| 1 | // jpge.cpp - C++ class for JPEG compression. Richard Geldreich <richgel99@gmail.com> |
| 2 | // Supports grayscale, H1V1, H2V1, and H2V2 chroma subsampling factors, one or two pass Huffman table optimization, libjpeg-style quality 1-100 quality factors. |
| 3 | // Also supports using luma quantization tables for chroma. |
| 4 | // |
| 5 | // Released under two licenses. You are free to choose which license you want: |
| 6 | // License 1: |
| 7 | // Public Domain |
| 8 | // |
| 9 | // License 2: |
| 10 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 11 | // you may not use this file except in compliance with the License. |
| 12 | // You may obtain a copy of the License at |
| 13 | // |
| 14 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 15 | // |
| 16 | // Unless required by applicable law or agreed to in writing, software |
| 17 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 18 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 19 | // See the License for the specific language governing permissions and |
| 20 | // limitations under the License. |
| 21 | // |
| 22 | // v1.01, Dec. 18, 2010 - Initial release |
| 23 | // v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.) |
| 24 | // v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc. |
| 25 | // Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03). |
| 26 | // v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug. |
| 27 | // Code tweaks to fix VS2008 static code analysis warnings (all looked harmless). |
| 28 | // Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02. |
| 29 | // v1.05, March 25, 2020: Added Apache 2.0 alternate license |
| 30 | |
| 31 | #include "jpge.h" |
| 32 | |
| 33 | #include <stdlib.h> |
| 34 | #include <string.h> |
| 35 | |
| 36 | #define JPGE_MAX(a,b) (((a)>(b))?(a):(b)) |
| 37 | #define JPGE_MIN(a,b) (((a)<(b))?(a):(b)) |
| 38 | |
| 39 | namespace jpge { |
| 40 | |
| 41 | static inline void* jpge_malloc(size_t nSize) { return malloc(nSize); } |
| 42 | static inline void jpge_free(void* p) { free(p); } |
| 43 | |
| 44 | // Various JPEG enums and tables. |
| 45 | enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 }; |
| 46 | enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 }; |
| 47 | |
| 48 | static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; |
| 49 | static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 }; |
| 50 | static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 }; |
| 51 | |
| 52 | // Table from http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008 |
| 53 | // This is mozjpeg's default table, in zag order. |
| 54 | static int16 s_alt_quant[64] = { 16,16,16,16,17,16,18,20,20,18,25,27,24,27,25,37,34,31,31,34,37,56,40,43,40,43,40,56,85,53,62,53,53,62,53,85,75,91,74,69,74,91,75,135,106,94,94,106,135,156,131,124,131,156,189,169,169,189,238,226,238,311,311,418 }; |
| 55 | |
| 56 | static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 }; |
| 57 | static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; |
| 58 | static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d }; |
| 59 | static uint8 s_ac_lum_val[AC_LUM_CODES] = |
| 60 | { |
| 61 | 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0, |
| 62 | 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49, |
| 63 | 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, |
| 64 | 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5, |
| 65 | 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, |
| 66 | 0xf9,0xfa |
| 67 | }; |
| 68 | static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 }; |
| 69 | static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; |
| 70 | static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 }; |
| 71 | static uint8 s_ac_chroma_val[AC_CHROMA_CODES] = |
| 72 | { |
| 73 | 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0, |
| 74 | 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48, |
| 75 | 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, |
| 76 | 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3, |
| 77 | 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, |
| 78 | 0xf9,0xfa |
| 79 | }; |
| 80 | |
| 81 | // Low-level helper functions. |
| 82 | template <class T> inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); } |
| 83 | |
| 84 | const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329; |
| 85 | static inline uint8 clamp(int i) { if (static_cast<uint>(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast<uint8>(i); } |
| 86 | |
| 87 | static inline int left_shifti(int val, uint32 bits) |
| 88 | { |
| 89 | return static_cast<int>(static_cast<uint32>(val) << bits); |
| 90 | } |
| 91 | |
| 92 | static void RGB_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) |
| 93 | { |
| 94 | for (; num_pixels; pDst += 3, pSrc += 3, num_pixels--) |
| 95 | { |
| 96 | const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; |
| 97 | pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); |
| 98 | pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); |
| 99 | pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | static void RGB_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels) |
| 104 | { |
| 105 | for (; num_pixels; pDst++, pSrc += 3, num_pixels--) |
| 106 | pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); |
| 107 | } |
| 108 | |
| 109 | static void RGBA_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) |
| 110 | { |
| 111 | for (; num_pixels; pDst += 3, pSrc += 4, num_pixels--) |
| 112 | { |
| 113 | const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; |
| 114 | pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); |
| 115 | pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); |
| 116 | pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | static void RGBA_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels) |
| 121 | { |
| 122 | for (; num_pixels; pDst++, pSrc += 4, num_pixels--) |
| 123 | pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); |
| 124 | } |
| 125 | |
| 126 | static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) |
| 127 | { |
| 128 | for (; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; } |
| 129 | } |
| 130 | |
| 131 | // Forward DCT - DCT derived from jfdctint. |
| 132 | enum { CONST_BITS = 13, ROW_BITS = 2 }; |
| 133 | #define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n)) |
| 134 | #define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c)) |
| 135 | #define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \ |
| 136 | int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \ |
| 137 | int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \ |
| 138 | int32 u1 = DCT_MUL(t12 + t13, 4433); \ |
| 139 | s2 = u1 + DCT_MUL(t13, 6270); \ |
| 140 | s6 = u1 + DCT_MUL(t12, -15137); \ |
| 141 | u1 = t4 + t7; \ |
| 142 | int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \ |
| 143 | int32 z5 = DCT_MUL(u3 + u4, 9633); \ |
| 144 | t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \ |
| 145 | t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \ |
| 146 | u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \ |
| 147 | u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \ |
| 148 | u3 += z5; u4 += z5; \ |
| 149 | s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3; |
| 150 | |
| 151 | static void DCT2D(int32* p) |
| 152 | { |
| 153 | int32 c, * q = p; |
| 154 | for (c = 7; c >= 0; c--, q += 8) |
| 155 | { |
| 156 | int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7]; |
| 157 | DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); |
| 158 | q[0] = left_shifti(s0, ROW_BITS); q[1] = DCT_DESCALE(s1, CONST_BITS - ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS - ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS - ROW_BITS); |
| 159 | q[4] = left_shifti(s4, ROW_BITS); q[5] = DCT_DESCALE(s5, CONST_BITS - ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS - ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS - ROW_BITS); |
| 160 | } |
| 161 | for (q = p, c = 7; c >= 0; c--, q++) |
| 162 | { |
| 163 | int32 s0 = q[0 * 8], s1 = q[1 * 8], s2 = q[2 * 8], s3 = q[3 * 8], s4 = q[4 * 8], s5 = q[5 * 8], s6 = q[6 * 8], s7 = q[7 * 8]; |
| 164 | DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); |
| 165 | q[0 * 8] = DCT_DESCALE(s0, ROW_BITS + 3); q[1 * 8] = DCT_DESCALE(s1, CONST_BITS + ROW_BITS + 3); q[2 * 8] = DCT_DESCALE(s2, CONST_BITS + ROW_BITS + 3); q[3 * 8] = DCT_DESCALE(s3, CONST_BITS + ROW_BITS + 3); |
| 166 | q[4 * 8] = DCT_DESCALE(s4, ROW_BITS + 3); q[5 * 8] = DCT_DESCALE(s5, CONST_BITS + ROW_BITS + 3); q[6 * 8] = DCT_DESCALE(s6, CONST_BITS + ROW_BITS + 3); q[7 * 8] = DCT_DESCALE(s7, CONST_BITS + ROW_BITS + 3); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | struct sym_freq { uint m_key, m_sym_index; }; |
| 171 | |
| 172 | // Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values. |
| 173 | static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1) |
| 174 | { |
| 175 | const uint cMaxPasses = 4; |
| 176 | uint32 hist[256 * cMaxPasses]; clear_obj(hist); |
| 177 | for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256 * 2 + ((freq >> 16) & 0xFF)]++; hist[256 * 3 + ((freq >> 24) & 0xFF)]++; } |
| 178 | sym_freq* pCur_syms = pSyms0, * pNew_syms = pSyms1; |
| 179 | uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; |
| 180 | for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) |
| 181 | { |
| 182 | const uint32* pHist = &hist[pass << 8]; |
| 183 | uint offsets[256], cur_ofs = 0; |
| 184 | for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } |
| 185 | for (uint i = 0; i < num_syms; i++) |
| 186 | pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; |
| 187 | sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; |
| 188 | } |
| 189 | return pCur_syms; |
| 190 | } |
| 191 | |
| 192 | // calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. |
| 193 | static void calculate_minimum_redundancy(sym_freq* A, int n) |
| 194 | { |
| 195 | int root, leaf, next, avbl, used, dpth; |
| 196 | if (n == 0) return; else if (n == 1) { A[0].m_key = 1; return; } |
| 197 | A[0].m_key += A[1].m_key; root = 0; leaf = 2; |
| 198 | for (next = 1; next < n - 1; next++) |
| 199 | { |
| 200 | if (leaf >= n || A[root].m_key < A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } |
| 201 | else A[next].m_key = A[leaf++].m_key; |
| 202 | if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } |
| 203 | else A[next].m_key += A[leaf++].m_key; |
| 204 | } |
| 205 | A[n - 2].m_key = 0; |
| 206 | for (next = n - 3; next >= 0; next--) A[next].m_key = A[A[next].m_key].m_key + 1; |
| 207 | avbl = 1; used = dpth = 0; root = n - 2; next = n - 1; |
| 208 | while (avbl > 0) |
| 209 | { |
| 210 | while (root >= 0 && (int)A[root].m_key == dpth) { used++; root--; } |
| 211 | while (avbl > used) { A[next--].m_key = dpth; avbl--; } |
| 212 | avbl = 2 * used; dpth++; used = 0; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | // Limits canonical Huffman code table's max code size to max_code_size. |
| 217 | static void huffman_enforce_max_code_size(int* pNum_codes, int code_list_len, int max_code_size) |
| 218 | { |
| 219 | if (code_list_len <= 1) return; |
| 220 | |
| 221 | for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; |
| 222 | |
| 223 | uint32 total = 0; |
| 224 | for (int i = max_code_size; i > 0; i--) |
| 225 | total += (((uint32)pNum_codes[i]) << (max_code_size - i)); |
| 226 | |
| 227 | while (total != (1UL << max_code_size)) |
| 228 | { |
| 229 | pNum_codes[max_code_size]--; |
| 230 | for (int i = max_code_size - 1; i > 0; i--) |
| 231 | { |
| 232 | if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } |
| 233 | } |
| 234 | total--; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | // Generates an optimized offman table. |
| 239 | void jpeg_encoder::optimize_huffman_table(int table_num, int table_len) |
| 240 | { |
| 241 | sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS]; |
| 242 | syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's |
| 243 | int num_used_syms = 1; |
| 244 | const uint32* pSym_count = &m_huff_count[table_num][0]; |
| 245 | for (int i = 0; i < table_len; i++) |
| 246 | if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; } |
| 247 | sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1); |
| 248 | calculate_minimum_redundancy(pSyms, num_used_syms); |
| 249 | |
| 250 | // Count the # of symbols of each code size. |
| 251 | int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes); |
| 252 | for (int i = 0; i < num_used_syms; i++) |
| 253 | num_codes[pSyms[i].m_key]++; |
| 254 | |
| 255 | const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol) |
| 256 | huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT); |
| 257 | |
| 258 | // Compute m_huff_bits array, which contains the # of symbols per code size. |
| 259 | clear_obj(m_huff_bits[table_num]); |
| 260 | for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++) |
| 261 | m_huff_bits[table_num][i] = static_cast<uint8>(num_codes[i]); |
| 262 | |
| 263 | // Remove the dummy symbol added above, which must be in largest bucket. |
| 264 | for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--) |
| 265 | { |
| 266 | if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; } |
| 267 | } |
| 268 | |
| 269 | // Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest). |
| 270 | for (int i = num_used_syms - 1; i >= 1; i--) |
| 271 | m_huff_val[table_num][num_used_syms - 1 - i] = static_cast<uint8>(pSyms[i].m_sym_index - 1); |
| 272 | } |
| 273 | |
| 274 | // JPEG marker generation. |
| 275 | void jpeg_encoder::emit_byte(uint8 i) |
| 276 | { |
| 277 | m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i); |
| 278 | } |
| 279 | |
| 280 | void jpeg_encoder::emit_word(uint i) |
| 281 | { |
| 282 | emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF)); |
| 283 | } |
| 284 | |
| 285 | void jpeg_encoder::emit_marker(int marker) |
| 286 | { |
| 287 | emit_byte(uint8(0xFF)); emit_byte(uint8(marker)); |
| 288 | } |
| 289 | |
| 290 | // Emit JFIF marker |
| 291 | void jpeg_encoder::emit_jfif_app0() |
| 292 | { |
| 293 | emit_marker(M_APP0); |
| 294 | emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); |
| 295 | emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */ |
| 296 | emit_byte(0); |
| 297 | emit_byte(1); /* Major version */ |
| 298 | emit_byte(1); /* Minor version */ |
| 299 | emit_byte(0); /* Density unit */ |
| 300 | emit_word(1); |
| 301 | emit_word(1); |
| 302 | emit_byte(0); /* No thumbnail image */ |
| 303 | emit_byte(0); |
| 304 | } |
| 305 | |
| 306 | // Emit quantization tables |
| 307 | void jpeg_encoder::emit_dqt() |
| 308 | { |
| 309 | for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++) |
| 310 | { |
| 311 | emit_marker(M_DQT); |
| 312 | emit_word(64 + 1 + 2); |
| 313 | emit_byte(static_cast<uint8>(i)); |
| 314 | for (int j = 0; j < 64; j++) |
| 315 | emit_byte(static_cast<uint8>(m_quantization_tables[i][j])); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | // Emit start of frame marker |
| 320 | void jpeg_encoder::emit_sof() |
| 321 | { |
| 322 | emit_marker(M_SOF0); /* baseline */ |
| 323 | emit_word(3 * m_num_components + 2 + 5 + 1); |
| 324 | emit_byte(8); /* precision */ |
| 325 | emit_word(m_image_y); |
| 326 | emit_word(m_image_x); |
| 327 | emit_byte(m_num_components); |
| 328 | for (int i = 0; i < m_num_components; i++) |
| 329 | { |
| 330 | emit_byte(static_cast<uint8>(i + 1)); /* component ID */ |
| 331 | emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */ |
| 332 | emit_byte(i > 0); /* quant. table num */ |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Emit Huffman table. |
| 337 | void jpeg_encoder::emit_dht(uint8* bits, uint8* val, int index, bool ac_flag) |
| 338 | { |
| 339 | emit_marker(M_DHT); |
| 340 | |
| 341 | int length = 0; |
| 342 | for (int i = 1; i <= 16; i++) |
| 343 | length += bits[i]; |
| 344 | |
| 345 | emit_word(length + 2 + 1 + 16); |
| 346 | emit_byte(static_cast<uint8>(index + (ac_flag << 4))); |
| 347 | |
| 348 | for (int i = 1; i <= 16; i++) |
| 349 | emit_byte(bits[i]); |
| 350 | |
| 351 | for (int i = 0; i < length; i++) |
| 352 | emit_byte(val[i]); |
| 353 | } |
| 354 | |
| 355 | // Emit all Huffman tables. |
| 356 | void jpeg_encoder::emit_dhts() |
| 357 | { |
| 358 | emit_dht(m_huff_bits[0 + 0], m_huff_val[0 + 0], 0, false); |
| 359 | emit_dht(m_huff_bits[2 + 0], m_huff_val[2 + 0], 0, true); |
| 360 | if (m_num_components == 3) |
| 361 | { |
| 362 | emit_dht(m_huff_bits[0 + 1], m_huff_val[0 + 1], 1, false); |
| 363 | emit_dht(m_huff_bits[2 + 1], m_huff_val[2 + 1], 1, true); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // emit start of scan |
| 368 | void jpeg_encoder::emit_sos() |
| 369 | { |
| 370 | emit_marker(M_SOS); |
| 371 | emit_word(2 * m_num_components + 2 + 1 + 3); |
| 372 | emit_byte(m_num_components); |
| 373 | for (int i = 0; i < m_num_components; i++) |
| 374 | { |
| 375 | emit_byte(static_cast<uint8>(i + 1)); |
| 376 | if (i == 0) |
| 377 | emit_byte((0 << 4) + 0); |
| 378 | else |
| 379 | emit_byte((1 << 4) + 1); |
| 380 | } |
| 381 | emit_byte(0); /* spectral selection */ |
| 382 | emit_byte(63); |
| 383 | emit_byte(0); |
| 384 | } |
| 385 | |
| 386 | // Emit all markers at beginning of image file. |
| 387 | void jpeg_encoder::emit_markers() |
| 388 | { |
| 389 | emit_marker(M_SOI); |
| 390 | emit_jfif_app0(); |
| 391 | emit_dqt(); |
| 392 | emit_sof(); |
| 393 | emit_dhts(); |
| 394 | emit_sos(); |
| 395 | } |
| 396 | |
| 397 | // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays. |
| 398 | void jpeg_encoder::compute_huffman_table(uint* codes, uint8* code_sizes, uint8* bits, uint8* val) |
| 399 | { |
| 400 | int i, l, last_p, si; |
| 401 | uint8 huff_size[257]; |
| 402 | uint huff_code[257]; |
| 403 | uint code; |
| 404 | |
| 405 | int p = 0; |
| 406 | for (l = 1; l <= 16; l++) |
| 407 | for (i = 1; i <= bits[l]; i++) |
| 408 | huff_size[p++] = (char)l; |
| 409 | |
| 410 | huff_size[p] = 0; last_p = p; // write sentinel |
| 411 | |
| 412 | code = 0; si = huff_size[0]; p = 0; |
| 413 | |
| 414 | while (huff_size[p]) |
| 415 | { |
| 416 | while (huff_size[p] == si) |
| 417 | huff_code[p++] = code++; |
| 418 | code <<= 1; |
| 419 | si++; |
| 420 | } |
| 421 | |
| 422 | memset(codes, 0, sizeof(codes[0]) * 256); |
| 423 | memset(code_sizes, 0, sizeof(code_sizes[0]) * 256); |
| 424 | for (p = 0; p < last_p; p++) |
| 425 | { |
| 426 | codes[val[p]] = huff_code[p]; |
| 427 | code_sizes[val[p]] = huff_size[p]; |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | // Quantization table generation. |
| 432 | void jpeg_encoder::compute_quant_table(int32* pDst, int16* pSrc) |
| 433 | { |
| 434 | int32 q; |
| 435 | if (m_params.m_quality < 50) |
| 436 | q = 5000 / m_params.m_quality; |
| 437 | else |
| 438 | q = 200 - m_params.m_quality * 2; |
| 439 | for (int i = 0; i < 64; i++) |
| 440 | { |
| 441 | int32 j = *pSrc++; j = (j * q + 50L) / 100L; |
| 442 | *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | // Higher-level methods. |
| 447 | void jpeg_encoder::first_pass_init() |
| 448 | { |
| 449 | m_bit_buffer = 0; m_bits_in = 0; |
| 450 | memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0])); |
| 451 | m_mcu_y_ofs = 0; |
| 452 | m_pass_num = 1; |
| 453 | } |
| 454 | |
| 455 | bool jpeg_encoder::second_pass_init() |
| 456 | { |
| 457 | compute_huffman_table(&m_huff_codes[0 + 0][0], &m_huff_code_sizes[0 + 0][0], m_huff_bits[0 + 0], m_huff_val[0 + 0]); |
| 458 | compute_huffman_table(&m_huff_codes[2 + 0][0], &m_huff_code_sizes[2 + 0][0], m_huff_bits[2 + 0], m_huff_val[2 + 0]); |
| 459 | if (m_num_components > 1) |
| 460 | { |
| 461 | compute_huffman_table(&m_huff_codes[0 + 1][0], &m_huff_code_sizes[0 + 1][0], m_huff_bits[0 + 1], m_huff_val[0 + 1]); |
| 462 | compute_huffman_table(&m_huff_codes[2 + 1][0], &m_huff_code_sizes[2 + 1][0], m_huff_bits[2 + 1], m_huff_val[2 + 1]); |
| 463 | } |
| 464 | first_pass_init(); |
| 465 | emit_markers(); |
| 466 | m_pass_num = 2; |
| 467 | return true; |
| 468 | } |
| 469 | |
| 470 | bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels) |
| 471 | { |
| 472 | m_num_components = 3; |
| 473 | switch (m_params.m_subsampling) |
| 474 | { |
| 475 | case Y_ONLY: |
| 476 | { |
| 477 | m_num_components = 1; |
| 478 | m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; |
| 479 | m_mcu_x = 8; m_mcu_y = 8; |
| 480 | break; |
| 481 | } |
| 482 | case H1V1: |
| 483 | { |
| 484 | m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; |
| 485 | m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; |
| 486 | m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; |
| 487 | m_mcu_x = 8; m_mcu_y = 8; |
| 488 | break; |
| 489 | } |
| 490 | case H2V1: |
| 491 | { |
| 492 | m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1; |
| 493 | m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; |
| 494 | m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; |
| 495 | m_mcu_x = 16; m_mcu_y = 8; |
| 496 | break; |
| 497 | } |
| 498 | case H2V2: |
| 499 | { |
| 500 | m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2; |
| 501 | m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; |
| 502 | m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; |
| 503 | m_mcu_x = 16; m_mcu_y = 16; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | m_image_x = p_x_res; m_image_y = p_y_res; |
| 508 | m_image_bpp = src_channels; |
| 509 | m_image_bpl = m_image_x * src_channels; |
| 510 | m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1)); |
| 511 | m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1)); |
| 512 | m_image_bpl_xlt = m_image_x * m_num_components; |
| 513 | m_image_bpl_mcu = m_image_x_mcu * m_num_components; |
| 514 | m_mcus_per_row = m_image_x_mcu / m_mcu_x; |
| 515 | |
| 516 | if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false; |
| 517 | for (int i = 1; i < m_mcu_y; i++) |
| 518 | m_mcu_lines[i] = m_mcu_lines[i - 1] + m_image_bpl_mcu; |
| 519 | |
| 520 | if (m_params.m_use_std_tables) |
| 521 | { |
| 522 | compute_quant_table(m_quantization_tables[0], s_std_lum_quant); |
| 523 | compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant); |
| 524 | } |
| 525 | else |
| 526 | { |
| 527 | compute_quant_table(m_quantization_tables[0], s_alt_quant); |
| 528 | memcpy(m_quantization_tables[1], m_quantization_tables[0], sizeof(m_quantization_tables[1])); |
| 529 | } |
| 530 | |
| 531 | m_out_buf_left = JPGE_OUT_BUF_SIZE; |
| 532 | m_pOut_buf = m_out_buf; |
| 533 | |
| 534 | if (m_params.m_two_pass_flag) |
| 535 | { |
| 536 | clear_obj(m_huff_count); |
| 537 | first_pass_init(); |
| 538 | } |
| 539 | else |
| 540 | { |
| 541 | memcpy(m_huff_bits[0 + 0], s_dc_lum_bits, 17); memcpy(m_huff_val[0 + 0], s_dc_lum_val, DC_LUM_CODES); |
| 542 | memcpy(m_huff_bits[2 + 0], s_ac_lum_bits, 17); memcpy(m_huff_val[2 + 0], s_ac_lum_val, AC_LUM_CODES); |
| 543 | memcpy(m_huff_bits[0 + 1], s_dc_chroma_bits, 17); memcpy(m_huff_val[0 + 1], s_dc_chroma_val, DC_CHROMA_CODES); |
| 544 | memcpy(m_huff_bits[2 + 1], s_ac_chroma_bits, 17); memcpy(m_huff_val[2 + 1], s_ac_chroma_val, AC_CHROMA_CODES); |
| 545 | if (!second_pass_init()) return false; // in effect, skip over the first pass |
| 546 | } |
| 547 | return m_all_stream_writes_succeeded; |
| 548 | } |
| 549 | |
| 550 | void jpeg_encoder::load_block_8_8_grey(int x) |
| 551 | { |
| 552 | uint8* pSrc; |
| 553 | sample_array_t* pDst = m_sample_array; |
| 554 | x <<= 3; |
| 555 | for (int i = 0; i < 8; i++, pDst += 8) |
| 556 | { |
| 557 | pSrc = m_mcu_lines[i] + x; |
| 558 | pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128; |
| 559 | pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | void jpeg_encoder::load_block_8_8(int x, int y, int c) |
| 564 | { |
| 565 | uint8* pSrc; |
| 566 | sample_array_t* pDst = m_sample_array; |
| 567 | x = (x * (8 * 3)) + c; |
| 568 | y <<= 3; |
| 569 | for (int i = 0; i < 8; i++, pDst += 8) |
| 570 | { |
| 571 | pSrc = m_mcu_lines[y + i] + x; |
| 572 | pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128; |
| 573 | pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | void jpeg_encoder::load_block_16_8(int x, int c) |
| 578 | { |
| 579 | uint8* pSrc1, * pSrc2; |
| 580 | sample_array_t* pDst = m_sample_array; |
| 581 | x = (x * (16 * 3)) + c; |
| 582 | for (int i = 0; i < 16; i += 2, pDst += 8) |
| 583 | { |
| 584 | pSrc1 = m_mcu_lines[i + 0] + x; |
| 585 | pSrc2 = m_mcu_lines[i + 1] + x; |
| 586 | pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + pSrc2[0 * 3] + pSrc2[1 * 3] + 2) >> 2) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + pSrc2[2 * 3] + pSrc2[3 * 3] + 2) >> 2) - 128; |
| 587 | pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + pSrc2[4 * 3] + pSrc2[5 * 3] + 2) >> 2) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + pSrc2[6 * 3] + pSrc2[7 * 3] + 2) >> 2) - 128; |
| 588 | pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + pSrc2[8 * 3] + pSrc2[9 * 3] + 2) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + 2) >> 2) - 128; |
| 589 | pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + 2) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + 2) >> 2) - 128; |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | void jpeg_encoder::load_block_16_8_8(int x, int c) |
| 594 | { |
| 595 | uint8* pSrc1; |
| 596 | sample_array_t* pDst = m_sample_array; |
| 597 | x = (x * (16 * 3)) + c; |
| 598 | for (int i = 0; i < 8; i++, pDst += 8) |
| 599 | { |
| 600 | pSrc1 = m_mcu_lines[i + 0] + x; |
| 601 | pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + 1) >> 1) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + 1) >> 1) - 128; |
| 602 | pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + 1) >> 1) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + 1) >> 1) - 128; |
| 603 | pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + 1) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + 1) >> 1) - 128; |
| 604 | pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + 1) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + 1) >> 1) - 128; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | void jpeg_encoder::load_quantized_coefficients(int component_num) |
| 609 | { |
| 610 | int32* q = m_quantization_tables[component_num > 0]; |
| 611 | int16* pDst = m_coefficient_array; |
| 612 | for (int i = 0; i < 64; i++) |
| 613 | { |
| 614 | sample_array_t j = m_sample_array[s_zag[i]]; |
| 615 | if (j < 0) |
| 616 | { |
| 617 | if ((j = -j + (*q >> 1)) < *q) |
| 618 | *pDst++ = 0; |
| 619 | else |
| 620 | *pDst++ = static_cast<int16>(-(j / *q)); |
| 621 | } |
| 622 | else |
| 623 | { |
| 624 | if ((j = j + (*q >> 1)) < *q) |
| 625 | *pDst++ = 0; |
| 626 | else |
| 627 | *pDst++ = static_cast<int16>((j / *q)); |
| 628 | } |
| 629 | q++; |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | void jpeg_encoder::flush_output_buffer() |
| 634 | { |
| 635 | if (m_out_buf_left != JPGE_OUT_BUF_SIZE) |
| 636 | m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left); |
| 637 | m_pOut_buf = m_out_buf; |
| 638 | m_out_buf_left = JPGE_OUT_BUF_SIZE; |
| 639 | } |
| 640 | |
| 641 | void jpeg_encoder::put_bits(uint bits, uint len) |
| 642 | { |
| 643 | m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len))); |
| 644 | while (m_bits_in >= 8) |
| 645 | { |
| 646 | uint8 c; |
| 647 | #define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); } |
| 648 | JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF)); |
| 649 | if (c == 0xFF) JPGE_PUT_BYTE(0); |
| 650 | m_bit_buffer <<= 8; |
| 651 | m_bits_in -= 8; |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | void jpeg_encoder::code_coefficients_pass_one(int component_num) |
| 656 | { |
| 657 | if (component_num >= 3) return; // just to shut up static analysis |
| 658 | int i, run_len, nbits, temp1; |
| 659 | int16* src = m_coefficient_array; |
| 660 | uint32* dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], * ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0]; |
| 661 | |
| 662 | temp1 = src[0] - m_last_dc_val[component_num]; |
| 663 | m_last_dc_val[component_num] = src[0]; |
| 664 | if (temp1 < 0) temp1 = -temp1; |
| 665 | |
| 666 | nbits = 0; |
| 667 | while (temp1) |
| 668 | { |
| 669 | nbits++; temp1 >>= 1; |
| 670 | } |
| 671 | |
| 672 | dc_count[nbits]++; |
| 673 | for (run_len = 0, i = 1; i < 64; i++) |
| 674 | { |
| 675 | if ((temp1 = m_coefficient_array[i]) == 0) |
| 676 | run_len++; |
| 677 | else |
| 678 | { |
| 679 | while (run_len >= 16) |
| 680 | { |
| 681 | ac_count[0xF0]++; |
| 682 | run_len -= 16; |
| 683 | } |
| 684 | if (temp1 < 0) temp1 = -temp1; |
| 685 | nbits = 1; |
| 686 | while (temp1 >>= 1) nbits++; |
| 687 | ac_count[(run_len << 4) + nbits]++; |
| 688 | run_len = 0; |
| 689 | } |
| 690 | } |
| 691 | if (run_len) ac_count[0]++; |
| 692 | } |
| 693 | |
| 694 | void jpeg_encoder::code_coefficients_pass_two(int component_num) |
| 695 | { |
| 696 | int i, j, run_len, nbits, temp1, temp2; |
| 697 | int16* pSrc = m_coefficient_array; |
| 698 | uint* codes[2]; |
| 699 | uint8* code_sizes[2]; |
| 700 | |
| 701 | if (component_num == 0) |
| 702 | { |
| 703 | codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0]; |
| 704 | code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0]; |
| 705 | } |
| 706 | else |
| 707 | { |
| 708 | codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1]; |
| 709 | code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1]; |
| 710 | } |
| 711 | |
| 712 | temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num]; |
| 713 | m_last_dc_val[component_num] = pSrc[0]; |
| 714 | |
| 715 | if (temp1 < 0) |
| 716 | { |
| 717 | temp1 = -temp1; temp2--; |
| 718 | } |
| 719 | |
| 720 | nbits = 0; |
| 721 | while (temp1) |
| 722 | { |
| 723 | nbits++; temp1 >>= 1; |
| 724 | } |
| 725 | |
| 726 | put_bits(codes[0][nbits], code_sizes[0][nbits]); |
| 727 | if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits); |
| 728 | |
| 729 | for (run_len = 0, i = 1; i < 64; i++) |
| 730 | { |
| 731 | if ((temp1 = m_coefficient_array[i]) == 0) |
| 732 | run_len++; |
| 733 | else |
| 734 | { |
| 735 | while (run_len >= 16) |
| 736 | { |
| 737 | put_bits(codes[1][0xF0], code_sizes[1][0xF0]); |
| 738 | run_len -= 16; |
| 739 | } |
| 740 | if ((temp2 = temp1) < 0) |
| 741 | { |
| 742 | temp1 = -temp1; |
| 743 | temp2--; |
| 744 | } |
| 745 | nbits = 1; |
| 746 | while (temp1 >>= 1) |
| 747 | nbits++; |
| 748 | j = (run_len << 4) + nbits; |
| 749 | put_bits(codes[1][j], code_sizes[1][j]); |
| 750 | put_bits(temp2 & ((1 << nbits) - 1), nbits); |
| 751 | run_len = 0; |
| 752 | } |
| 753 | } |
| 754 | if (run_len) |
| 755 | put_bits(codes[1][0], code_sizes[1][0]); |
| 756 | } |
| 757 | |
| 758 | void jpeg_encoder::code_block(int component_num) |
| 759 | { |
| 760 | DCT2D(m_sample_array); |
| 761 | load_quantized_coefficients(component_num); |
| 762 | if (m_pass_num == 1) |
| 763 | code_coefficients_pass_one(component_num); |
| 764 | else |
| 765 | code_coefficients_pass_two(component_num); |
| 766 | } |
| 767 | |
| 768 | void jpeg_encoder::process_mcu_row() |
| 769 | { |
| 770 | if (m_num_components == 1) |
| 771 | { |
| 772 | for (int i = 0; i < m_mcus_per_row; i++) |
| 773 | { |
| 774 | load_block_8_8_grey(i); code_block(0); |
| 775 | } |
| 776 | } |
| 777 | else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) |
| 778 | { |
| 779 | for (int i = 0; i < m_mcus_per_row; i++) |
| 780 | { |
| 781 | load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2); |
| 782 | } |
| 783 | } |
| 784 | else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) |
| 785 | { |
| 786 | for (int i = 0; i < m_mcus_per_row; i++) |
| 787 | { |
| 788 | load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); |
| 789 | load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2); |
| 790 | } |
| 791 | } |
| 792 | else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) |
| 793 | { |
| 794 | for (int i = 0; i < m_mcus_per_row; i++) |
| 795 | { |
| 796 | load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); |
| 797 | load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0); |
| 798 | load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2); |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | bool jpeg_encoder::terminate_pass_one() |
| 804 | { |
| 805 | optimize_huffman_table(0 + 0, DC_LUM_CODES); optimize_huffman_table(2 + 0, AC_LUM_CODES); |
| 806 | if (m_num_components > 1) |
| 807 | { |
| 808 | optimize_huffman_table(0 + 1, DC_CHROMA_CODES); optimize_huffman_table(2 + 1, AC_CHROMA_CODES); |
| 809 | } |
| 810 | return second_pass_init(); |
| 811 | } |
| 812 | |
| 813 | bool jpeg_encoder::terminate_pass_two() |
| 814 | { |
| 815 | put_bits(0x7F, 7); |
| 816 | flush_output_buffer(); |
| 817 | emit_marker(M_EOI); |
| 818 | m_pass_num++; // purposely bump up m_pass_num, for debugging |
| 819 | return true; |
| 820 | } |
| 821 | |
| 822 | bool jpeg_encoder::process_end_of_image() |
| 823 | { |
| 824 | if (m_mcu_y_ofs) |
| 825 | { |
| 826 | if (m_mcu_y_ofs < 16) // check here just to shut up static analysis |
| 827 | { |
| 828 | for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) |
| 829 | memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu); |
| 830 | } |
| 831 | |
| 832 | process_mcu_row(); |
| 833 | } |
| 834 | |
| 835 | if (m_pass_num == 1) |
| 836 | return terminate_pass_one(); |
| 837 | else |
| 838 | return terminate_pass_two(); |
| 839 | } |
| 840 | |
| 841 | void jpeg_encoder::load_mcu(const void* pSrc) |
| 842 | { |
| 843 | const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc); |
| 844 | |
| 845 | uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst |
| 846 | |
| 847 | if (m_num_components == 1) |
| 848 | { |
| 849 | if (m_image_bpp == 4) |
| 850 | RGBA_to_Y(pDst, Psrc, m_image_x); |
| 851 | else if (m_image_bpp == 3) |
| 852 | RGB_to_Y(pDst, Psrc, m_image_x); |
| 853 | else |
| 854 | memcpy(pDst, Psrc, m_image_x); |
| 855 | } |
| 856 | else |
| 857 | { |
| 858 | if (m_image_bpp == 4) |
| 859 | RGBA_to_YCC(pDst, Psrc, m_image_x); |
| 860 | else if (m_image_bpp == 3) |
| 861 | RGB_to_YCC(pDst, Psrc, m_image_x); |
| 862 | else |
| 863 | Y_to_YCC(pDst, Psrc, m_image_x); |
| 864 | } |
| 865 | |
| 866 | // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16 |
| 867 | if (m_num_components == 1) |
| 868 | memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x); |
| 869 | else |
| 870 | { |
| 871 | const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2]; |
| 872 | uint8* q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt; |
| 873 | for (int i = m_image_x; i < m_image_x_mcu; i++) |
| 874 | { |
| 875 | *q++ = y; *q++ = cb; *q++ = cr; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | if (++m_mcu_y_ofs == m_mcu_y) |
| 880 | { |
| 881 | process_mcu_row(); |
| 882 | m_mcu_y_ofs = 0; |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | void jpeg_encoder::clear() |
| 887 | { |
| 888 | m_mcu_lines[0] = NULL; |
| 889 | m_pass_num = 0; |
| 890 | m_all_stream_writes_succeeded = true; |
| 891 | } |
| 892 | |
| 893 | jpeg_encoder::jpeg_encoder() |
| 894 | { |
| 895 | clear(); |
| 896 | } |
| 897 | |
| 898 | jpeg_encoder::~jpeg_encoder() |
| 899 | { |
| 900 | deinit(); |
| 901 | } |
| 902 | |
| 903 | bool jpeg_encoder::init(output_stream* pStream, int width, int height, int src_channels, const params& comp_params) |
| 904 | { |
| 905 | deinit(); |
| 906 | if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false; |
| 907 | m_pStream = pStream; |
| 908 | m_params = comp_params; |
| 909 | return jpg_open(width, height, src_channels); |
| 910 | } |
| 911 | |
| 912 | void jpeg_encoder::deinit() |
| 913 | { |
| 914 | jpge_free(m_mcu_lines[0]); |
| 915 | clear(); |
| 916 | } |
| 917 | |
| 918 | bool jpeg_encoder::process_scanline(const void* pScanline) |
| 919 | { |
| 920 | if ((m_pass_num < 1) || (m_pass_num > 2)) return false; |
| 921 | if (m_all_stream_writes_succeeded) |
| 922 | { |
| 923 | if (!pScanline) |
| 924 | { |
| 925 | if (!process_end_of_image()) return false; |
| 926 | } |
| 927 | else |
| 928 | { |
| 929 | load_mcu(pScanline); |
| 930 | } |
| 931 | } |
| 932 | return m_all_stream_writes_succeeded; |
| 933 | } |
| 934 | |
| 935 | // Higher level wrappers/examples (optional). |
| 936 | #include <stdio.h> |
| 937 | |
| 938 | class cfile_stream : public output_stream |
| 939 | { |
| 940 | cfile_stream(const cfile_stream&); |
| 941 | cfile_stream& operator= (const cfile_stream&); |
| 942 | |
| 943 | FILE* m_pFile; |
| 944 | bool m_bStatus; |
| 945 | |
| 946 | public: |
| 947 | cfile_stream() : m_pFile(NULL), m_bStatus(false) { } |
| 948 | |
| 949 | virtual ~cfile_stream() |
| 950 | { |
| 951 | close(); |
| 952 | } |
| 953 | |
| 954 | bool open(const char* pFilename) |
| 955 | { |
| 956 | close(); |
| 957 | m_pFile = fopen(pFilename, "wb" ); |
| 958 | m_bStatus = (m_pFile != NULL); |
| 959 | return m_bStatus; |
| 960 | } |
| 961 | |
| 962 | bool close() |
| 963 | { |
| 964 | if (m_pFile) |
| 965 | { |
| 966 | if (fclose(m_pFile) == EOF) |
| 967 | { |
| 968 | m_bStatus = false; |
| 969 | } |
| 970 | m_pFile = NULL; |
| 971 | } |
| 972 | return m_bStatus; |
| 973 | } |
| 974 | |
| 975 | virtual bool put_buf(const void* pBuf, int len) |
| 976 | { |
| 977 | m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1); |
| 978 | return m_bStatus; |
| 979 | } |
| 980 | |
| 981 | uint get_size() const |
| 982 | { |
| 983 | return m_pFile ? ftell(m_pFile) : 0; |
| 984 | } |
| 985 | }; |
| 986 | |
| 987 | // Writes JPEG image to file. |
| 988 | bool compress_image_to_jpeg_file(const char* pFilename, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params) |
| 989 | { |
| 990 | cfile_stream dst_stream; |
| 991 | if (!dst_stream.open(pFilename)) |
| 992 | return false; |
| 993 | |
| 994 | jpge::jpeg_encoder dst_image; |
| 995 | if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) |
| 996 | return false; |
| 997 | |
| 998 | for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) |
| 999 | { |
| 1000 | for (int i = 0; i < height; i++) |
| 1001 | { |
| 1002 | const uint8* pBuf = pImage_data + i * width * num_channels; |
| 1003 | if (!dst_image.process_scanline(pBuf)) |
| 1004 | return false; |
| 1005 | } |
| 1006 | if (!dst_image.process_scanline(NULL)) |
| 1007 | return false; |
| 1008 | } |
| 1009 | |
| 1010 | dst_image.deinit(); |
| 1011 | |
| 1012 | return dst_stream.close(); |
| 1013 | } |
| 1014 | |
| 1015 | class memory_stream : public output_stream |
| 1016 | { |
| 1017 | memory_stream(const memory_stream&); |
| 1018 | memory_stream& operator= (const memory_stream&); |
| 1019 | |
| 1020 | uint8* m_pBuf; |
| 1021 | uint m_buf_size, m_buf_ofs; |
| 1022 | |
| 1023 | public: |
| 1024 | memory_stream(void* pBuf, uint buf_size) : m_pBuf(static_cast<uint8*>(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { } |
| 1025 | |
| 1026 | virtual ~memory_stream() { } |
| 1027 | |
| 1028 | virtual bool put_buf(const void* pBuf, int len) |
| 1029 | { |
| 1030 | uint buf_remaining = m_buf_size - m_buf_ofs; |
| 1031 | if ((uint)len > buf_remaining) |
| 1032 | return false; |
| 1033 | memcpy(m_pBuf + m_buf_ofs, pBuf, len); |
| 1034 | m_buf_ofs += len; |
| 1035 | return true; |
| 1036 | } |
| 1037 | |
| 1038 | uint get_size() const |
| 1039 | { |
| 1040 | return m_buf_ofs; |
| 1041 | } |
| 1042 | }; |
| 1043 | |
| 1044 | bool compress_image_to_jpeg_file_in_memory(void* pDstBuf, int& buf_size, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params) |
| 1045 | { |
| 1046 | if ((!pDstBuf) || (!buf_size)) |
| 1047 | return false; |
| 1048 | |
| 1049 | memory_stream dst_stream(pDstBuf, buf_size); |
| 1050 | |
| 1051 | buf_size = 0; |
| 1052 | |
| 1053 | jpge::jpeg_encoder dst_image; |
| 1054 | if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) |
| 1055 | return false; |
| 1056 | |
| 1057 | for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) |
| 1058 | { |
| 1059 | for (int i = 0; i < height; i++) |
| 1060 | { |
| 1061 | const uint8* pScanline = pImage_data + i * width * num_channels; |
| 1062 | if (!dst_image.process_scanline(pScanline)) |
| 1063 | return false; |
| 1064 | } |
| 1065 | if (!dst_image.process_scanline(NULL)) |
| 1066 | return false; |
| 1067 | } |
| 1068 | |
| 1069 | dst_image.deinit(); |
| 1070 | |
| 1071 | buf_size = dst_stream.get_size(); |
| 1072 | return true; |
| 1073 | } |
| 1074 | |
| 1075 | } // namespace jpge |
| 1076 | |
| 1077 | |