converter->toUBytes[0]; | 
|---|
| 2103 | args->converter->toULength = 0; | 
|---|
| 2104 | cs = (StateEnum)pToU2022State->cs[pToU2022State->g]; | 
|---|
| 2105 | targetUniChar = missingCharMarker; | 
|---|
| 2106 | goto getTrailByte; | 
|---|
| 2107 | } | 
|---|
| 2108 |  | 
|---|
| 2109 | while(mySource < mySourceLimit){ | 
|---|
| 2110 |  | 
|---|
| 2111 | targetUniChar =missingCharMarker; | 
|---|
| 2112 |  | 
|---|
| 2113 | if(myTarget < args->targetLimit){ | 
|---|
| 2114 |  | 
|---|
| 2115 | mySourceChar= (unsigned char) *mySource++; | 
|---|
| 2116 |  | 
|---|
| 2117 | switch(mySourceChar) { | 
|---|
| 2118 | case UCNV_SI: | 
|---|
| 2119 | if(myData->version==3) { | 
|---|
| 2120 | pToU2022State->g=0; | 
|---|
| 2121 | continue; | 
|---|
| 2122 | } else { | 
|---|
| 2123 | /* only JIS7 uses SI/SO, not ISO-2022-JP-x */ | 
|---|
| 2124 | myData->isEmptySegment = false;	/* reset this, we have a different error */ | 
|---|
| 2125 | break; | 
|---|
| 2126 | } | 
|---|
| 2127 |  | 
|---|
| 2128 | case UCNV_SO: | 
|---|
| 2129 | if(myData->version==3) { | 
|---|
| 2130 | /* JIS7: switch to G1 half-width Katakana */ | 
|---|
| 2131 | pToU2022State->cs[1] = (int8_t)HWKANA_7BIT; | 
|---|
| 2132 | pToU2022State->g=1; | 
|---|
| 2133 | continue; | 
|---|
| 2134 | } else { | 
|---|
| 2135 | /* only JIS7 uses SI/SO, not ISO-2022-JP-x */ | 
|---|
| 2136 | myData->isEmptySegment = false;	/* reset this, we have a different error */ | 
|---|
| 2137 | break; | 
|---|
| 2138 | } | 
|---|
| 2139 |  | 
|---|
| 2140 | case ESC_2022: | 
|---|
| 2141 | mySource--; | 
|---|
| 2142 | escape: | 
|---|
| 2143 | { | 
|---|
| 2144 | const char * mySourceBefore = mySource; | 
|---|
| 2145 | int8_t toULengthBefore = args->converter->toULength; | 
|---|
| 2146 |  | 
|---|
| 2147 | changeState_2022(args->converter,&(mySource), | 
|---|
| 2148 | mySourceLimit, ISO_2022_JP,err); | 
|---|
| 2149 |  | 
|---|
| 2150 | /* If in ISO-2022-JP only and we successfully completed an escape sequence, but previous segment was empty, create an error */ | 
|---|
| 2151 | if(myData->version==0 && myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) { | 
|---|
| 2152 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 2153 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | 
|---|
| 2154 | args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore)); | 
|---|
| 2155 | } | 
|---|
| 2156 | } | 
|---|
| 2157 |  | 
|---|
| 2158 | /* invalid or illegal escape sequence */ | 
|---|
| 2159 | if(U_FAILURE(*err)){ | 
|---|
| 2160 | args->target = myTarget; | 
|---|
| 2161 | args->source = mySource; | 
|---|
| 2162 | myData->isEmptySegment = false;	/* Reset to avoid future spurious errors */ | 
|---|
| 2163 | return; | 
|---|
| 2164 | } | 
|---|
| 2165 | /* If we successfully completed an escape sequence, we begin a new segment, empty so far */ | 
|---|
| 2166 | if(myData->key==0) { | 
|---|
| 2167 | myData->isEmptySegment = true; | 
|---|
| 2168 | } | 
|---|
| 2169 | continue; | 
|---|
| 2170 |  | 
|---|
| 2171 | /* ISO-2022-JP does not use single-byte (C1) SS2 and SS3 */ | 
|---|
| 2172 |  | 
|---|
| 2173 | case CR: | 
|---|
| 2174 | case LF: | 
|---|
| 2175 | /* automatically reset to single-byte mode */ | 
|---|
| 2176 | if((StateEnum)pToU2022State->cs[0] != ASCII && (StateEnum)pToU2022State->cs[0] != JISX201) { | 
|---|
| 2177 | pToU2022State->cs[0] = (int8_t)ASCII; | 
|---|
| 2178 | } | 
|---|
| 2179 | pToU2022State->cs[2] = 0; | 
|---|
| 2180 | pToU2022State->g = 0; | 
|---|
| 2181 | U_FALLTHROUGH; | 
|---|
| 2182 | default: | 
|---|
| 2183 | /* convert one or two bytes */ | 
|---|
| 2184 | myData->isEmptySegment = false; | 
|---|
| 2185 | cs = (StateEnum)pToU2022State->cs[pToU2022State->g]; | 
|---|
| 2186 | if( (uint8_t)(mySourceChar - 0xa1) <= (0xdf - 0xa1) && myData->version==4 && | 
|---|
| 2187 | !IS_JP_DBCS(cs) | 
|---|
| 2188 | ) { | 
|---|
| 2189 | /* 8-bit halfwidth katakana in any single-byte mode for JIS8 */ | 
|---|
| 2190 | targetUniChar = mySourceChar + (HWKANA_START - 0xa1); | 
|---|
| 2191 |  | 
|---|
| 2192 | /* return from a single-shift state to the previous one */ | 
|---|
| 2193 | if(pToU2022State->g >= 2) { | 
|---|
| 2194 | pToU2022State->g=pToU2022State->prevG; | 
|---|
| 2195 | } | 
|---|
| 2196 | } else switch(cs) { | 
|---|
| 2197 | case ASCII: | 
|---|
| 2198 | if(mySourceChar <= 0x7f) { | 
|---|
| 2199 | targetUniChar = mySourceChar; | 
|---|
| 2200 | } | 
|---|
| 2201 | break; | 
|---|
| 2202 | case ISO8859_1: | 
|---|
| 2203 | if(mySourceChar <= 0x7f) { | 
|---|
| 2204 | targetUniChar = mySourceChar + 0x80; | 
|---|
| 2205 | } | 
|---|
| 2206 | /* return from a single-shift state to the previous one */ | 
|---|
| 2207 | pToU2022State->g=pToU2022State->prevG; | 
|---|
| 2208 | break; | 
|---|
| 2209 | case ISO8859_7: | 
|---|
| 2210 | if(mySourceChar <= 0x7f) { | 
|---|
| 2211 | /* convert mySourceChar+0x80 to use a normal 8-bit table */ | 
|---|
| 2212 | targetUniChar = | 
|---|
| 2213 | _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP( | 
|---|
| 2214 | myData->myConverterArray[cs], | 
|---|
| 2215 | mySourceChar + 0x80); | 
|---|
| 2216 | } | 
|---|
| 2217 | /* return from a single-shift state to the previous one */ | 
|---|
| 2218 | pToU2022State->g=pToU2022State->prevG; | 
|---|
| 2219 | break; | 
|---|
| 2220 | case JISX201: | 
|---|
| 2221 | if(mySourceChar <= 0x7f) { | 
|---|
| 2222 | targetUniChar = jisx201ToU(mySourceChar); | 
|---|
| 2223 | } | 
|---|
| 2224 | break; | 
|---|
| 2225 | case HWKANA_7BIT: | 
|---|
| 2226 | if((uint8_t)(mySourceChar - 0x21) <= (0x5f - 0x21)) { | 
|---|
| 2227 | /* 7-bit halfwidth Katakana */ | 
|---|
| 2228 | targetUniChar = mySourceChar + (HWKANA_START - 0x21); | 
|---|
| 2229 | } | 
|---|
| 2230 | break; | 
|---|
| 2231 | default: | 
|---|
| 2232 | /* G0 DBCS */ | 
|---|
| 2233 | if(mySource < mySourceLimit) { | 
|---|
| 2234 | int leadIsOk, trailIsOk; | 
|---|
| 2235 | uint8_t trailByte; | 
|---|
| 2236 | getTrailByte: | 
|---|
| 2237 | trailByte = (uint8_t)*mySource; | 
|---|
| 2238 | /* | 
|---|
| 2239 | * Ticket 5691: consistent illegal sequences: | 
|---|
| 2240 | * - We include at least the first byte in the illegal sequence. | 
|---|
| 2241 | * - If any of the non-initial bytes could be the start of a character, | 
|---|
| 2242 | *   we stop the illegal sequence before the first one of those. | 
|---|
| 2243 | * | 
|---|
| 2244 | * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is | 
|---|
| 2245 | * an ESC/SO/SI, we report only the first byte as the illegal sequence. | 
|---|
| 2246 | * Otherwise we convert or report the pair of bytes. | 
|---|
| 2247 | */ | 
|---|
| 2248 | leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); | 
|---|
| 2249 | trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); | 
|---|
| 2250 | if (leadIsOk && trailIsOk) { | 
|---|
| 2251 | ++mySource; | 
|---|
| 2252 | tmpSourceChar = (mySourceChar << 8) | trailByte; | 
|---|
| 2253 | if(cs == JISX208) { | 
|---|
| 2254 | _2022ToSJIS((uint8_t)mySourceChar, trailByte, tempBuf); | 
|---|
| 2255 | mySourceChar = tmpSourceChar; | 
|---|
| 2256 | } else { | 
|---|
| 2257 | /* Copy before we modify tmpSourceChar so toUnicodeCallback() sees the correct bytes. */ | 
|---|
| 2258 | mySourceChar = tmpSourceChar; | 
|---|
| 2259 | if (cs == KSC5601) { | 
|---|
| 2260 | tmpSourceChar += 0x8080;  /* = _2022ToGR94DBCS(tmpSourceChar) */ | 
|---|
| 2261 | } | 
|---|
| 2262 | tempBuf[0] = (char)(tmpSourceChar >> 8); | 
|---|
| 2263 | tempBuf[1] = (char)(tmpSourceChar); | 
|---|
| 2264 | } | 
|---|
| 2265 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(myData->myConverterArray[cs], tempBuf, 2, false); | 
|---|
| 2266 | } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { | 
|---|
| 2267 | /* report a pair of illegal bytes if the second byte is not a DBCS starter */ | 
|---|
| 2268 | ++mySource; | 
|---|
| 2269 | /* add another bit so that the code below writes 2 bytes in case of error */ | 
|---|
| 2270 | mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; | 
|---|
| 2271 | } | 
|---|
| 2272 | } else { | 
|---|
| 2273 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | 
|---|
| 2274 | args->converter->toULength = 1; | 
|---|
| 2275 | goto endloop; | 
|---|
| 2276 | } | 
|---|
| 2277 | }  /* End of inner switch */ | 
|---|
| 2278 | break; | 
|---|
| 2279 | }  /* End of outer switch */ | 
|---|
| 2280 | if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){ | 
|---|
| 2281 | if(args->offsets){ | 
|---|
| 2282 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 2283 | } | 
|---|
| 2284 | *(myTarget++)=(char16_t)targetUniChar; | 
|---|
| 2285 | } | 
|---|
| 2286 | else if(targetUniChar > missingCharMarker){ | 
|---|
| 2287 | /* disassemble the surrogate pair and write to output*/ | 
|---|
| 2288 | targetUniChar-=0x0010000; | 
|---|
| 2289 | *myTarget = (char16_t)(0xd800+(char16_t)(targetUniChar>>10)); | 
|---|
| 2290 | if(args->offsets){ | 
|---|
| 2291 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 2292 | } | 
|---|
| 2293 | ++myTarget; | 
|---|
| 2294 | if(myTarget< args->targetLimit){ | 
|---|
| 2295 | *myTarget = (char16_t)(0xdc00+(char16_t)(targetUniChar&0x3ff)); | 
|---|
| 2296 | if(args->offsets){ | 
|---|
| 2297 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 2298 | } | 
|---|
| 2299 | ++myTarget; | 
|---|
| 2300 | }else{ | 
|---|
| 2301 | args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]= | 
|---|
| 2302 | (char16_t)(0xdc00+(char16_t)(targetUniChar&0x3ff)); | 
|---|
| 2303 | } | 
|---|
| 2304 |  | 
|---|
| 2305 | } | 
|---|
| 2306 | else{ | 
|---|
| 2307 | /* Call the callback function*/ | 
|---|
| 2308 | toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); | 
|---|
| 2309 | break; | 
|---|
| 2310 | } | 
|---|
| 2311 | } | 
|---|
| 2312 | else{    /* goes with "if(myTarget < args->targetLimit)"  way up near top of function */ | 
|---|
| 2313 | *err =U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2314 | break; | 
|---|
| 2315 | } | 
|---|
| 2316 | } | 
|---|
| 2317 | endloop: | 
|---|
| 2318 | args->target = myTarget; | 
|---|
| 2319 | args->source = mySource; | 
|---|
| 2320 | } | 
|---|
| 2321 |  | 
|---|
| 2322 |  | 
|---|
| 2323 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 2324 | /*************************************************************** | 
|---|
| 2325 | *   Rules for ISO-2022-KR encoding | 
|---|
| 2326 | *   i) The KSC5601 designator sequence should appear only once in a file, | 
|---|
| 2327 | *      at the beginning of a line before any KSC5601 characters. This usually | 
|---|
| 2328 | *      means that it appears by itself on the first line of the file | 
|---|
| 2329 | *  ii) There are only 2 shifting sequences SO to shift into double byte mode | 
|---|
| 2330 | *      and SI to shift into single byte mode | 
|---|
| 2331 | */ | 
|---|
| 2332 | static void U_CALLCONV | 
|---|
| 2333 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs* args, UErrorCode* err){ | 
|---|
| 2334 |  | 
|---|
| 2335 | UConverter* saveConv = args->converter; | 
|---|
| 2336 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022*)saveConv->extraInfo; | 
|---|
| 2337 | args->converter=myConverterData->currentConverter; | 
|---|
| 2338 |  | 
|---|
| 2339 | myConverterData->currentConverter->fromUChar32 = saveConv->fromUChar32; | 
|---|
| 2340 | ucnv_MBCSFromUnicodeWithOffsets(args,err); | 
|---|
| 2341 | saveConv->fromUChar32 = myConverterData->currentConverter->fromUChar32; | 
|---|
| 2342 |  | 
|---|
| 2343 | if(*err == U_BUFFER_OVERFLOW_ERROR) { | 
|---|
| 2344 | if(myConverterData->currentConverter->charErrorBufferLength > 0) { | 
|---|
| 2345 | uprv_memcpy( | 
|---|
| 2346 | saveConv->charErrorBuffer, | 
|---|
| 2347 | myConverterData->currentConverter->charErrorBuffer, | 
|---|
| 2348 | myConverterData->currentConverter->charErrorBufferLength); | 
|---|
| 2349 | } | 
|---|
| 2350 | saveConv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength; | 
|---|
| 2351 | myConverterData->currentConverter->charErrorBufferLength = 0; | 
|---|
| 2352 | } | 
|---|
| 2353 | args->converter=saveConv; | 
|---|
| 2354 | } | 
|---|
| 2355 |  | 
|---|
| 2356 | static void U_CALLCONV | 
|---|
| 2357 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){ | 
|---|
| 2358 |  | 
|---|
| 2359 | const char16_t *source = args->source; | 
|---|
| 2360 | const char16_t *sourceLimit = args->sourceLimit; | 
|---|
| 2361 | unsigned char *target = (unsigned char *) args->target; | 
|---|
| 2362 | unsigned char *targetLimit = (unsigned char *) args->targetLimit; | 
|---|
| 2363 | int32_t* offsets = args->offsets; | 
|---|
| 2364 | uint32_t targetByteUnit = 0x0000; | 
|---|
| 2365 | UChar32 sourceChar = 0x0000; | 
|---|
| 2366 | UBool isTargetByteDBCS; | 
|---|
| 2367 | UBool oldIsTargetByteDBCS; | 
|---|
| 2368 | UConverterDataISO2022 *converterData; | 
|---|
| 2369 | UConverterSharedData* sharedData; | 
|---|
| 2370 | UBool useFallback; | 
|---|
| 2371 | int32_t length =0; | 
|---|
| 2372 |  | 
|---|
| 2373 | converterData=(UConverterDataISO2022*)args->converter->extraInfo; | 
|---|
| 2374 | /* if the version is 1 then the user is requesting | 
|---|
| 2375 | * conversion with ibm-25546 pass the arguments to | 
|---|
| 2376 | * MBCS converter and return | 
|---|
| 2377 | */ | 
|---|
| 2378 | if(converterData->version==1){ | 
|---|
| 2379 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err); | 
|---|
| 2380 | return; | 
|---|
| 2381 | } | 
|---|
| 2382 |  | 
|---|
| 2383 | /* initialize data */ | 
|---|
| 2384 | sharedData = converterData->currentConverter->sharedData; | 
|---|
| 2385 | useFallback = args->converter->useFallback; | 
|---|
| 2386 | isTargetByteDBCS=(UBool)args->converter->fromUnicodeStatus; | 
|---|
| 2387 | oldIsTargetByteDBCS = isTargetByteDBCS; | 
|---|
| 2388 |  | 
|---|
| 2389 | isTargetByteDBCS   = (UBool) args->converter->fromUnicodeStatus; | 
|---|
| 2390 | if((sourceChar = args->converter->fromUChar32)!=0 && target <targetLimit) { | 
|---|
| 2391 | goto getTrail; | 
|---|
| 2392 | } | 
|---|
| 2393 | while(source < sourceLimit){ | 
|---|
| 2394 |  | 
|---|
| 2395 | targetByteUnit = missingCharMarker; | 
|---|
| 2396 |  | 
|---|
| 2397 | if(target < (unsigned char*) args->targetLimit){ | 
|---|
| 2398 | sourceChar = *source++; | 
|---|
| 2399 |  | 
|---|
| 2400 | /* do not convert SO/SI/ESC */ | 
|---|
| 2401 | if(IS_2022_CONTROL(sourceChar)) { | 
|---|
| 2402 | /* callback(illegal) */ | 
|---|
| 2403 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 2404 | args->converter->fromUChar32=sourceChar; | 
|---|
| 2405 | break; | 
|---|
| 2406 | } | 
|---|
| 2407 |  | 
|---|
| 2408 | length = MBCS_FROM_UCHAR32_ISO2022(sharedData,sourceChar,&targetByteUnit,useFallback,MBCS_OUTPUT_2); | 
|---|
| 2409 | if(length < 0) { | 
|---|
| 2410 | length = -length;  /* fallback */ | 
|---|
| 2411 | } | 
|---|
| 2412 | /* only DBCS or SBCS characters are expected*/ | 
|---|
| 2413 | /* DB characters with high bit set to 1 are expected */ | 
|---|
| 2414 | if( length > 2 || length==0 || | 
|---|
| 2415 | (length == 1 && targetByteUnit > 0x7f) || | 
|---|
| 2416 | (length == 2 && | 
|---|
| 2417 | ((uint16_t)(targetByteUnit - 0xa1a1) > (0xfefe - 0xa1a1) || | 
|---|
| 2418 | (uint8_t)(targetByteUnit - 0xa1) > (0xfe - 0xa1))) | 
|---|
| 2419 | ) { | 
|---|
| 2420 | targetByteUnit=missingCharMarker; | 
|---|
| 2421 | } | 
|---|
| 2422 | if (targetByteUnit != missingCharMarker){ | 
|---|
| 2423 |  | 
|---|
| 2424 | oldIsTargetByteDBCS = isTargetByteDBCS; | 
|---|
| 2425 | isTargetByteDBCS = (UBool)(targetByteUnit>0x00FF); | 
|---|
| 2426 | /* append the shift sequence */ | 
|---|
| 2427 | if (oldIsTargetByteDBCS != isTargetByteDBCS ){ | 
|---|
| 2428 |  | 
|---|
| 2429 | if (isTargetByteDBCS) | 
|---|
| 2430 | *target++ = UCNV_SO; | 
|---|
| 2431 | else | 
|---|
| 2432 | *target++ = UCNV_SI; | 
|---|
| 2433 | if(offsets) | 
|---|
| 2434 | *(offsets++) = (int32_t)(source - args->source-1); | 
|---|
| 2435 | } | 
|---|
| 2436 | /* write the targetUniChar  to target */ | 
|---|
| 2437 | if(targetByteUnit <= 0x00FF){ | 
|---|
| 2438 | if( target < targetLimit){ | 
|---|
| 2439 | *(target++) = (unsigned char) targetByteUnit; | 
|---|
| 2440 | if(offsets){ | 
|---|
| 2441 | *(offsets++) = (int32_t)(source - args->source-1); | 
|---|
| 2442 | } | 
|---|
| 2443 |  | 
|---|
| 2444 | }else{ | 
|---|
| 2445 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit); | 
|---|
| 2446 | *err = U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2447 | } | 
|---|
| 2448 | }else{ | 
|---|
| 2449 | if(target < targetLimit){ | 
|---|
| 2450 | *(target++) =(unsigned char) ((targetByteUnit>>8) -0x80); | 
|---|
| 2451 | if(offsets){ | 
|---|
| 2452 | *(offsets++) = (int32_t)(source - args->source-1); | 
|---|
| 2453 | } | 
|---|
| 2454 | if(target < targetLimit){ | 
|---|
| 2455 | *(target++) =(unsigned char) (targetByteUnit -0x80); | 
|---|
| 2456 | if(offsets){ | 
|---|
| 2457 | *(offsets++) = (int32_t)(source - args->source-1); | 
|---|
| 2458 | } | 
|---|
| 2459 | }else{ | 
|---|
| 2460 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit -0x80); | 
|---|
| 2461 | *err = U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2462 | } | 
|---|
| 2463 | }else{ | 
|---|
| 2464 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) ((targetByteUnit>>8) -0x80); | 
|---|
| 2465 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit-0x80); | 
|---|
| 2466 | *err = U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2467 | } | 
|---|
| 2468 | } | 
|---|
| 2469 |  | 
|---|
| 2470 | } | 
|---|
| 2471 | else{ | 
|---|
| 2472 | /* oops.. the code point is unassingned | 
|---|
| 2473 | * set the error and reason | 
|---|
| 2474 | */ | 
|---|
| 2475 |  | 
|---|
| 2476 | /*check if the char is a First surrogate*/ | 
|---|
| 2477 | if(U16_IS_SURROGATE(sourceChar)) { | 
|---|
| 2478 | if(U16_IS_SURROGATE_LEAD(sourceChar)) { | 
|---|
| 2479 | getTrail: | 
|---|
| 2480 | /*look ahead to find the trail surrogate*/ | 
|---|
| 2481 | if(source <  sourceLimit) { | 
|---|
| 2482 | /* test the following code unit */ | 
|---|
| 2483 | char16_t trail=(char16_t) *source; | 
|---|
| 2484 | if(U16_IS_TRAIL(trail)) { | 
|---|
| 2485 | source++; | 
|---|
| 2486 | sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); | 
|---|
| 2487 | *err = U_INVALID_CHAR_FOUND; | 
|---|
| 2488 | /* convert this surrogate code point */ | 
|---|
| 2489 | /* exit this condition tree */ | 
|---|
| 2490 | } else { | 
|---|
| 2491 | /* this is an unmatched lead code unit (1st surrogate) */ | 
|---|
| 2492 | /* callback(illegal) */ | 
|---|
| 2493 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 2494 | } | 
|---|
| 2495 | } else { | 
|---|
| 2496 | /* no more input */ | 
|---|
| 2497 | *err = U_ZERO_ERROR; | 
|---|
| 2498 | } | 
|---|
| 2499 | } else { | 
|---|
| 2500 | /* this is an unmatched trail code unit (2nd surrogate) */ | 
|---|
| 2501 | /* callback(illegal) */ | 
|---|
| 2502 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 2503 | } | 
|---|
| 2504 | } else { | 
|---|
| 2505 | /* callback(unassigned) for a BMP code point */ | 
|---|
| 2506 | *err = U_INVALID_CHAR_FOUND; | 
|---|
| 2507 | } | 
|---|
| 2508 |  | 
|---|
| 2509 | args->converter->fromUChar32=sourceChar; | 
|---|
| 2510 | break; | 
|---|
| 2511 | } | 
|---|
| 2512 | } /* end if(myTargetIndex<myTargetLength) */ | 
|---|
| 2513 | else{ | 
|---|
| 2514 | *err =U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2515 | break; | 
|---|
| 2516 | } | 
|---|
| 2517 |  | 
|---|
| 2518 | }/* end while(mySourceIndex<mySourceLength) */ | 
|---|
| 2519 |  | 
|---|
| 2520 | /* | 
|---|
| 2521 | * the end of the input stream and detection of truncated input | 
|---|
| 2522 | * are handled by the framework, but for ISO-2022-KR conversion | 
|---|
| 2523 | * we need to be in ASCII mode at the very end | 
|---|
| 2524 | * | 
|---|
| 2525 | * conditions: | 
|---|
| 2526 | *   successful | 
|---|
| 2527 | *   not in ASCII mode | 
|---|
| 2528 | *   end of input and no truncated input | 
|---|
| 2529 | */ | 
|---|
| 2530 | if( U_SUCCESS(*err) && | 
|---|
| 2531 | isTargetByteDBCS && | 
|---|
| 2532 | args->flush && source>=sourceLimit && args->converter->fromUChar32==0 | 
|---|
| 2533 | ) { | 
|---|
| 2534 | int32_t sourceIndex; | 
|---|
| 2535 |  | 
|---|
| 2536 | /* we are switching to ASCII */ | 
|---|
| 2537 | isTargetByteDBCS=false; | 
|---|
| 2538 |  | 
|---|
| 2539 | /* get the source index of the last input character */ | 
|---|
| 2540 | /* | 
|---|
| 2541 | * TODO this would be simpler and more reliable if we used a pair | 
|---|
| 2542 | * of sourceIndex/prevSourceIndex like in ucnvmbcs.c | 
|---|
| 2543 | * so that we could simply use the prevSourceIndex here; | 
|---|
| 2544 | * this code gives an incorrect result for the rare case of an unmatched | 
|---|
| 2545 | * trail surrogate that is alone in the last buffer of the text stream | 
|---|
| 2546 | */ | 
|---|
| 2547 | sourceIndex=(int32_t)(source-args->source); | 
|---|
| 2548 | if(sourceIndex>0) { | 
|---|
| 2549 | --sourceIndex; | 
|---|
| 2550 | if( U16_IS_TRAIL(args->source[sourceIndex]) && | 
|---|
| 2551 | (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) | 
|---|
| 2552 | ) { | 
|---|
| 2553 | --sourceIndex; | 
|---|
| 2554 | } | 
|---|
| 2555 | } else { | 
|---|
| 2556 | sourceIndex=-1; | 
|---|
| 2557 | } | 
|---|
| 2558 |  | 
|---|
| 2559 | fromUWriteUInt8( | 
|---|
| 2560 | args->converter, | 
|---|
| 2561 | SHIFT_IN_STR, 1, | 
|---|
| 2562 | &target, (const char *)targetLimit, | 
|---|
| 2563 | &offsets, sourceIndex, | 
|---|
| 2564 | err); | 
|---|
| 2565 | } | 
|---|
| 2566 |  | 
|---|
| 2567 | /*save the state and return */ | 
|---|
| 2568 | args->source = source; | 
|---|
| 2569 | args->target = (char*)target; | 
|---|
| 2570 | args->converter->fromUnicodeStatus = (uint32_t)isTargetByteDBCS; | 
|---|
| 2571 | } | 
|---|
| 2572 |  | 
|---|
| 2573 | /************************ To Unicode ***************************************/ | 
|---|
| 2574 |  | 
|---|
| 2575 | static void U_CALLCONV | 
|---|
| 2576 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs *args, | 
|---|
| 2577 | UErrorCode* err){ | 
|---|
| 2578 | char const* sourceStart; | 
|---|
| 2579 | UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo); | 
|---|
| 2580 |  | 
|---|
| 2581 | UConverterToUnicodeArgs subArgs; | 
|---|
| 2582 | int32_t minArgsSize; | 
|---|
| 2583 |  | 
|---|
| 2584 | /* set up the subconverter arguments */ | 
|---|
| 2585 | if(args->size<sizeof(UConverterToUnicodeArgs)) { | 
|---|
| 2586 | minArgsSize = args->size; | 
|---|
| 2587 | } else { | 
|---|
| 2588 | minArgsSize = (int32_t)sizeof(UConverterToUnicodeArgs); | 
|---|
| 2589 | } | 
|---|
| 2590 |  | 
|---|
| 2591 | uprv_memcpy(&subArgs, args, minArgsSize); | 
|---|
| 2592 | subArgs.size = (uint16_t)minArgsSize; | 
|---|
| 2593 | subArgs.converter = myData->currentConverter; | 
|---|
| 2594 |  | 
|---|
| 2595 | /* remember the original start of the input for offsets */ | 
|---|
| 2596 | sourceStart = args->source; | 
|---|
| 2597 |  | 
|---|
| 2598 | if(myData->key != 0) { | 
|---|
| 2599 | /* continue with a partial escape sequence */ | 
|---|
| 2600 | goto escape; | 
|---|
| 2601 | } | 
|---|
| 2602 |  | 
|---|
| 2603 | while(U_SUCCESS(*err) && args->source < args->sourceLimit) { | 
|---|
| 2604 | /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/ | 
|---|
| 2605 | subArgs.source = args->source; | 
|---|
| 2606 | subArgs.sourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush); | 
|---|
| 2607 | if(subArgs.source != subArgs.sourceLimit) { | 
|---|
| 2608 | /* | 
|---|
| 2609 | * get the current partial byte sequence | 
|---|
| 2610 | * | 
|---|
| 2611 | * it needs to be moved between the public and the subconverter | 
|---|
| 2612 | * so that the conversion framework, which only sees the public | 
|---|
| 2613 | * converter, can handle truncated and illegal input etc. | 
|---|
| 2614 | */ | 
|---|
| 2615 | if(args->converter->toULength > 0) { | 
|---|
| 2616 | uprv_memcpy(subArgs.converter->toUBytes, args->converter->toUBytes, args->converter->toULength); | 
|---|
| 2617 | } | 
|---|
| 2618 | subArgs.converter->toULength = args->converter->toULength; | 
|---|
| 2619 |  | 
|---|
| 2620 | /* | 
|---|
| 2621 | * Convert up to the end of the input, or to before the next escape character. | 
|---|
| 2622 | * Does not handle conversion extensions because the preToU[] state etc. | 
|---|
| 2623 | * is not copied. | 
|---|
| 2624 | */ | 
|---|
| 2625 | ucnv_MBCSToUnicodeWithOffsets(&subArgs, err); | 
|---|
| 2626 |  | 
|---|
| 2627 | if(args->offsets != nullptr && sourceStart != args->source) { | 
|---|
| 2628 | /* update offsets to base them on the actual start of the input */ | 
|---|
| 2629 | int32_t *offsets = args->offsets; | 
|---|
| 2630 | char16_t *target = args->target; | 
|---|
| 2631 | int32_t delta = (int32_t)(args->source - sourceStart); | 
|---|
| 2632 | while(target < subArgs.target) { | 
|---|
| 2633 | if(*offsets >= 0) { | 
|---|
| 2634 | *offsets += delta; | 
|---|
| 2635 | } | 
|---|
| 2636 | ++offsets; | 
|---|
| 2637 | ++target; | 
|---|
| 2638 | } | 
|---|
| 2639 | } | 
|---|
| 2640 | args->source = subArgs.source; | 
|---|
| 2641 | args->target = subArgs.target; | 
|---|
| 2642 | args->offsets = subArgs.offsets; | 
|---|
| 2643 |  | 
|---|
| 2644 | /* copy input/error/overflow buffers */ | 
|---|
| 2645 | if(subArgs.converter->toULength > 0) { | 
|---|
| 2646 | uprv_memcpy(args->converter->toUBytes, subArgs.converter->toUBytes, subArgs.converter->toULength); | 
|---|
| 2647 | } | 
|---|
| 2648 | args->converter->toULength = subArgs.converter->toULength; | 
|---|
| 2649 |  | 
|---|
| 2650 | if(*err == U_BUFFER_OVERFLOW_ERROR) { | 
|---|
| 2651 | if(subArgs.converter->UCharErrorBufferLength > 0) { | 
|---|
| 2652 | uprv_memcpy(args->converter->UCharErrorBuffer, subArgs.converter->UCharErrorBuffer, | 
|---|
| 2653 | subArgs.converter->UCharErrorBufferLength); | 
|---|
| 2654 | } | 
|---|
| 2655 | args->converter->UCharErrorBufferLength=subArgs.converter->UCharErrorBufferLength; | 
|---|
| 2656 | subArgs.converter->UCharErrorBufferLength = 0; | 
|---|
| 2657 | } | 
|---|
| 2658 | } | 
|---|
| 2659 |  | 
|---|
| 2660 | if (U_FAILURE(*err) || (args->source == args->sourceLimit)) { | 
|---|
| 2661 | return; | 
|---|
| 2662 | } | 
|---|
| 2663 |  | 
|---|
| 2664 | escape: | 
|---|
| 2665 | changeState_2022(args->converter, | 
|---|
| 2666 | &(args->source), | 
|---|
| 2667 | args->sourceLimit, | 
|---|
| 2668 | ISO_2022_KR, | 
|---|
| 2669 | err); | 
|---|
| 2670 | } | 
|---|
| 2671 | } | 
|---|
| 2672 |  | 
|---|
| 2673 | static void U_CALLCONV | 
|---|
| 2674 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, | 
|---|
| 2675 | UErrorCode* err){ | 
|---|
| 2676 | char tempBuf[2]; | 
|---|
| 2677 | const char *mySource = ( char *) args->source; | 
|---|
| 2678 | char16_t *myTarget = args->target; | 
|---|
| 2679 | const char *mySourceLimit = args->sourceLimit; | 
|---|
| 2680 | UChar32 targetUniChar = 0x0000; | 
|---|
| 2681 | char16_t mySourceChar = 0x0000; | 
|---|
| 2682 | UConverterDataISO2022* myData; | 
|---|
| 2683 | UConverterSharedData* sharedData ; | 
|---|
| 2684 | UBool useFallback; | 
|---|
| 2685 |  | 
|---|
| 2686 | myData=(UConverterDataISO2022*)(args->converter->extraInfo); | 
|---|
| 2687 | if(myData->version==1){ | 
|---|
| 2688 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err); | 
|---|
| 2689 | return; | 
|---|
| 2690 | } | 
|---|
| 2691 |  | 
|---|
| 2692 | /* initialize state */ | 
|---|
| 2693 | sharedData = myData->currentConverter->sharedData; | 
|---|
| 2694 | useFallback = args->converter->useFallback; | 
|---|
| 2695 |  | 
|---|
| 2696 | if(myData->key != 0) { | 
|---|
| 2697 | /* continue with a partial escape sequence */ | 
|---|
| 2698 | goto escape; | 
|---|
| 2699 | } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { | 
|---|
| 2700 | /* continue with a partial double-byte character */ | 
|---|
| 2701 | mySourceChar = args->converter->toUBytes[0]; | 
|---|
| 2702 | args->converter->toULength = 0; | 
|---|
| 2703 | goto getTrailByte; | 
|---|
| 2704 | } | 
|---|
| 2705 |  | 
|---|
| 2706 | while(mySource< mySourceLimit){ | 
|---|
| 2707 |  | 
|---|
| 2708 | if(myTarget < args->targetLimit){ | 
|---|
| 2709 |  | 
|---|
| 2710 | mySourceChar= (unsigned char) *mySource++; | 
|---|
| 2711 |  | 
|---|
| 2712 | if(mySourceChar==UCNV_SI){ | 
|---|
| 2713 | myData->toU2022State.g = 0; | 
|---|
| 2714 | if (myData->isEmptySegment) { | 
|---|
| 2715 | myData->isEmptySegment = false;	/* we are handling it, reset to avoid future spurious errors */ | 
|---|
| 2716 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 2717 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | 
|---|
| 2718 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | 
|---|
| 2719 | args->converter->toULength = 1; | 
|---|
| 2720 | args->target = myTarget; | 
|---|
| 2721 | args->source = mySource; | 
|---|
| 2722 | return; | 
|---|
| 2723 | } | 
|---|
| 2724 | /*consume the source */ | 
|---|
| 2725 | continue; | 
|---|
| 2726 | }else if(mySourceChar==UCNV_SO){ | 
|---|
| 2727 | myData->toU2022State.g = 1; | 
|---|
| 2728 | myData->isEmptySegment = true;	/* Begin a new segment, empty so far */ | 
|---|
| 2729 | /*consume the source */ | 
|---|
| 2730 | continue; | 
|---|
| 2731 | }else if(mySourceChar==ESC_2022){ | 
|---|
| 2732 | mySource--; | 
|---|
| 2733 | escape: | 
|---|
| 2734 | myData->isEmptySegment = false;	/* Any invalid ESC sequences will be detected separately, so just reset this */ | 
|---|
| 2735 | changeState_2022(args->converter,&(mySource), | 
|---|
| 2736 | mySourceLimit, ISO_2022_KR, err); | 
|---|
| 2737 | if(U_FAILURE(*err)){ | 
|---|
| 2738 | args->target = myTarget; | 
|---|
| 2739 | args->source = mySource; | 
|---|
| 2740 | return; | 
|---|
| 2741 | } | 
|---|
| 2742 | continue; | 
|---|
| 2743 | } | 
|---|
| 2744 |  | 
|---|
| 2745 | myData->isEmptySegment = false;	/* Any invalid char errors will be detected separately, so just reset this */ | 
|---|
| 2746 | if(myData->toU2022State.g == 1) { | 
|---|
| 2747 | if(mySource < mySourceLimit) { | 
|---|
| 2748 | int leadIsOk, trailIsOk; | 
|---|
| 2749 | uint8_t trailByte; | 
|---|
| 2750 | getTrailByte: | 
|---|
| 2751 | targetUniChar = missingCharMarker; | 
|---|
| 2752 | trailByte = (uint8_t)*mySource; | 
|---|
| 2753 | /* | 
|---|
| 2754 | * Ticket 5691: consistent illegal sequences: | 
|---|
| 2755 | * - We include at least the first byte in the illegal sequence. | 
|---|
| 2756 | * - If any of the non-initial bytes could be the start of a character, | 
|---|
| 2757 | *   we stop the illegal sequence before the first one of those. | 
|---|
| 2758 | * | 
|---|
| 2759 | * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is | 
|---|
| 2760 | * an ESC/SO/SI, we report only the first byte as the illegal sequence. | 
|---|
| 2761 | * Otherwise we convert or report the pair of bytes. | 
|---|
| 2762 | */ | 
|---|
| 2763 | leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); | 
|---|
| 2764 | trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); | 
|---|
| 2765 | if (leadIsOk && trailIsOk) { | 
|---|
| 2766 | ++mySource; | 
|---|
| 2767 | tempBuf[0] = (char)(mySourceChar + 0x80); | 
|---|
| 2768 | tempBuf[1] = (char)(trailByte + 0x80); | 
|---|
| 2769 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, tempBuf, 2, useFallback); | 
|---|
| 2770 | mySourceChar = (mySourceChar << 8) | trailByte; | 
|---|
| 2771 | } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { | 
|---|
| 2772 | /* report a pair of illegal bytes if the second byte is not a DBCS starter */ | 
|---|
| 2773 | ++mySource; | 
|---|
| 2774 | /* add another bit so that the code below writes 2 bytes in case of error */ | 
|---|
| 2775 | mySourceChar = static_cast<char16_t>(0x10000 | (mySourceChar << 8) | trailByte); | 
|---|
| 2776 | } | 
|---|
| 2777 | } else { | 
|---|
| 2778 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | 
|---|
| 2779 | args->converter->toULength = 1; | 
|---|
| 2780 | break; | 
|---|
| 2781 | } | 
|---|
| 2782 | } | 
|---|
| 2783 | else if(mySourceChar <= 0x7f) { | 
|---|
| 2784 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, mySource - 1, 1, useFallback); | 
|---|
| 2785 | } else { | 
|---|
| 2786 | targetUniChar = 0xffff; | 
|---|
| 2787 | } | 
|---|
| 2788 | if(targetUniChar < 0xfffe){ | 
|---|
| 2789 | if(args->offsets) { | 
|---|
| 2790 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 2791 | } | 
|---|
| 2792 | *(myTarget++)=(char16_t)targetUniChar; | 
|---|
| 2793 | } | 
|---|
| 2794 | else { | 
|---|
| 2795 | /* Call the callback function*/ | 
|---|
| 2796 | toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); | 
|---|
| 2797 | break; | 
|---|
| 2798 | } | 
|---|
| 2799 | } | 
|---|
| 2800 | else{ | 
|---|
| 2801 | *err =U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 2802 | break; | 
|---|
| 2803 | } | 
|---|
| 2804 | } | 
|---|
| 2805 | args->target = myTarget; | 
|---|
| 2806 | args->source = mySource; | 
|---|
| 2807 | } | 
|---|
| 2808 |  | 
|---|
| 2809 | /*************************** END ISO2022-KR *********************************/ | 
|---|
| 2810 |  | 
|---|
| 2811 | /*************************** ISO-2022-CN ********************************* | 
|---|
| 2812 | * | 
|---|
| 2813 | * Rules for ISO-2022-CN Encoding: | 
|---|
| 2814 | * i)   The designator sequence must appear once on a line before any instance | 
|---|
| 2815 | *      of character set it designates. | 
|---|
| 2816 | * ii)  If two lines contain characters from the same character set, both lines | 
|---|
| 2817 | *      must include the designator sequence. | 
|---|
| 2818 | * iii) Once the designator sequence is known, a shifting sequence has to be found | 
|---|
| 2819 | *      to invoke the  shifting | 
|---|
| 2820 | * iv)  All lines start in ASCII and end in ASCII. | 
|---|
| 2821 | * v)   Four shifting sequences are employed for this purpose: | 
|---|
| 2822 | * | 
|---|
| 2823 | *      Sequcence   ASCII Eq    Charsets | 
|---|
| 2824 | *      ----------  -------    --------- | 
|---|
| 2825 | *      SI           <SI>        US-ASCII | 
|---|
| 2826 | *      SO           <SO>        CNS-11643-1992 Plane 1, GB2312, ISO-IR-165 | 
|---|
| 2827 | *      SS2          <ESC>N      CNS-11643-1992 Plane 2 | 
|---|
| 2828 | *      SS3          <ESC>O      CNS-11643-1992 Planes 3-7 | 
|---|
| 2829 | * | 
|---|
| 2830 | * vi) | 
|---|
| 2831 | *      SOdesignator  : ESC "$" ")" finalchar_for_SO | 
|---|
| 2832 | *      SS2designator : ESC "$" "*" finalchar_for_SS2 | 
|---|
| 2833 | *      SS3designator : ESC "$" "+" finalchar_for_SS3 | 
|---|
| 2834 | * | 
|---|
| 2835 | *      ESC $ ) A       Indicates the bytes following SO are Chinese | 
|---|
| 2836 | *       characters as defined in GB 2312-80, until | 
|---|
| 2837 | *       another SOdesignation appears | 
|---|
| 2838 | * | 
|---|
| 2839 | * | 
|---|
| 2840 | *      ESC $ ) E       Indicates the bytes following SO are as defined | 
|---|
| 2841 | *       in ISO-IR-165 (for details, see section 2.1), | 
|---|
| 2842 | *       until another SOdesignation appears | 
|---|
| 2843 | * | 
|---|
| 2844 | *      ESC $ ) G       Indicates the bytes following SO are as defined | 
|---|
| 2845 | *       in CNS 11643-plane-1, until another | 
|---|
| 2846 | *       SOdesignation appears | 
|---|
| 2847 | * | 
|---|
| 2848 | *      ESC $ * H       Indicates the two bytes immediately following | 
|---|
| 2849 | *       SS2 is a Chinese character as defined in CNS | 
|---|
| 2850 | *       11643-plane-2, until another SS2designation | 
|---|
| 2851 | *       appears | 
|---|
| 2852 | *       (Meaning <ESC>N must precede every 2 byte | 
|---|
| 2853 | *        sequence.) | 
|---|
| 2854 | * | 
|---|
| 2855 | *      ESC $ + I       Indicates the immediate two bytes following SS3 | 
|---|
| 2856 | *       is a Chinese character as defined in CNS | 
|---|
| 2857 | *       11643-plane-3, until another SS3designation | 
|---|
| 2858 | *       appears | 
|---|
| 2859 | *       (Meaning <ESC>O must precede every 2 byte | 
|---|
| 2860 | *        sequence.) | 
|---|
| 2861 | * | 
|---|
| 2862 | *      ESC $ + J       Indicates the immediate two bytes following SS3 | 
|---|
| 2863 | *       is a Chinese character as defined in CNS | 
|---|
| 2864 | *       11643-plane-4, until another SS3designation | 
|---|
| 2865 | *       appears | 
|---|
| 2866 | *       (In English: <ESC>O must precede every 2 byte | 
|---|
| 2867 | *        sequence.) | 
|---|
| 2868 | * | 
|---|
| 2869 | *      ESC $ + K       Indicates the immediate two bytes following SS3 | 
|---|
| 2870 | *       is a Chinese character as defined in CNS | 
|---|
| 2871 | *       11643-plane-5, until another SS3designation | 
|---|
| 2872 | *       appears | 
|---|
| 2873 | * | 
|---|
| 2874 | *      ESC $ + L       Indicates the immediate two bytes following SS3 | 
|---|
| 2875 | *       is a Chinese character as defined in CNS | 
|---|
| 2876 | *       11643-plane-6, until another SS3designation | 
|---|
| 2877 | *       appears | 
|---|
| 2878 | * | 
|---|
| 2879 | *      ESC $ + M       Indicates the immediate two bytes following SS3 | 
|---|
| 2880 | *       is a Chinese character as defined in CNS | 
|---|
| 2881 | *       11643-plane-7, until another SS3designation | 
|---|
| 2882 | *       appears | 
|---|
| 2883 | * | 
|---|
| 2884 | *       As in ISO-2022-CN, each line starts in ASCII, and ends in ASCII, and | 
|---|
| 2885 | *       has its own designation information before any Chinese characters | 
|---|
| 2886 | *       appear | 
|---|
| 2887 | * | 
|---|
| 2888 | */ | 
|---|
| 2889 |  | 
|---|
| 2890 | /* The following are defined this way to make the strings truly readonly */ | 
|---|
| 2891 | static const char GB_2312_80_STR[] = "\x1B\x24\x29\x41"; | 
|---|
| 2892 | static const char ISO_IR_165_STR[] = "\x1B\x24\x29\x45"; | 
|---|
| 2893 | static const char CNS_11643_1992_Plane_1_STR[] = "\x1B\x24\x29\x47"; | 
|---|
| 2894 | static const char CNS_11643_1992_Plane_2_STR[] = "\x1B\x24\x2A\x48"; | 
|---|
| 2895 | static const char CNS_11643_1992_Plane_3_STR[] = "\x1B\x24\x2B\x49"; | 
|---|
| 2896 | static const char CNS_11643_1992_Plane_4_STR[] = "\x1B\x24\x2B\x4A"; | 
|---|
| 2897 | static const char CNS_11643_1992_Plane_5_STR[] = "\x1B\x24\x2B\x4B"; | 
|---|
| 2898 | static const char CNS_11643_1992_Plane_6_STR[] = "\x1B\x24\x2B\x4C"; | 
|---|
| 2899 | static const char CNS_11643_1992_Plane_7_STR[] = "\x1B\x24\x2B\x4D"; | 
|---|
| 2900 |  | 
|---|
| 2901 | /********************** ISO2022-CN Data **************************/ | 
|---|
| 2902 | static const char* const escSeqCharsCN[10] ={ | 
|---|
| 2903 | SHIFT_IN_STR,                   /* 0 ASCII */ | 
|---|
| 2904 | GB_2312_80_STR,                 /* 1 GB2312_1 */ | 
|---|
| 2905 | ISO_IR_165_STR,                 /* 2 ISO_IR_165 */ | 
|---|
| 2906 | CNS_11643_1992_Plane_1_STR, | 
|---|
| 2907 | CNS_11643_1992_Plane_2_STR, | 
|---|
| 2908 | CNS_11643_1992_Plane_3_STR, | 
|---|
| 2909 | CNS_11643_1992_Plane_4_STR, | 
|---|
| 2910 | CNS_11643_1992_Plane_5_STR, | 
|---|
| 2911 | CNS_11643_1992_Plane_6_STR, | 
|---|
| 2912 | CNS_11643_1992_Plane_7_STR | 
|---|
| 2913 | }; | 
|---|
| 2914 |  | 
|---|
| 2915 | static void U_CALLCONV | 
|---|
| 2916 | UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){ | 
|---|
| 2917 | UConverter *cnv = args->converter; | 
|---|
| 2918 | UConverterDataISO2022 *converterData; | 
|---|
| 2919 | ISO2022State *pFromU2022State; | 
|---|
| 2920 | uint8_t *target = (uint8_t *) args->target; | 
|---|
| 2921 | const uint8_t *targetLimit = (const uint8_t *) args->targetLimit; | 
|---|
| 2922 | const char16_t* source = args->source; | 
|---|
| 2923 | const char16_t* sourceLimit = args->sourceLimit; | 
|---|
| 2924 | int32_t* offsets = args->offsets; | 
|---|
| 2925 | UChar32 sourceChar; | 
|---|
| 2926 | char buffer[8]; | 
|---|
| 2927 | int32_t len; | 
|---|
| 2928 | int8_t choices[3]; | 
|---|
| 2929 | int32_t choiceCount; | 
|---|
| 2930 | uint32_t targetValue = 0; | 
|---|
| 2931 | UBool useFallback; | 
|---|
| 2932 |  | 
|---|
| 2933 | /* set up the state */ | 
|---|
| 2934 | converterData     = (UConverterDataISO2022*)cnv->extraInfo; | 
|---|
| 2935 | pFromU2022State   = &converterData->fromU2022State; | 
|---|
| 2936 |  | 
|---|
| 2937 | choiceCount = 0; | 
|---|
| 2938 |  | 
|---|
| 2939 | /* check if the last codepoint of previous buffer was a lead surrogate*/ | 
|---|
| 2940 | if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) { | 
|---|
| 2941 | goto getTrail; | 
|---|
| 2942 | } | 
|---|
| 2943 |  | 
|---|
| 2944 | while( source < sourceLimit){ | 
|---|
| 2945 | if(target < targetLimit){ | 
|---|
| 2946 |  | 
|---|
| 2947 | sourceChar  = *(source++); | 
|---|
| 2948 | /*check if the char is a First surrogate*/ | 
|---|
| 2949 | if(U16_IS_SURROGATE(sourceChar)) { | 
|---|
| 2950 | if(U16_IS_SURROGATE_LEAD(sourceChar)) { | 
|---|
| 2951 | getTrail: | 
|---|
| 2952 | /*look ahead to find the trail surrogate*/ | 
|---|
| 2953 | if(source < sourceLimit) { | 
|---|
| 2954 | /* test the following code unit */ | 
|---|
| 2955 | char16_t trail=(char16_t) *source; | 
|---|
| 2956 | if(U16_IS_TRAIL(trail)) { | 
|---|
| 2957 | source++; | 
|---|
| 2958 | sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); | 
|---|
| 2959 | cnv->fromUChar32=0x00; | 
|---|
| 2960 | /* convert this supplementary code point */ | 
|---|
| 2961 | /* exit this condition tree */ | 
|---|
| 2962 | } else { | 
|---|
| 2963 | /* this is an unmatched lead code unit (1st surrogate) */ | 
|---|
| 2964 | /* callback(illegal) */ | 
|---|
| 2965 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 2966 | cnv->fromUChar32=sourceChar; | 
|---|
| 2967 | break; | 
|---|
| 2968 | } | 
|---|
| 2969 | } else { | 
|---|
| 2970 | /* no more input */ | 
|---|
| 2971 | cnv->fromUChar32=sourceChar; | 
|---|
| 2972 | break; | 
|---|
| 2973 | } | 
|---|
| 2974 | } else { | 
|---|
| 2975 | /* this is an unmatched trail code unit (2nd surrogate) */ | 
|---|
| 2976 | /* callback(illegal) */ | 
|---|
| 2977 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 2978 | cnv->fromUChar32=sourceChar; | 
|---|
| 2979 | break; | 
|---|
| 2980 | } | 
|---|
| 2981 | } | 
|---|
| 2982 |  | 
|---|
| 2983 | /* do the conversion */ | 
|---|
| 2984 | if(sourceChar <= 0x007f ){ | 
|---|
| 2985 | /* do not convert SO/SI/ESC */ | 
|---|
| 2986 | if(IS_2022_CONTROL(sourceChar)) { | 
|---|
| 2987 | /* callback(illegal) */ | 
|---|
| 2988 | *err=U_ILLEGAL_CHAR_FOUND; | 
|---|
| 2989 | cnv->fromUChar32=sourceChar; | 
|---|
| 2990 | break; | 
|---|
| 2991 | } | 
|---|
| 2992 |  | 
|---|
| 2993 | /* US-ASCII */ | 
|---|
| 2994 | if(pFromU2022State->g == 0) { | 
|---|
| 2995 | buffer[0] = (char)sourceChar; | 
|---|
| 2996 | len = 1; | 
|---|
| 2997 | } else { | 
|---|
| 2998 | buffer[0] = UCNV_SI; | 
|---|
| 2999 | buffer[1] = (char)sourceChar; | 
|---|
| 3000 | len = 2; | 
|---|
| 3001 | pFromU2022State->g = 0; | 
|---|
| 3002 | choiceCount = 0; | 
|---|
| 3003 | } | 
|---|
| 3004 | if(sourceChar == CR || sourceChar == LF) { | 
|---|
| 3005 | /* reset the state at the end of a line */ | 
|---|
| 3006 | uprv_memset(pFromU2022State, 0, sizeof(ISO2022State)); | 
|---|
| 3007 | choiceCount = 0; | 
|---|
| 3008 | } | 
|---|
| 3009 | } | 
|---|
| 3010 | else{ | 
|---|
| 3011 | /* convert U+0080..U+10ffff */ | 
|---|
| 3012 | int32_t i; | 
|---|
| 3013 | int8_t cs, g; | 
|---|
| 3014 |  | 
|---|
| 3015 | if(choiceCount == 0) { | 
|---|
| 3016 | /* try the current SO/G1 converter first */ | 
|---|
| 3017 | choices[0] = pFromU2022State->cs[1]; | 
|---|
| 3018 |  | 
|---|
| 3019 | /* default to GB2312_1 if none is designated yet */ | 
|---|
| 3020 | if(choices[0] == 0) { | 
|---|
| 3021 | choices[0] = GB2312_1; | 
|---|
| 3022 | } | 
|---|
| 3023 |  | 
|---|
| 3024 | if(converterData->version == 0) { | 
|---|
| 3025 | /* ISO-2022-CN */ | 
|---|
| 3026 |  | 
|---|
| 3027 | /* try the other SO/G1 converter; a CNS_11643_1 lookup may result in any plane */ | 
|---|
| 3028 | if(choices[0] == GB2312_1) { | 
|---|
| 3029 | choices[1] = (int8_t)CNS_11643_1; | 
|---|
| 3030 | } else { | 
|---|
| 3031 | choices[1] = (int8_t)GB2312_1; | 
|---|
| 3032 | } | 
|---|
| 3033 |  | 
|---|
| 3034 | choiceCount = 2; | 
|---|
| 3035 | } else if (converterData->version == 1) { | 
|---|
| 3036 | /* ISO-2022-CN-EXT */ | 
|---|
| 3037 |  | 
|---|
| 3038 | /* try one of the other converters */ | 
|---|
| 3039 | switch(choices[0]) { | 
|---|
| 3040 | case GB2312_1: | 
|---|
| 3041 | choices[1] = (int8_t)CNS_11643_1; | 
|---|
| 3042 | choices[2] = (int8_t)ISO_IR_165; | 
|---|
| 3043 | break; | 
|---|
| 3044 | case ISO_IR_165: | 
|---|
| 3045 | choices[1] = (int8_t)GB2312_1; | 
|---|
| 3046 | choices[2] = (int8_t)CNS_11643_1; | 
|---|
| 3047 | break; | 
|---|
| 3048 | default: /* CNS_11643_x */ | 
|---|
| 3049 | choices[1] = (int8_t)GB2312_1; | 
|---|
| 3050 | choices[2] = (int8_t)ISO_IR_165; | 
|---|
| 3051 | break; | 
|---|
| 3052 | } | 
|---|
| 3053 |  | 
|---|
| 3054 | choiceCount = 3; | 
|---|
| 3055 | } else { | 
|---|
| 3056 | choices[0] = (int8_t)CNS_11643_1; | 
|---|
| 3057 | choices[1] = (int8_t)GB2312_1; | 
|---|
| 3058 | } | 
|---|
| 3059 | } | 
|---|
| 3060 |  | 
|---|
| 3061 | cs = g = 0; | 
|---|
| 3062 | /* | 
|---|
| 3063 | * len==0: no mapping found yet | 
|---|
| 3064 | * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks | 
|---|
| 3065 | * len>0: found a roundtrip result, done | 
|---|
| 3066 | */ | 
|---|
| 3067 | len = 0; | 
|---|
| 3068 | /* | 
|---|
| 3069 | * We will turn off useFallback after finding a fallback, | 
|---|
| 3070 | * but we still get fallbacks from PUA code points as usual. | 
|---|
| 3071 | * Therefore, we will also need to check that we don't overwrite | 
|---|
| 3072 | * an early fallback with a later one. | 
|---|
| 3073 | */ | 
|---|
| 3074 | useFallback = cnv->useFallback; | 
|---|
| 3075 |  | 
|---|
| 3076 | for(i = 0; i < choiceCount && len <= 0; ++i) { | 
|---|
| 3077 | int8_t cs0 = choices[i]; | 
|---|
| 3078 | if(cs0 > 0) { | 
|---|
| 3079 | uint32_t value; | 
|---|
| 3080 | int32_t len2; | 
|---|
| 3081 | if(cs0 >= CNS_11643_0) { | 
|---|
| 3082 | len2 = MBCS_FROM_UCHAR32_ISO2022( | 
|---|
| 3083 | converterData->myConverterArray[CNS_11643], | 
|---|
| 3084 | sourceChar, | 
|---|
| 3085 | &value, | 
|---|
| 3086 | useFallback, | 
|---|
| 3087 | MBCS_OUTPUT_3); | 
|---|
| 3088 | if(len2 == 3 || (len2 == -3 && len == 0)) { | 
|---|
| 3089 | targetValue = value; | 
|---|
| 3090 | cs = (int8_t)(CNS_11643_0 + (value >> 16) - 0x80); | 
|---|
| 3091 | if(len2 >= 0) { | 
|---|
| 3092 | len = 2; | 
|---|
| 3093 | } else { | 
|---|
| 3094 | len = -2; | 
|---|
| 3095 | useFallback = false; | 
|---|
| 3096 | } | 
|---|
| 3097 | if(cs == CNS_11643_1) { | 
|---|
| 3098 | g = 1; | 
|---|
| 3099 | } else if(cs == CNS_11643_2) { | 
|---|
| 3100 | g = 2; | 
|---|
| 3101 | } else /* plane 3..7 */ if(converterData->version == 1) { | 
|---|
| 3102 | g = 3; | 
|---|
| 3103 | } else { | 
|---|
| 3104 | /* ISO-2022-CN (without -EXT) does not support plane 3..7 */ | 
|---|
| 3105 | len = 0; | 
|---|
| 3106 | } | 
|---|
| 3107 | } | 
|---|
| 3108 | } else { | 
|---|
| 3109 | /* GB2312_1 or ISO-IR-165 */ | 
|---|
| 3110 | U_ASSERT(cs0<UCNV_2022_MAX_CONVERTERS); | 
|---|
| 3111 | len2 = MBCS_FROM_UCHAR32_ISO2022( | 
|---|
| 3112 | converterData->myConverterArray[cs0], | 
|---|
| 3113 | sourceChar, | 
|---|
| 3114 | &value, | 
|---|
| 3115 | useFallback, | 
|---|
| 3116 | MBCS_OUTPUT_2); | 
|---|
| 3117 | if(len2 == 2 || (len2 == -2 && len == 0)) { | 
|---|
| 3118 | targetValue = value; | 
|---|
| 3119 | len = len2; | 
|---|
| 3120 | cs = cs0; | 
|---|
| 3121 | g = 1; | 
|---|
| 3122 | useFallback = false; | 
|---|
| 3123 | } | 
|---|
| 3124 | } | 
|---|
| 3125 | } | 
|---|
| 3126 | } | 
|---|
| 3127 |  | 
|---|
| 3128 | if(len != 0) { | 
|---|
| 3129 | len = 0; /* count output bytes; it must have been abs(len) == 2 */ | 
|---|
| 3130 |  | 
|---|
| 3131 | /* write the designation sequence if necessary */ | 
|---|
| 3132 | if(cs != pFromU2022State->cs[g]) { | 
|---|
| 3133 | if(cs < CNS_11643) { | 
|---|
| 3134 | uprv_memcpy(buffer, escSeqCharsCN[cs], 4); | 
|---|
| 3135 | } else { | 
|---|
| 3136 | U_ASSERT(cs >= CNS_11643_1); | 
|---|
| 3137 | uprv_memcpy(buffer, escSeqCharsCN[CNS_11643 + (cs - CNS_11643_1)], 4); | 
|---|
| 3138 | } | 
|---|
| 3139 | len = 4; | 
|---|
| 3140 | pFromU2022State->cs[g] = cs; | 
|---|
| 3141 | if(g == 1) { | 
|---|
| 3142 | /* changing the SO/G1 charset invalidates the choices[] */ | 
|---|
| 3143 | choiceCount = 0; | 
|---|
| 3144 | } | 
|---|
| 3145 | } | 
|---|
| 3146 |  | 
|---|
| 3147 | /* write the shift sequence if necessary */ | 
|---|
| 3148 | if(g != pFromU2022State->g) { | 
|---|
| 3149 | switch(g) { | 
|---|
| 3150 | case 1: | 
|---|
| 3151 | buffer[len++] = UCNV_SO; | 
|---|
| 3152 |  | 
|---|
| 3153 | /* set the new state only if it is the locking shift SO/G1, not for SS2 or SS3 */ | 
|---|
| 3154 | pFromU2022State->g = 1; | 
|---|
| 3155 | break; | 
|---|
| 3156 | case 2: | 
|---|
| 3157 | buffer[len++] = 0x1b; | 
|---|
| 3158 | buffer[len++] = 0x4e; | 
|---|
| 3159 | break; | 
|---|
| 3160 | default: /* case 3 */ | 
|---|
| 3161 | buffer[len++] = 0x1b; | 
|---|
| 3162 | buffer[len++] = 0x4f; | 
|---|
| 3163 | break; | 
|---|
| 3164 | } | 
|---|
| 3165 | } | 
|---|
| 3166 |  | 
|---|
| 3167 | /* write the two output bytes */ | 
|---|
| 3168 | buffer[len++] = (char)(targetValue >> 8); | 
|---|
| 3169 | buffer[len++] = (char)targetValue; | 
|---|
| 3170 | } else { | 
|---|
| 3171 | /* if we cannot find the character after checking all codepages | 
|---|
| 3172 | * then this is an error | 
|---|
| 3173 | */ | 
|---|
| 3174 | *err = U_INVALID_CHAR_FOUND; | 
|---|
| 3175 | cnv->fromUChar32=sourceChar; | 
|---|
| 3176 | break; | 
|---|
| 3177 | } | 
|---|
| 3178 | } | 
|---|
| 3179 |  | 
|---|
| 3180 | /* output len>0 bytes in buffer[] */ | 
|---|
| 3181 | if(len == 1) { | 
|---|
| 3182 | *target++ = buffer[0]; | 
|---|
| 3183 | if(offsets) { | 
|---|
| 3184 | *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */ | 
|---|
| 3185 | } | 
|---|
| 3186 | } else if(len == 2 && (target + 2) <= targetLimit) { | 
|---|
| 3187 | *target++ = buffer[0]; | 
|---|
| 3188 | *target++ = buffer[1]; | 
|---|
| 3189 | if(offsets) { | 
|---|
| 3190 | int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar)); | 
|---|
| 3191 | *offsets++ = sourceIndex; | 
|---|
| 3192 | *offsets++ = sourceIndex; | 
|---|
| 3193 | } | 
|---|
| 3194 | } else { | 
|---|
| 3195 | fromUWriteUInt8( | 
|---|
| 3196 | cnv, | 
|---|
| 3197 | buffer, len, | 
|---|
| 3198 | &target, (const char *)targetLimit, | 
|---|
| 3199 | &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)), | 
|---|
| 3200 | err); | 
|---|
| 3201 | if(U_FAILURE(*err)) { | 
|---|
| 3202 | break; | 
|---|
| 3203 | } | 
|---|
| 3204 | } | 
|---|
| 3205 | } /* end if(myTargetIndex<myTargetLength) */ | 
|---|
| 3206 | else{ | 
|---|
| 3207 | *err =U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 3208 | break; | 
|---|
| 3209 | } | 
|---|
| 3210 |  | 
|---|
| 3211 | }/* end while(mySourceIndex<mySourceLength) */ | 
|---|
| 3212 |  | 
|---|
| 3213 | /* | 
|---|
| 3214 | * the end of the input stream and detection of truncated input | 
|---|
| 3215 | * are handled by the framework, but for ISO-2022-CN conversion | 
|---|
| 3216 | * we need to be in ASCII mode at the very end | 
|---|
| 3217 | * | 
|---|
| 3218 | * conditions: | 
|---|
| 3219 | *   successful | 
|---|
| 3220 | *   not in ASCII mode | 
|---|
| 3221 | *   end of input and no truncated input | 
|---|
| 3222 | */ | 
|---|
| 3223 | if( U_SUCCESS(*err) && | 
|---|
| 3224 | pFromU2022State->g!=0 && | 
|---|
| 3225 | args->flush && source>=sourceLimit && cnv->fromUChar32==0 | 
|---|
| 3226 | ) { | 
|---|
| 3227 | int32_t sourceIndex; | 
|---|
| 3228 |  | 
|---|
| 3229 | /* we are switching to ASCII */ | 
|---|
| 3230 | pFromU2022State->g=0; | 
|---|
| 3231 |  | 
|---|
| 3232 | /* get the source index of the last input character */ | 
|---|
| 3233 | /* | 
|---|
| 3234 | * TODO this would be simpler and more reliable if we used a pair | 
|---|
| 3235 | * of sourceIndex/prevSourceIndex like in ucnvmbcs.c | 
|---|
| 3236 | * so that we could simply use the prevSourceIndex here; | 
|---|
| 3237 | * this code gives an incorrect result for the rare case of an unmatched | 
|---|
| 3238 | * trail surrogate that is alone in the last buffer of the text stream | 
|---|
| 3239 | */ | 
|---|
| 3240 | sourceIndex=(int32_t)(source-args->source); | 
|---|
| 3241 | if(sourceIndex>0) { | 
|---|
| 3242 | --sourceIndex; | 
|---|
| 3243 | if( U16_IS_TRAIL(args->source[sourceIndex]) && | 
|---|
| 3244 | (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) | 
|---|
| 3245 | ) { | 
|---|
| 3246 | --sourceIndex; | 
|---|
| 3247 | } | 
|---|
| 3248 | } else { | 
|---|
| 3249 | sourceIndex=-1; | 
|---|
| 3250 | } | 
|---|
| 3251 |  | 
|---|
| 3252 | fromUWriteUInt8( | 
|---|
| 3253 | cnv, | 
|---|
| 3254 | SHIFT_IN_STR, 1, | 
|---|
| 3255 | &target, (const char *)targetLimit, | 
|---|
| 3256 | &offsets, sourceIndex, | 
|---|
| 3257 | err); | 
|---|
| 3258 | } | 
|---|
| 3259 |  | 
|---|
| 3260 | /*save the state and return */ | 
|---|
| 3261 | args->source = source; | 
|---|
| 3262 | args->target = (char*)target; | 
|---|
| 3263 | } | 
|---|
| 3264 |  | 
|---|
| 3265 |  | 
|---|
| 3266 | static void U_CALLCONV | 
|---|
| 3267 | UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, | 
|---|
| 3268 | UErrorCode* err){ | 
|---|
| 3269 | char tempBuf[3]; | 
|---|
| 3270 | const char *mySource = (char *) args->source; | 
|---|
| 3271 | char16_t *myTarget = args->target; | 
|---|
| 3272 | const char *mySourceLimit = args->sourceLimit; | 
|---|
| 3273 | uint32_t targetUniChar = 0x0000; | 
|---|
| 3274 | uint32_t mySourceChar = 0x0000; | 
|---|
| 3275 | UConverterDataISO2022* myData; | 
|---|
| 3276 | ISO2022State *pToU2022State; | 
|---|
| 3277 |  | 
|---|
| 3278 | myData=(UConverterDataISO2022*)(args->converter->extraInfo); | 
|---|
| 3279 | pToU2022State = &myData->toU2022State; | 
|---|
| 3280 |  | 
|---|
| 3281 | if(myData->key != 0) { | 
|---|
| 3282 | /* continue with a partial escape sequence */ | 
|---|
| 3283 | goto escape; | 
|---|
| 3284 | } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { | 
|---|
| 3285 | /* continue with a partial double-byte character */ | 
|---|
| 3286 | mySourceChar = args->converter->toUBytes[0]; | 
|---|
| 3287 | args->converter->toULength = 0; | 
|---|
| 3288 | targetUniChar = missingCharMarker; | 
|---|
| 3289 | goto getTrailByte; | 
|---|
| 3290 | } | 
|---|
| 3291 |  | 
|---|
| 3292 | while(mySource < mySourceLimit){ | 
|---|
| 3293 |  | 
|---|
| 3294 | targetUniChar =missingCharMarker; | 
|---|
| 3295 |  | 
|---|
| 3296 | if(myTarget < args->targetLimit){ | 
|---|
| 3297 |  | 
|---|
| 3298 | mySourceChar= (unsigned char) *mySource++; | 
|---|
| 3299 |  | 
|---|
| 3300 | switch(mySourceChar){ | 
|---|
| 3301 | case UCNV_SI: | 
|---|
| 3302 | pToU2022State->g=0; | 
|---|
| 3303 | if (myData->isEmptySegment) { | 
|---|
| 3304 | myData->isEmptySegment = false;	/* we are handling it, reset to avoid future spurious errors */ | 
|---|
| 3305 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 3306 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | 
|---|
| 3307 | args->converter->toUBytes[0] = static_cast<uint8_t>(mySourceChar); | 
|---|
| 3308 | args->converter->toULength = 1; | 
|---|
| 3309 | args->target = myTarget; | 
|---|
| 3310 | args->source = mySource; | 
|---|
| 3311 | return; | 
|---|
| 3312 | } | 
|---|
| 3313 | continue; | 
|---|
| 3314 |  | 
|---|
| 3315 | case UCNV_SO: | 
|---|
| 3316 | if(pToU2022State->cs[1] != 0) { | 
|---|
| 3317 | pToU2022State->g=1; | 
|---|
| 3318 | myData->isEmptySegment = true;	/* Begin a new segment, empty so far */ | 
|---|
| 3319 | continue; | 
|---|
| 3320 | } else { | 
|---|
| 3321 | /* illegal to have SO before a matching designator */ | 
|---|
| 3322 | myData->isEmptySegment = false;	/* Handling a different error, reset this to avoid future spurious errs */ | 
|---|
| 3323 | break; | 
|---|
| 3324 | } | 
|---|
| 3325 |  | 
|---|
| 3326 | case ESC_2022: | 
|---|
| 3327 | mySource--; | 
|---|
| 3328 | escape: | 
|---|
| 3329 | { | 
|---|
| 3330 | const char * mySourceBefore = mySource; | 
|---|
| 3331 | int8_t toULengthBefore = args->converter->toULength; | 
|---|
| 3332 |  | 
|---|
| 3333 | changeState_2022(args->converter,&(mySource), | 
|---|
| 3334 | mySourceLimit, ISO_2022_CN,err); | 
|---|
| 3335 |  | 
|---|
| 3336 | /* After SO there must be at least one character before a designator (designator error handled separately) */ | 
|---|
| 3337 | if(myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) { | 
|---|
| 3338 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | 
|---|
| 3339 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | 
|---|
| 3340 | args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore)); | 
|---|
| 3341 | } | 
|---|
| 3342 | } | 
|---|
| 3343 |  | 
|---|
| 3344 | /* invalid or illegal escape sequence */ | 
|---|
| 3345 | if(U_FAILURE(*err)){ | 
|---|
| 3346 | args->target = myTarget; | 
|---|
| 3347 | args->source = mySource; | 
|---|
| 3348 | myData->isEmptySegment = false;	/* Reset to avoid future spurious errors */ | 
|---|
| 3349 | return; | 
|---|
| 3350 | } | 
|---|
| 3351 | continue; | 
|---|
| 3352 |  | 
|---|
| 3353 | /* ISO-2022-CN does not use single-byte (C1) SS2 and SS3 */ | 
|---|
| 3354 |  | 
|---|
| 3355 | case CR: | 
|---|
| 3356 | case LF: | 
|---|
| 3357 | uprv_memset(pToU2022State, 0, sizeof(ISO2022State)); | 
|---|
| 3358 | U_FALLTHROUGH; | 
|---|
| 3359 | default: | 
|---|
| 3360 | /* convert one or two bytes */ | 
|---|
| 3361 | myData->isEmptySegment = false; | 
|---|
| 3362 | if(pToU2022State->g != 0) { | 
|---|
| 3363 | if(mySource < mySourceLimit) { | 
|---|
| 3364 | UConverterSharedData *cnv; | 
|---|
| 3365 | StateEnum tempState; | 
|---|
| 3366 | int32_t tempBufLen; | 
|---|
| 3367 | int leadIsOk, trailIsOk; | 
|---|
| 3368 | uint8_t trailByte; | 
|---|
| 3369 | getTrailByte: | 
|---|
| 3370 | trailByte = (uint8_t)*mySource; | 
|---|
| 3371 | /* | 
|---|
| 3372 | * Ticket 5691: consistent illegal sequences: | 
|---|
| 3373 | * - We include at least the first byte in the illegal sequence. | 
|---|
| 3374 | * - If any of the non-initial bytes could be the start of a character, | 
|---|
| 3375 | *   we stop the illegal sequence before the first one of those. | 
|---|
| 3376 | * | 
|---|
| 3377 | * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is | 
|---|
| 3378 | * an ESC/SO/SI, we report only the first byte as the illegal sequence. | 
|---|
| 3379 | * Otherwise we convert or report the pair of bytes. | 
|---|
| 3380 | */ | 
|---|
| 3381 | leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); | 
|---|
| 3382 | trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); | 
|---|
| 3383 | if (leadIsOk && trailIsOk) { | 
|---|
| 3384 | ++mySource; | 
|---|
| 3385 | tempState = (StateEnum)pToU2022State->cs[pToU2022State->g]; | 
|---|
| 3386 | if(tempState >= CNS_11643_0) { | 
|---|
| 3387 | cnv = myData->myConverterArray[CNS_11643]; | 
|---|
| 3388 | tempBuf[0] = (char) (0x80+(tempState-CNS_11643_0)); | 
|---|
| 3389 | tempBuf[1] = (char) (mySourceChar); | 
|---|
| 3390 | tempBuf[2] = (char) trailByte; | 
|---|
| 3391 | tempBufLen = 3; | 
|---|
| 3392 |  | 
|---|
| 3393 | }else{ | 
|---|
| 3394 | U_ASSERT(tempState<UCNV_2022_MAX_CONVERTERS); | 
|---|
| 3395 | cnv = myData->myConverterArray[tempState]; | 
|---|
| 3396 | tempBuf[0] = (char) (mySourceChar); | 
|---|
| 3397 | tempBuf[1] = (char) trailByte; | 
|---|
| 3398 | tempBufLen = 2; | 
|---|
| 3399 | } | 
|---|
| 3400 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(cnv, tempBuf, tempBufLen, false); | 
|---|
| 3401 | mySourceChar = (mySourceChar << 8) | trailByte; | 
|---|
| 3402 | } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { | 
|---|
| 3403 | /* report a pair of illegal bytes if the second byte is not a DBCS starter */ | 
|---|
| 3404 | ++mySource; | 
|---|
| 3405 | /* add another bit so that the code below writes 2 bytes in case of error */ | 
|---|
| 3406 | mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; | 
|---|
| 3407 | } | 
|---|
| 3408 | if(pToU2022State->g>=2) { | 
|---|
| 3409 | /* return from a single-shift state to the previous one */ | 
|---|
| 3410 | pToU2022State->g=pToU2022State->prevG; | 
|---|
| 3411 | } | 
|---|
| 3412 | } else { | 
|---|
| 3413 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | 
|---|
| 3414 | args->converter->toULength = 1; | 
|---|
| 3415 | goto endloop; | 
|---|
| 3416 | } | 
|---|
| 3417 | } | 
|---|
| 3418 | else{ | 
|---|
| 3419 | if(mySourceChar <= 0x7f) { | 
|---|
| 3420 | targetUniChar = (char16_t) mySourceChar; | 
|---|
| 3421 | } | 
|---|
| 3422 | } | 
|---|
| 3423 | break; | 
|---|
| 3424 | } | 
|---|
| 3425 | if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){ | 
|---|
| 3426 | if(args->offsets){ | 
|---|
| 3427 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 3428 | } | 
|---|
| 3429 | *(myTarget++)=(char16_t)targetUniChar; | 
|---|
| 3430 | } | 
|---|
| 3431 | else if(targetUniChar > missingCharMarker){ | 
|---|
| 3432 | /* disassemble the surrogate pair and write to output*/ | 
|---|
| 3433 | targetUniChar-=0x0010000; | 
|---|
| 3434 | *myTarget = (char16_t)(0xd800+(char16_t)(targetUniChar>>10)); | 
|---|
| 3435 | if(args->offsets){ | 
|---|
| 3436 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 3437 | } | 
|---|
| 3438 | ++myTarget; | 
|---|
| 3439 | if(myTarget< args->targetLimit){ | 
|---|
| 3440 | *myTarget = (char16_t)(0xdc00+(char16_t)(targetUniChar&0x3ff)); | 
|---|
| 3441 | if(args->offsets){ | 
|---|
| 3442 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); | 
|---|
| 3443 | } | 
|---|
| 3444 | ++myTarget; | 
|---|
| 3445 | }else{ | 
|---|
| 3446 | args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]= | 
|---|
| 3447 | (char16_t)(0xdc00+(char16_t)(targetUniChar&0x3ff)); | 
|---|
| 3448 | } | 
|---|
| 3449 |  | 
|---|
| 3450 | } | 
|---|
| 3451 | else{ | 
|---|
| 3452 | /* Call the callback function*/ | 
|---|
| 3453 | toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); | 
|---|
| 3454 | break; | 
|---|
| 3455 | } | 
|---|
| 3456 | } | 
|---|
| 3457 | else{ | 
|---|
| 3458 | *err =U_BUFFER_OVERFLOW_ERROR; | 
|---|
| 3459 | break; | 
|---|
| 3460 | } | 
|---|
| 3461 | } | 
|---|
| 3462 | endloop: | 
|---|
| 3463 | args->target = myTarget; | 
|---|
| 3464 | args->source = mySource; | 
|---|
| 3465 | } | 
|---|
| 3466 | #endif /* #if !UCONFIG_ONLY_HTML_CONVERSION */ | 
|---|
| 3467 |  | 
|---|
| 3468 | static void U_CALLCONV | 
|---|
| 3469 | _ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err) { | 
|---|
| 3470 | UConverter *cnv = args->converter; | 
|---|
| 3471 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo; | 
|---|
| 3472 | ISO2022State *pFromU2022State=&myConverterData->fromU2022State; | 
|---|
| 3473 | char *p, *subchar; | 
|---|
| 3474 | char buffer[8]; | 
|---|
| 3475 | int32_t length; | 
|---|
| 3476 |  | 
|---|
| 3477 | subchar=(char *)cnv->subChars; | 
|---|
| 3478 | length=cnv->subCharLen; /* assume length==1 for most variants */ | 
|---|
| 3479 |  | 
|---|
| 3480 | p = buffer; | 
|---|
| 3481 | switch(myConverterData->locale[0]){ | 
|---|
| 3482 | case 'j': | 
|---|
| 3483 | { | 
|---|
| 3484 | int8_t cs; | 
|---|
| 3485 |  | 
|---|
| 3486 | if(pFromU2022State->g == 1) { | 
|---|
| 3487 | /* JIS7: switch from G1 to G0 */ | 
|---|
| 3488 | pFromU2022State->g = 0; | 
|---|
| 3489 | *p++ = UCNV_SI; | 
|---|
| 3490 | } | 
|---|
| 3491 |  | 
|---|
| 3492 | cs = pFromU2022State->cs[0]; | 
|---|
| 3493 | if(cs != ASCII && cs != JISX201) { | 
|---|
| 3494 | /* not in ASCII or JIS X 0201: switch to ASCII */ | 
|---|
| 3495 | pFromU2022State->cs[0] = (int8_t)ASCII; | 
|---|
| 3496 | *p++ = '\x1b'; | 
|---|
| 3497 | *p++ = '\x28'; | 
|---|
| 3498 | *p++ = '\x42'; | 
|---|
| 3499 | } | 
|---|
| 3500 |  | 
|---|
| 3501 | *p++ = subchar[0]; | 
|---|
| 3502 | break; | 
|---|
| 3503 | } | 
|---|
| 3504 | case 'c': | 
|---|
| 3505 | if(pFromU2022State->g != 0) { | 
|---|
| 3506 | /* not in ASCII mode: switch to ASCII */ | 
|---|
| 3507 | pFromU2022State->g = 0; | 
|---|
| 3508 | *p++ = UCNV_SI; | 
|---|
| 3509 | } | 
|---|
| 3510 | *p++ = subchar[0]; | 
|---|
| 3511 | break; | 
|---|
| 3512 | case 'k': | 
|---|
| 3513 | if(myConverterData->version == 0) { | 
|---|
| 3514 | if(length == 1) { | 
|---|
| 3515 | if(args->converter->fromUnicodeStatus) { | 
|---|
| 3516 | /* in DBCS mode: switch to SBCS */ | 
|---|
| 3517 | args->converter->fromUnicodeStatus = 0; | 
|---|
| 3518 | *p++ = UCNV_SI; | 
|---|
| 3519 | } | 
|---|
| 3520 | *p++ = subchar[0]; | 
|---|
| 3521 | } else /* length == 2*/ { | 
|---|
| 3522 | if(!args->converter->fromUnicodeStatus) { | 
|---|
| 3523 | /* in SBCS mode: switch to DBCS */ | 
|---|
| 3524 | args->converter->fromUnicodeStatus = 1; | 
|---|
| 3525 | *p++ = UCNV_SO; | 
|---|
| 3526 | } | 
|---|
| 3527 | *p++ = subchar[0]; | 
|---|
| 3528 | *p++ = subchar[1]; | 
|---|
| 3529 | } | 
|---|
| 3530 | break; | 
|---|
| 3531 | } else { | 
|---|
| 3532 | /* save the subconverter's substitution string */ | 
|---|
| 3533 | uint8_t *currentSubChars = myConverterData->currentConverter->subChars; | 
|---|
| 3534 | int8_t currentSubCharLen = myConverterData->currentConverter->subCharLen; | 
|---|
| 3535 |  | 
|---|
| 3536 | /* set our substitution string into the subconverter */ | 
|---|
| 3537 | myConverterData->currentConverter->subChars = (uint8_t *)subchar; | 
|---|
| 3538 | myConverterData->currentConverter->subCharLen = (int8_t)length; | 
|---|
| 3539 |  | 
|---|
| 3540 | /* let the subconverter write the subchar, set/retrieve fromUChar32 state */ | 
|---|
| 3541 | args->converter = myConverterData->currentConverter; | 
|---|
| 3542 | myConverterData->currentConverter->fromUChar32 = cnv->fromUChar32; | 
|---|
| 3543 | ucnv_cbFromUWriteSub(args, 0, err); | 
|---|
| 3544 | cnv->fromUChar32 = myConverterData->currentConverter->fromUChar32; | 
|---|
| 3545 | args->converter = cnv; | 
|---|
| 3546 |  | 
|---|
| 3547 | /* restore the subconverter's substitution string */ | 
|---|
| 3548 | myConverterData->currentConverter->subChars = currentSubChars; | 
|---|
| 3549 | myConverterData->currentConverter->subCharLen = currentSubCharLen; | 
|---|
| 3550 |  | 
|---|
| 3551 | if(*err == U_BUFFER_OVERFLOW_ERROR) { | 
|---|
| 3552 | if(myConverterData->currentConverter->charErrorBufferLength > 0) { | 
|---|
| 3553 | uprv_memcpy( | 
|---|
| 3554 | cnv->charErrorBuffer, | 
|---|
| 3555 | myConverterData->currentConverter->charErrorBuffer, | 
|---|
| 3556 | myConverterData->currentConverter->charErrorBufferLength); | 
|---|
| 3557 | } | 
|---|
| 3558 | cnv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength; | 
|---|
| 3559 | myConverterData->currentConverter->charErrorBufferLength = 0; | 
|---|
| 3560 | } | 
|---|
| 3561 | return; | 
|---|
| 3562 | } | 
|---|
| 3563 | default: | 
|---|
| 3564 | /* not expected */ | 
|---|
| 3565 | break; | 
|---|
| 3566 | } | 
|---|
| 3567 | ucnv_cbFromUWriteBytes(args, | 
|---|
| 3568 | buffer, (int32_t)(p - buffer), | 
|---|
| 3569 | offsetIndex, err); | 
|---|
| 3570 | } | 
|---|
| 3571 |  | 
|---|
| 3572 | /* | 
|---|
| 3573 | * Structure for cloning an ISO 2022 converter into a single memory block. | 
|---|
| 3574 | */ | 
|---|
| 3575 | struct cloneStruct | 
|---|
| 3576 | { | 
|---|
| 3577 | UConverter cnv; | 
|---|
| 3578 | UConverter currentConverter; | 
|---|
| 3579 | UConverterDataISO2022 mydata; | 
|---|
| 3580 | }; | 
|---|
| 3581 |  | 
|---|
| 3582 |  | 
|---|
| 3583 | U_CDECL_BEGIN | 
|---|
| 3584 |  | 
|---|
| 3585 | static UConverter * U_CALLCONV | 
|---|
| 3586 | _ISO_2022_SafeClone( | 
|---|
| 3587 | const UConverter *cnv, | 
|---|
| 3588 | void *stackBuffer, | 
|---|
| 3589 | int32_t *pBufferSize, | 
|---|
| 3590 | UErrorCode *status) | 
|---|
| 3591 | { | 
|---|
| 3592 | struct cloneStruct * localClone; | 
|---|
| 3593 | UConverterDataISO2022 *cnvData; | 
|---|
| 3594 | int32_t i, size; | 
|---|
| 3595 |  | 
|---|
| 3596 | if (U_FAILURE(*status)){ | 
|---|
| 3597 | return nullptr; | 
|---|
| 3598 | } | 
|---|
| 3599 |  | 
|---|
| 3600 | if (*pBufferSize == 0) { /* 'preflighting' request - set needed size into *pBufferSize */ | 
|---|
| 3601 | *pBufferSize = (int32_t)sizeof(struct cloneStruct); | 
|---|
| 3602 | return nullptr; | 
|---|
| 3603 | } | 
|---|
| 3604 |  | 
|---|
| 3605 | cnvData = (UConverterDataISO2022 *)cnv->extraInfo; | 
|---|
| 3606 | localClone = (struct cloneStruct *)stackBuffer; | 
|---|
| 3607 |  | 
|---|
| 3608 | /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ | 
|---|
| 3609 |  | 
|---|
| 3610 | uprv_memcpy(&localClone->mydata, cnvData, sizeof(UConverterDataISO2022)); | 
|---|
| 3611 | localClone->cnv.extraInfo = &localClone->mydata; /* set pointer to extra data */ | 
|---|
| 3612 | localClone->cnv.isExtraLocal = true; | 
|---|
| 3613 |  | 
|---|
| 3614 | /* share the subconverters */ | 
|---|
| 3615 |  | 
|---|
| 3616 | if(cnvData->currentConverter != nullptr) { | 
|---|
| 3617 | size = (int32_t)sizeof(UConverter); | 
|---|
| 3618 | localClone->mydata.currentConverter = | 
|---|
| 3619 | ucnv_safeClone(cnvData->currentConverter, | 
|---|
| 3620 | &localClone->currentConverter, | 
|---|
| 3621 | &size, status); | 
|---|
| 3622 | if(U_FAILURE(*status)) { | 
|---|
| 3623 | return nullptr; | 
|---|
| 3624 | } | 
|---|
| 3625 | } | 
|---|
| 3626 |  | 
|---|
| 3627 | for(i=0; i<UCNV_2022_MAX_CONVERTERS; ++i) { | 
|---|
| 3628 | if(cnvData->myConverterArray[i] != nullptr) { | 
|---|
| 3629 | ucnv_incrementRefCount(cnvData->myConverterArray[i]); | 
|---|
| 3630 | } | 
|---|
| 3631 | } | 
|---|
| 3632 |  | 
|---|
| 3633 | return &localClone->cnv; | 
|---|
| 3634 | } | 
|---|
| 3635 |  | 
|---|
| 3636 | U_CDECL_END | 
|---|
| 3637 |  | 
|---|
| 3638 | static void U_CALLCONV | 
|---|
| 3639 | _ISO_2022_GetUnicodeSet(const UConverter *cnv, | 
|---|
| 3640 | const USetAdder *sa, | 
|---|
| 3641 | UConverterUnicodeSet which, | 
|---|
| 3642 | UErrorCode *pErrorCode) | 
|---|
| 3643 | { | 
|---|
| 3644 | int32_t i; | 
|---|
| 3645 | UConverterDataISO2022* cnvData; | 
|---|
| 3646 |  | 
|---|
| 3647 | if (U_FAILURE(*pErrorCode)) { | 
|---|
| 3648 | return; | 
|---|
| 3649 | } | 
|---|
| 3650 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 3651 | if (cnv->sharedData == &_ISO2022Data) { | 
|---|
| 3652 | /* We use UTF-8 in this case */ | 
|---|
| 3653 | sa->addRange(sa->set, 0, 0xd7FF); | 
|---|
| 3654 | sa->addRange(sa->set, 0xE000, 0x10FFFF); | 
|---|
| 3655 | return; | 
|---|
| 3656 | } | 
|---|
| 3657 | #endif | 
|---|
| 3658 |  | 
|---|
| 3659 | cnvData = (UConverterDataISO2022*)cnv->extraInfo; | 
|---|
| 3660 |  | 
|---|
| 3661 | /* open a set and initialize it with code points that are algorithmically round-tripped */ | 
|---|
| 3662 | switch(cnvData->locale[0]){ | 
|---|
| 3663 | case 'j': | 
|---|
| 3664 | /* include JIS X 0201 which is hardcoded */ | 
|---|
| 3665 | sa->add(sa->set, 0xa5); | 
|---|
| 3666 | sa->add(sa->set, 0x203e); | 
|---|
| 3667 | if(jpCharsetMasks[cnvData->version]&CSM(ISO8859_1)) { | 
|---|
| 3668 | /* include Latin-1 for some variants of JP */ | 
|---|
| 3669 | sa->addRange(sa->set, 0, 0xff); | 
|---|
| 3670 | } else { | 
|---|
| 3671 | /* include ASCII for JP */ | 
|---|
| 3672 | sa->addRange(sa->set, 0, 0x7f); | 
|---|
| 3673 | } | 
|---|
| 3674 | if(cnvData->version==3 || cnvData->version==4 || which==UCNV_ROUNDTRIP_AND_FALLBACK_SET) { | 
|---|
| 3675 | /* | 
|---|
| 3676 | * Do not test (jpCharsetMasks[cnvData->version]&CSM(HWKANA_7BIT))!=0 | 
|---|
| 3677 | * because the bit is on for all JP versions although only versions 3 & 4 (JIS7 & JIS8) | 
|---|
| 3678 | * use half-width Katakana. | 
|---|
| 3679 | * This is because all ISO-2022-JP variants are lenient in that they accept (in toUnicode) | 
|---|
| 3680 | * half-width Katakana via the ESC ( I sequence. | 
|---|
| 3681 | * However, we only emit (fromUnicode) half-width Katakana according to the | 
|---|
| 3682 | * definition of each variant. | 
|---|
| 3683 | * | 
|---|
| 3684 | * When including fallbacks, | 
|---|
| 3685 | * we need to include half-width Katakana Unicode code points for all JP variants because | 
|---|
| 3686 | * JIS X 0208 has hardcoded fallbacks for them (which map to full-width Katakana). | 
|---|
| 3687 | */ | 
|---|
| 3688 | /* include half-width Katakana for JP */ | 
|---|
| 3689 | sa->addRange(sa->set, HWKANA_START, HWKANA_END); | 
|---|
| 3690 | } | 
|---|
| 3691 | break; | 
|---|
| 3692 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 3693 | case 'c': | 
|---|
| 3694 | case 'z': | 
|---|
| 3695 | /* include ASCII for CN */ | 
|---|
| 3696 | sa->addRange(sa->set, 0, 0x7f); | 
|---|
| 3697 | break; | 
|---|
| 3698 | case 'k': | 
|---|
| 3699 | /* there is only one converter for KR, and it is not in the myConverterArray[] */ | 
|---|
| 3700 | cnvData->currentConverter->sharedData->impl->getUnicodeSet( | 
|---|
| 3701 | cnvData->currentConverter, sa, which, pErrorCode); | 
|---|
| 3702 | /* the loop over myConverterArray[] will simply not find another converter */ | 
|---|
| 3703 | break; | 
|---|
| 3704 | #endif | 
|---|
| 3705 | default: | 
|---|
| 3706 | break; | 
|---|
| 3707 | } | 
|---|
| 3708 |  | 
|---|
| 3709 | #if 0  /* Replaced by ucnv_MBCSGetFilteredUnicodeSetForUnicode() until we implement ucnv_getUnicodeSet() with reverse fallbacks. */ | 
|---|
| 3710 | if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') && | 
|---|
| 3711 | cnvData->version==0 && i==CNS_11643 | 
|---|
| 3712 | ) { | 
|---|
| 3713 | /* special handling for non-EXT ISO-2022-CN: add only code points for CNS planes 1 and 2 */ | 
|---|
| 3714 | ucnv_MBCSGetUnicodeSetForBytes( | 
|---|
| 3715 | cnvData->myConverterArray[i], | 
|---|
| 3716 | sa, UCNV_ROUNDTRIP_SET, | 
|---|
| 3717 | 0, 0x81, 0x82, | 
|---|
| 3718 | pErrorCode); | 
|---|
| 3719 | } | 
|---|
| 3720 | #endif | 
|---|
| 3721 |  | 
|---|
| 3722 | for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) { | 
|---|
| 3723 | UConverterSetFilter filter; | 
|---|
| 3724 | if(cnvData->myConverterArray[i]!=nullptr) { | 
|---|
| 3725 | if(cnvData->locale[0]=='j' && i==JISX208) { | 
|---|
| 3726 | /* | 
|---|
| 3727 | * Only add code points that map to Shift-JIS codes | 
|---|
| 3728 | * corresponding to JIS X 0208. | 
|---|
| 3729 | */ | 
|---|
| 3730 | filter=UCNV_SET_FILTER_SJIS; | 
|---|
| 3731 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 3732 | } else if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') && | 
|---|
| 3733 | cnvData->version==0 && i==CNS_11643) { | 
|---|
| 3734 | /* | 
|---|
| 3735 | * Version-specific for CN: | 
|---|
| 3736 | * CN version 0 does not map CNS planes 3..7 although | 
|---|
| 3737 | * they are all available in the CNS conversion table; | 
|---|
| 3738 | * CN version 1 (-EXT) does map them all. | 
|---|
| 3739 | * The two versions create different Unicode sets. | 
|---|
| 3740 | */ | 
|---|
| 3741 | filter=UCNV_SET_FILTER_2022_CN; | 
|---|
| 3742 | } else if(i==KSC5601) { | 
|---|
| 3743 | /* | 
|---|
| 3744 | * Some of the KSC 5601 tables (convrtrs.txt has this aliases on multiple tables) | 
|---|
| 3745 | * are broader than GR94. | 
|---|
| 3746 | */ | 
|---|
| 3747 | filter=UCNV_SET_FILTER_GR94DBCS; | 
|---|
| 3748 | #endif | 
|---|
| 3749 | } else { | 
|---|
| 3750 | filter=UCNV_SET_FILTER_NONE; | 
|---|
| 3751 | } | 
|---|
| 3752 | ucnv_MBCSGetFilteredUnicodeSetForUnicode(cnvData->myConverterArray[i], sa, which, filter, pErrorCode); | 
|---|
| 3753 | } | 
|---|
| 3754 | } | 
|---|
| 3755 |  | 
|---|
| 3756 | /* | 
|---|
| 3757 | * ISO 2022 converters must not convert SO/SI/ESC despite what | 
|---|
| 3758 | * sub-converters do by themselves. | 
|---|
| 3759 | * Remove these characters from the set. | 
|---|
| 3760 | */ | 
|---|
| 3761 | sa->remove(sa->set, 0x0e); | 
|---|
| 3762 | sa->remove(sa->set, 0x0f); | 
|---|
| 3763 | sa->remove(sa->set, 0x1b); | 
|---|
| 3764 |  | 
|---|
| 3765 | /* ISO 2022 converters do not convert C1 controls either */ | 
|---|
| 3766 | sa->removeRange(sa->set, 0x80, 0x9f); | 
|---|
| 3767 | } | 
|---|
| 3768 |  | 
|---|
| 3769 | static const UConverterImpl _ISO2022Impl={ | 
|---|
| 3770 | UCNV_ISO_2022, | 
|---|
| 3771 |  | 
|---|
| 3772 | nullptr, | 
|---|
| 3773 | nullptr, | 
|---|
| 3774 |  | 
|---|
| 3775 | _ISO2022Open, | 
|---|
| 3776 | _ISO2022Close, | 
|---|
| 3777 | _ISO2022Reset, | 
|---|
| 3778 |  | 
|---|
| 3779 | #ifdef U_ENABLE_GENERIC_ISO_2022 | 
|---|
| 3780 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC, | 
|---|
| 3781 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC, | 
|---|
| 3782 | ucnv_fromUnicode_UTF8, | 
|---|
| 3783 | ucnv_fromUnicode_UTF8_OFFSETS_LOGIC, | 
|---|
| 3784 | #else | 
|---|
| 3785 | nullptr, | 
|---|
| 3786 | nullptr, | 
|---|
| 3787 | nullptr, | 
|---|
| 3788 | nullptr, | 
|---|
| 3789 | #endif | 
|---|
| 3790 | nullptr, | 
|---|
| 3791 |  | 
|---|
| 3792 | nullptr, | 
|---|
| 3793 | _ISO2022getName, | 
|---|
| 3794 | _ISO_2022_WriteSub, | 
|---|
| 3795 | _ISO_2022_SafeClone, | 
|---|
| 3796 | _ISO_2022_GetUnicodeSet, | 
|---|
| 3797 |  | 
|---|
| 3798 | nullptr, | 
|---|
| 3799 | nullptr | 
|---|
| 3800 | }; | 
|---|
| 3801 | static const UConverterStaticData _ISO2022StaticData={ | 
|---|
| 3802 | sizeof(UConverterStaticData), | 
|---|
| 3803 | "ISO_2022", | 
|---|
| 3804 | 2022, | 
|---|
| 3805 | UCNV_IBM, | 
|---|
| 3806 | UCNV_ISO_2022, | 
|---|
| 3807 | 1, | 
|---|
| 3808 | 3, /* max 3 bytes per char16_t from UTF-8 (4 bytes from surrogate _pair_) */ | 
|---|
| 3809 | { 0x1a, 0, 0, 0 }, | 
|---|
| 3810 | 1, | 
|---|
| 3811 | false, | 
|---|
| 3812 | false, | 
|---|
| 3813 | 0, | 
|---|
| 3814 | 0, | 
|---|
| 3815 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | 
|---|
| 3816 | }; | 
|---|
| 3817 | const UConverterSharedData _ISO2022Data= | 
|---|
| 3818 | UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022StaticData, &_ISO2022Impl); | 
|---|
| 3819 |  | 
|---|
| 3820 | /*************JP****************/ | 
|---|
| 3821 | static const UConverterImpl _ISO2022JPImpl={ | 
|---|
| 3822 | UCNV_ISO_2022, | 
|---|
| 3823 |  | 
|---|
| 3824 | nullptr, | 
|---|
| 3825 | nullptr, | 
|---|
| 3826 |  | 
|---|
| 3827 | _ISO2022Open, | 
|---|
| 3828 | _ISO2022Close, | 
|---|
| 3829 | _ISO2022Reset, | 
|---|
| 3830 |  | 
|---|
| 3831 | UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC, | 
|---|
| 3832 | UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC, | 
|---|
| 3833 | UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC, | 
|---|
| 3834 | UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC, | 
|---|
| 3835 | nullptr, | 
|---|
| 3836 |  | 
|---|
| 3837 | nullptr, | 
|---|
| 3838 | _ISO2022getName, | 
|---|
| 3839 | _ISO_2022_WriteSub, | 
|---|
| 3840 | _ISO_2022_SafeClone, | 
|---|
| 3841 | _ISO_2022_GetUnicodeSet, | 
|---|
| 3842 |  | 
|---|
| 3843 | nullptr, | 
|---|
| 3844 | nullptr | 
|---|
| 3845 | }; | 
|---|
| 3846 | static const UConverterStaticData _ISO2022JPStaticData={ | 
|---|
| 3847 | sizeof(UConverterStaticData), | 
|---|
| 3848 | "ISO_2022_JP", | 
|---|
| 3849 | 0, | 
|---|
| 3850 | UCNV_IBM, | 
|---|
| 3851 | UCNV_ISO_2022, | 
|---|
| 3852 | 1, | 
|---|
| 3853 | 6, /* max 6 bytes per char16_t: 4-byte escape sequence + DBCS */ | 
|---|
| 3854 | { 0x1a, 0, 0, 0 }, | 
|---|
| 3855 | 1, | 
|---|
| 3856 | false, | 
|---|
| 3857 | false, | 
|---|
| 3858 | 0, | 
|---|
| 3859 | 0, | 
|---|
| 3860 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | 
|---|
| 3861 | }; | 
|---|
| 3862 |  | 
|---|
| 3863 | namespace { | 
|---|
| 3864 |  | 
|---|
| 3865 | const UConverterSharedData _ISO2022JPData= | 
|---|
| 3866 | UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022JPStaticData, &_ISO2022JPImpl); | 
|---|
| 3867 |  | 
|---|
| 3868 | }  // namespace | 
|---|
| 3869 |  | 
|---|
| 3870 | #if !UCONFIG_ONLY_HTML_CONVERSION | 
|---|
| 3871 | /************* KR ***************/ | 
|---|
| 3872 | static const UConverterImpl _ISO2022KRImpl={ | 
|---|
| 3873 | UCNV_ISO_2022, | 
|---|
| 3874 |  | 
|---|
| 3875 | nullptr, | 
|---|
| 3876 | nullptr, | 
|---|
| 3877 |  | 
|---|
| 3878 | _ISO2022Open, | 
|---|
| 3879 | _ISO2022Close, | 
|---|
| 3880 | _ISO2022Reset, | 
|---|
| 3881 |  | 
|---|
| 3882 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC, | 
|---|
| 3883 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC, | 
|---|
| 3884 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC, | 
|---|
| 3885 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC, | 
|---|
| 3886 | nullptr, | 
|---|
| 3887 |  | 
|---|
| 3888 | nullptr, | 
|---|
| 3889 | _ISO2022getName, | 
|---|
| 3890 | _ISO_2022_WriteSub, | 
|---|
| 3891 | _ISO_2022_SafeClone, | 
|---|
| 3892 | _ISO_2022_GetUnicodeSet, | 
|---|
| 3893 |  | 
|---|
| 3894 | nullptr, | 
|---|
| 3895 | nullptr | 
|---|
| 3896 | }; | 
|---|
| 3897 | static const UConverterStaticData _ISO2022KRStaticData={ | 
|---|
| 3898 | sizeof(UConverterStaticData), | 
|---|
| 3899 | "ISO_2022_KR", | 
|---|
| 3900 | 0, | 
|---|
| 3901 | UCNV_IBM, | 
|---|
| 3902 | UCNV_ISO_2022, | 
|---|
| 3903 | 1, | 
|---|
| 3904 | 8, /* max 8 bytes per char16_t */ | 
|---|
| 3905 | { 0x1a, 0, 0, 0 }, | 
|---|
| 3906 | 1, | 
|---|
| 3907 | false, | 
|---|
| 3908 | false, | 
|---|
| 3909 | 0, | 
|---|
| 3910 | 0, | 
|---|
| 3911 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | 
|---|
| 3912 | }; | 
|---|
| 3913 |  | 
|---|
| 3914 | namespace { | 
|---|
| 3915 |  | 
|---|
| 3916 | const UConverterSharedData _ISO2022KRData= | 
|---|
| 3917 | UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022KRStaticData, &_ISO2022KRImpl); | 
|---|
| 3918 |  | 
|---|
| 3919 | }  // namespace | 
|---|
| 3920 |  | 
|---|
| 3921 | /*************** CN ***************/ | 
|---|
| 3922 | static const UConverterImpl _ISO2022CNImpl={ | 
|---|
| 3923 |  | 
|---|
| 3924 | UCNV_ISO_2022, | 
|---|
| 3925 |  | 
|---|
| 3926 | nullptr, | 
|---|
| 3927 | nullptr, | 
|---|
| 3928 |  | 
|---|
| 3929 | _ISO2022Open, | 
|---|
| 3930 | _ISO2022Close, | 
|---|
| 3931 | _ISO2022Reset, | 
|---|
| 3932 |  | 
|---|
| 3933 | UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC, | 
|---|
| 3934 | UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC, | 
|---|
| 3935 | UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC, | 
|---|
| 3936 | UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC, | 
|---|
| 3937 | nullptr, | 
|---|
| 3938 |  | 
|---|
| 3939 | nullptr, | 
|---|
| 3940 | _ISO2022getName, | 
|---|
| 3941 | _ISO_2022_WriteSub, | 
|---|
| 3942 | _ISO_2022_SafeClone, | 
|---|
| 3943 | _ISO_2022_GetUnicodeSet, | 
|---|
| 3944 |  | 
|---|
| 3945 | nullptr, | 
|---|
| 3946 | nullptr | 
|---|
| 3947 | }; | 
|---|
| 3948 | static const UConverterStaticData _ISO2022CNStaticData={ | 
|---|
| 3949 | sizeof(UConverterStaticData), | 
|---|
| 3950 | "ISO_2022_CN", | 
|---|
| 3951 | 0, | 
|---|
| 3952 | UCNV_IBM, | 
|---|
| 3953 | UCNV_ISO_2022, | 
|---|
| 3954 | 1, | 
|---|
| 3955 | 8, /* max 8 bytes per char16_t: 4-byte CNS designator + 2 bytes for SS2/SS3 + DBCS */ | 
|---|
| 3956 | { 0x1a, 0, 0, 0 }, | 
|---|
| 3957 | 1, | 
|---|
| 3958 | false, | 
|---|
| 3959 | false, | 
|---|
| 3960 | 0, | 
|---|
| 3961 | 0, | 
|---|
| 3962 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | 
|---|
| 3963 | }; | 
|---|
| 3964 |  | 
|---|
| 3965 | namespace { | 
|---|
| 3966 |  | 
|---|
| 3967 | const UConverterSharedData _ISO2022CNData= | 
|---|
| 3968 | UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_ISO2022CNStaticData, &_ISO2022CNImpl); | 
|---|
| 3969 |  | 
|---|
| 3970 | }  // namespace | 
|---|
| 3971 | #endif /* #if !UCONFIG_ONLY_HTML_CONVERSION */ | 
|---|
| 3972 |  | 
|---|
| 3973 | #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ | 
|---|
| 3974 |  | 
|---|