1 | /* |
2 | Copyright (c) 2003-2010, Troy D. Hanson http://uthash.sourceforge.net All rights reserved. |
3 | SPDX-License-Identifier: BSD-1-Clause |
4 | */ |
5 | |
6 | #ifndef UTHASH_H |
7 | #define UTHASH_H |
8 | |
9 | #include <string.h> /* memcmp,strlen */ |
10 | #include <stddef.h> /* ptrdiff_t */ |
11 | |
12 | /* These macros use decltype or the earlier __typeof GNU extension. |
13 | As decltype is only available in newer compilers (VS2010 or gcc 4.3+ |
14 | when compiling c++ source) this code uses whatever method is needed |
15 | or, for VS2008 where neither is available, uses casting workarounds. */ |
16 | #ifdef _MSC_VER /* MS compiler */ |
17 | #if _MSC_VER >= 1600 && __cplusplus /* VS2010 or newer in C++ mode */ |
18 | #define DECLTYPE(x) (decltype(x)) |
19 | #else /* VS2008 or older (or VS2010 in C mode) */ |
20 | #define NO_DECLTYPE |
21 | #define DECLTYPE(x) |
22 | #endif |
23 | #else /* GNU, Sun and other compilers */ |
24 | #define DECLTYPE(x) (__typeof(x)) |
25 | #endif |
26 | |
27 | #ifdef NO_DECLTYPE |
28 | #define DECLTYPE_ASSIGN(dst,src) \ |
29 | do { \ |
30 | char **_da_dst = (char**)(&(dst)); \ |
31 | *_da_dst = (char*)(src); \ |
32 | } while(0) |
33 | #else |
34 | #define DECLTYPE_ASSIGN(dst,src) \ |
35 | do { \ |
36 | (dst) = DECLTYPE(dst)(src); \ |
37 | } while(0) |
38 | #endif |
39 | |
40 | /* a number of the hash function use uint32_t which isn't defined on win32 */ |
41 | #ifdef _MSC_VER |
42 | typedef unsigned int uint32_t; |
43 | #else |
44 | #include <inttypes.h> /* uint32_t */ |
45 | #endif |
46 | |
47 | #define UTHASH_VERSION 1.9.1 |
48 | |
49 | #define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */ |
50 | #define uthash_malloc(sz) malloc(sz) /* malloc fcn */ |
51 | #define uthash_free(ptr) free(ptr) /* free fcn */ |
52 | |
53 | #define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */ |
54 | #define uthash_expand_fyi(tbl) /* can be defined to log expands */ |
55 | |
56 | /* initial number of buckets */ |
57 | #define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */ |
58 | #define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */ |
59 | #define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */ |
60 | |
61 | /* calculate the element whose hash handle address is hhe */ |
62 | #define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho))) |
63 | |
64 | #define HASH_FIND(hh,head,keyptr,keylen,out) \ |
65 | do { \ |
66 | unsigned _hf_bkt,_hf_hashv; \ |
67 | out=NULL; \ |
68 | if (head) { \ |
69 | HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \ |
70 | if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \ |
71 | HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \ |
72 | keyptr,keylen,out); \ |
73 | } \ |
74 | } \ |
75 | } while (0) |
76 | |
77 | #ifdef HASH_BLOOM |
78 | #define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM) |
79 | #define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0) |
80 | #define HASH_BLOOM_MAKE(tbl) \ |
81 | do { \ |
82 | (tbl)->bloom_nbits = HASH_BLOOM; \ |
83 | (tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \ |
84 | if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \ |
85 | memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \ |
86 | (tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \ |
87 | } while (0); |
88 | |
89 | #define HASH_BLOOM_FREE(tbl) \ |
90 | do { \ |
91 | uthash_free((tbl)->bloom_bv); \ |
92 | } while (0); |
93 | |
94 | #define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8))) |
95 | #define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8))) |
96 | |
97 | #define HASH_BLOOM_ADD(tbl,hashv) \ |
98 | HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) |
99 | |
100 | #define HASH_BLOOM_TEST(tbl,hashv) \ |
101 | HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) |
102 | |
103 | #else |
104 | #define HASH_BLOOM_MAKE(tbl) |
105 | #define HASH_BLOOM_FREE(tbl) |
106 | #define HASH_BLOOM_ADD(tbl,hashv) |
107 | #define HASH_BLOOM_TEST(tbl,hashv) (1) |
108 | #endif |
109 | |
110 | #define HASH_MAKE_TABLE(hh,head) \ |
111 | do { \ |
112 | (head)->hh.tbl = (UT_hash_table*)uthash_malloc( \ |
113 | sizeof(UT_hash_table)); \ |
114 | if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \ |
115 | memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \ |
116 | (head)->hh.tbl->tail = &((head)->hh); \ |
117 | (head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \ |
118 | (head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \ |
119 | (head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \ |
120 | (head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \ |
121 | HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ |
122 | if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \ |
123 | memset((head)->hh.tbl->buckets, 0, \ |
124 | HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ |
125 | HASH_BLOOM_MAKE((head)->hh.tbl); \ |
126 | (head)->hh.tbl->signature = HASH_SIGNATURE; \ |
127 | } while(0) |
128 | |
129 | #define HASH_ADD(hh,head,fieldname,keylen_in,add) \ |
130 | HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add) |
131 | |
132 | #define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \ |
133 | do { \ |
134 | unsigned _ha_bkt; \ |
135 | (add)->hh.next = NULL; \ |
136 | (add)->hh.key = (char*)keyptr; \ |
137 | (add)->hh.keylen = keylen_in; \ |
138 | if (!(head)) { \ |
139 | head = (add); \ |
140 | (head)->hh.prev = NULL; \ |
141 | HASH_MAKE_TABLE(hh,head); \ |
142 | } else { \ |
143 | (head)->hh.tbl->tail->next = (add); \ |
144 | (add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \ |
145 | (head)->hh.tbl->tail = &((add)->hh); \ |
146 | } \ |
147 | (head)->hh.tbl->num_items++; \ |
148 | (add)->hh.tbl = (head)->hh.tbl; \ |
149 | HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \ |
150 | (add)->hh.hashv, _ha_bkt); \ |
151 | HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \ |
152 | HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \ |
153 | HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \ |
154 | HASH_FSCK(hh,head); \ |
155 | } while(0) |
156 | |
157 | #define HASH_TO_BKT( hashv, num_bkts, bkt ) \ |
158 | do { \ |
159 | bkt = ((hashv) & ((num_bkts) - 1)); \ |
160 | } while(0) |
161 | |
162 | /* delete "delptr" from the hash table. |
163 | * "the usual" patch-up process for the app-order doubly-linked-list. |
164 | * The use of _hd_hh_del below deserves special explanation. |
165 | * These used to be expressed using (delptr) but that led to a bug |
166 | * if someone used the same symbol for the head and deletee, like |
167 | * HASH_DELETE(hh,users,users); |
168 | * We want that to work, but by changing the head (users) below |
169 | * we were forfeiting our ability to further refer to the deletee (users) |
170 | * in the patch-up process. Solution: use scratch space to |
171 | * copy the deletee pointer, then the latter references are via that |
172 | * scratch pointer rather than through the repointed (users) symbol. |
173 | */ |
174 | #define HASH_DELETE(hh,head,delptr) \ |
175 | do { \ |
176 | unsigned _hd_bkt; \ |
177 | struct UT_hash_handle *_hd_hh_del; \ |
178 | if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \ |
179 | uthash_free((head)->hh.tbl->buckets ); \ |
180 | HASH_BLOOM_FREE((head)->hh.tbl); \ |
181 | uthash_free((head)->hh.tbl); \ |
182 | head = NULL; \ |
183 | } else { \ |
184 | _hd_hh_del = &((delptr)->hh); \ |
185 | if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \ |
186 | (head)->hh.tbl->tail = \ |
187 | (UT_hash_handle*)((char*)((delptr)->hh.prev) + \ |
188 | (head)->hh.tbl->hho); \ |
189 | } \ |
190 | if ((delptr)->hh.prev) { \ |
191 | ((UT_hash_handle*)((char*)((delptr)->hh.prev) + \ |
192 | (head)->hh.tbl->hho))->next = (delptr)->hh.next; \ |
193 | } else { \ |
194 | DECLTYPE_ASSIGN(head,(delptr)->hh.next); \ |
195 | } \ |
196 | if (_hd_hh_del->next) { \ |
197 | ((UT_hash_handle*)((char*)_hd_hh_del->next + \ |
198 | (head)->hh.tbl->hho))->prev = \ |
199 | _hd_hh_del->prev; \ |
200 | } \ |
201 | HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \ |
202 | HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \ |
203 | (head)->hh.tbl->num_items--; \ |
204 | } \ |
205 | HASH_FSCK(hh,head); \ |
206 | } while (0) |
207 | |
208 | |
209 | /* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */ |
210 | #define HASH_FIND_STR(head,findstr,out) \ |
211 | HASH_FIND(hh,head,findstr,strlen(findstr),out) |
212 | #define HASH_ADD_STR(head,strfield,add) \ |
213 | HASH_ADD(hh,head,strfield,strlen(add->strfield),add) |
214 | #define HASH_FIND_INT(head,findint,out) \ |
215 | HASH_FIND(hh,head,findint,sizeof(int),out) |
216 | #define HASH_ADD_INT(head,intfield,add) \ |
217 | HASH_ADD(hh,head,intfield,sizeof(int),add) |
218 | #define HASH_FIND_PTR(head,findptr,out) \ |
219 | HASH_FIND(hh,head,findptr,sizeof(void *),out) |
220 | #define HASH_ADD_PTR(head,ptrfield,add) \ |
221 | HASH_ADD(hh,head,ptrfield,sizeof(void *),add) |
222 | #define HASH_DEL(head,delptr) \ |
223 | HASH_DELETE(hh,head,delptr) |
224 | |
225 | /* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined. |
226 | * This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined. |
227 | */ |
228 | #ifdef HASH_DEBUG |
229 | #define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0) |
230 | #define HASH_FSCK(hh,head) \ |
231 | do { \ |
232 | unsigned _bkt_i; \ |
233 | unsigned _count, _bkt_count; \ |
234 | char *_prev; \ |
235 | struct UT_hash_handle *_thh; \ |
236 | if (head) { \ |
237 | _count = 0; \ |
238 | for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \ |
239 | _bkt_count = 0; \ |
240 | _thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \ |
241 | _prev = NULL; \ |
242 | while (_thh) { \ |
243 | if (_prev != (char*)(_thh->hh_prev)) { \ |
244 | HASH_OOPS("invalid hh_prev %p, actual %p\n", \ |
245 | _thh->hh_prev, _prev ); \ |
246 | } \ |
247 | _bkt_count++; \ |
248 | _prev = (char*)(_thh); \ |
249 | _thh = _thh->hh_next; \ |
250 | } \ |
251 | _count += _bkt_count; \ |
252 | if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \ |
253 | HASH_OOPS("invalid bucket count %d, actual %d\n", \ |
254 | (head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \ |
255 | } \ |
256 | } \ |
257 | if (_count != (head)->hh.tbl->num_items) { \ |
258 | HASH_OOPS("invalid hh item count %d, actual %d\n", \ |
259 | (head)->hh.tbl->num_items, _count ); \ |
260 | } \ |
261 | /* traverse hh in app order; check next/prev integrity, count */ \ |
262 | _count = 0; \ |
263 | _prev = NULL; \ |
264 | _thh = &(head)->hh; \ |
265 | while (_thh) { \ |
266 | _count++; \ |
267 | if (_prev !=(char*)(_thh->prev)) { \ |
268 | HASH_OOPS("invalid prev %p, actual %p\n", \ |
269 | _thh->prev, _prev ); \ |
270 | } \ |
271 | _prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \ |
272 | _thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \ |
273 | (head)->hh.tbl->hho) : NULL ); \ |
274 | } \ |
275 | if (_count != (head)->hh.tbl->num_items) { \ |
276 | HASH_OOPS("invalid app item count %d, actual %d\n", \ |
277 | (head)->hh.tbl->num_items, _count ); \ |
278 | } \ |
279 | } \ |
280 | } while (0) |
281 | #else |
282 | #define HASH_FSCK(hh,head) |
283 | #endif |
284 | |
285 | /* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to |
286 | * the descriptor to which this macro is defined for tuning the hash function. |
287 | * The app can #include <unistd.h> to get the prototype for write(2). */ |
288 | #ifdef HASH_EMIT_KEYS |
289 | #define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \ |
290 | do { \ |
291 | unsigned _klen = fieldlen; \ |
292 | write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \ |
293 | write(HASH_EMIT_KEYS, keyptr, fieldlen); \ |
294 | } while (0) |
295 | #else |
296 | #define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) |
297 | #endif |
298 | |
299 | /* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */ |
300 | #ifdef HASH_FUNCTION |
301 | #define HASH_FCN HASH_FUNCTION |
302 | #else |
303 | #define HASH_FCN HASH_JEN |
304 | #endif |
305 | |
306 | /* The Bernstein hash function, used in Perl prior to v5.6 */ |
307 | #define HASH_BER(key,keylen,num_bkts,hashv,bkt) \ |
308 | do { \ |
309 | unsigned _hb_keylen=keylen; \ |
310 | char *_hb_key=(char*)key; \ |
311 | (hashv) = 0; \ |
312 | while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \ |
313 | bkt = (hashv) & (num_bkts-1); \ |
314 | } while (0) |
315 | |
316 | |
317 | /* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at |
318 | * http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */ |
319 | #define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \ |
320 | do { \ |
321 | unsigned _sx_i; \ |
322 | char *_hs_key=(char*)key; \ |
323 | hashv = 0; \ |
324 | for(_sx_i=0; _sx_i < keylen; _sx_i++) \ |
325 | hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \ |
326 | bkt = hashv & (num_bkts-1); \ |
327 | } while (0) |
328 | |
329 | #define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \ |
330 | do { \ |
331 | unsigned _fn_i; \ |
332 | char *_hf_key=(char*)key; \ |
333 | hashv = 2166136261UL; \ |
334 | for(_fn_i=0; _fn_i < keylen; _fn_i++) \ |
335 | hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \ |
336 | bkt = hashv & (num_bkts-1); \ |
337 | } while(0); |
338 | |
339 | #define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \ |
340 | do { \ |
341 | unsigned _ho_i; \ |
342 | char *_ho_key=(char*)key; \ |
343 | hashv = 0; \ |
344 | for(_ho_i=0; _ho_i < keylen; _ho_i++) { \ |
345 | hashv += _ho_key[_ho_i]; \ |
346 | hashv += (hashv << 10); \ |
347 | hashv ^= (hashv >> 6); \ |
348 | } \ |
349 | hashv += (hashv << 3); \ |
350 | hashv ^= (hashv >> 11); \ |
351 | hashv += (hashv << 15); \ |
352 | bkt = hashv & (num_bkts-1); \ |
353 | } while(0) |
354 | |
355 | #define HASH_JEN_MIX(a,b,c) \ |
356 | do { \ |
357 | a -= b; a -= c; a ^= ( c >> 13 ); \ |
358 | b -= c; b -= a; b ^= ( a << 8 ); \ |
359 | c -= a; c -= b; c ^= ( b >> 13 ); \ |
360 | a -= b; a -= c; a ^= ( c >> 12 ); \ |
361 | b -= c; b -= a; b ^= ( a << 16 ); \ |
362 | c -= a; c -= b; c ^= ( b >> 5 ); \ |
363 | a -= b; a -= c; a ^= ( c >> 3 ); \ |
364 | b -= c; b -= a; b ^= ( a << 10 ); \ |
365 | c -= a; c -= b; c ^= ( b >> 15 ); \ |
366 | } while (0) |
367 | |
368 | #define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \ |
369 | do { \ |
370 | unsigned _hj_i,_hj_j,_hj_k; \ |
371 | char *_hj_key=(char*)key; \ |
372 | hashv = 0xfeedbeef; \ |
373 | _hj_i = _hj_j = 0x9e3779b9; \ |
374 | _hj_k = keylen; \ |
375 | while (_hj_k >= 12) { \ |
376 | _hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \ |
377 | + ( (unsigned)_hj_key[2] << 16 ) \ |
378 | + ( (unsigned)_hj_key[3] << 24 ) ); \ |
379 | _hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \ |
380 | + ( (unsigned)_hj_key[6] << 16 ) \ |
381 | + ( (unsigned)_hj_key[7] << 24 ) ); \ |
382 | hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \ |
383 | + ( (unsigned)_hj_key[10] << 16 ) \ |
384 | + ( (unsigned)_hj_key[11] << 24 ) ); \ |
385 | \ |
386 | HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ |
387 | \ |
388 | _hj_key += 12; \ |
389 | _hj_k -= 12; \ |
390 | } \ |
391 | hashv += keylen; \ |
392 | switch ( _hj_k ) { \ |
393 | case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \ |
394 | case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \ |
395 | case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \ |
396 | case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \ |
397 | case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \ |
398 | case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \ |
399 | case 5: _hj_j += _hj_key[4]; \ |
400 | case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \ |
401 | case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \ |
402 | case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \ |
403 | case 1: _hj_i += _hj_key[0]; \ |
404 | } \ |
405 | HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ |
406 | bkt = hashv & (num_bkts-1); \ |
407 | } while(0) |
408 | |
409 | /* The Paul Hsieh hash function */ |
410 | #undef get16bits |
411 | #if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \ |
412 | || defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__) |
413 | #define get16bits(d) (*((const uint16_t *) (d))) |
414 | #endif |
415 | |
416 | #if !defined (get16bits) |
417 | #define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \ |
418 | +(uint32_t)(((const uint8_t *)(d))[0]) ) |
419 | #endif |
420 | #define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \ |
421 | do { \ |
422 | char *_sfh_key=(char*)key; \ |
423 | uint32_t _sfh_tmp, _sfh_len = keylen; \ |
424 | \ |
425 | int _sfh_rem = _sfh_len & 3; \ |
426 | _sfh_len >>= 2; \ |
427 | hashv = 0xcafebabe; \ |
428 | \ |
429 | /* Main loop */ \ |
430 | for (;_sfh_len > 0; _sfh_len--) { \ |
431 | hashv += get16bits (_sfh_key); \ |
432 | _sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \ |
433 | hashv = (hashv << 16) ^ _sfh_tmp; \ |
434 | _sfh_key += 2*sizeof (uint16_t); \ |
435 | hashv += hashv >> 11; \ |
436 | } \ |
437 | \ |
438 | /* Handle end cases */ \ |
439 | switch (_sfh_rem) { \ |
440 | case 3: hashv += get16bits (_sfh_key); \ |
441 | hashv ^= hashv << 16; \ |
442 | hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \ |
443 | hashv += hashv >> 11; \ |
444 | break; \ |
445 | case 2: hashv += get16bits (_sfh_key); \ |
446 | hashv ^= hashv << 11; \ |
447 | hashv += hashv >> 17; \ |
448 | break; \ |
449 | case 1: hashv += *_sfh_key; \ |
450 | hashv ^= hashv << 10; \ |
451 | hashv += hashv >> 1; \ |
452 | } \ |
453 | \ |
454 | /* Force "avalanching" of final 127 bits */ \ |
455 | hashv ^= hashv << 3; \ |
456 | hashv += hashv >> 5; \ |
457 | hashv ^= hashv << 4; \ |
458 | hashv += hashv >> 17; \ |
459 | hashv ^= hashv << 25; \ |
460 | hashv += hashv >> 6; \ |
461 | bkt = hashv & (num_bkts-1); \ |
462 | } while(0); |
463 | |
464 | #ifdef HASH_USING_NO_STRICT_ALIASING |
465 | /* The MurmurHash exploits some CPU's (e.g. x86) tolerance for unaligned reads. |
466 | * For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error. |
467 | * So MurmurHash comes in two versions, the faster unaligned one and the slower |
468 | * aligned one. We only use the faster one on CPU's where we know it's safe. |
469 | * |
470 | * Note the preprocessor built-in defines can be emitted using: |
471 | * |
472 | * gcc -m64 -dM -E - < /dev/null (on gcc) |
473 | * cc -## a.c (where a.c is a simple test file) (Sun Studio) |
474 | */ |
475 | #if (defined(__i386__) || defined(__x86_64__)) |
476 | #define HASH_MUR HASH_MUR_UNALIGNED |
477 | #else |
478 | #define HASH_MUR HASH_MUR_ALIGNED |
479 | #endif |
480 | |
481 | /* Appleby's MurmurHash fast version for unaligned-tolerant archs like i386 */ |
482 | #define HASH_MUR_UNALIGNED(key,keylen,num_bkts,hashv,bkt) \ |
483 | do { \ |
484 | const unsigned int _mur_m = 0x5bd1e995; \ |
485 | const int _mur_r = 24; \ |
486 | hashv = 0xcafebabe ^ keylen; \ |
487 | char *_mur_key = (char *)key; \ |
488 | uint32_t _mur_tmp, _mur_len = keylen; \ |
489 | \ |
490 | for (;_mur_len >= 4; _mur_len-=4) { \ |
491 | _mur_tmp = *(uint32_t *)_mur_key; \ |
492 | _mur_tmp *= _mur_m; \ |
493 | _mur_tmp ^= _mur_tmp >> _mur_r; \ |
494 | _mur_tmp *= _mur_m; \ |
495 | hashv *= _mur_m; \ |
496 | hashv ^= _mur_tmp; \ |
497 | _mur_key += 4; \ |
498 | } \ |
499 | \ |
500 | switch(_mur_len) \ |
501 | { \ |
502 | case 3: hashv ^= _mur_key[2] << 16; \ |
503 | case 2: hashv ^= _mur_key[1] << 8; \ |
504 | case 1: hashv ^= _mur_key[0]; \ |
505 | hashv *= _mur_m; \ |
506 | }; \ |
507 | \ |
508 | hashv ^= hashv >> 13; \ |
509 | hashv *= _mur_m; \ |
510 | hashv ^= hashv >> 15; \ |
511 | \ |
512 | bkt = hashv & (num_bkts-1); \ |
513 | } while(0) |
514 | |
515 | /* Appleby's MurmurHash version for alignment-sensitive archs like Sparc */ |
516 | #define HASH_MUR_ALIGNED(key,keylen,num_bkts,hashv,bkt) \ |
517 | do { \ |
518 | const unsigned int _mur_m = 0x5bd1e995; \ |
519 | const int _mur_r = 24; \ |
520 | hashv = 0xcafebabe ^ keylen; \ |
521 | char *_mur_key = (char *)key; \ |
522 | uint32_t _mur_len = keylen; \ |
523 | int _mur_align = (int)_mur_key & 3; \ |
524 | \ |
525 | if (_mur_align && (_mur_len >= 4)) { \ |
526 | unsigned _mur_t = 0, _mur_d = 0; \ |
527 | switch(_mur_align) { \ |
528 | case 1: _mur_t |= _mur_key[2] << 16; \ |
529 | case 2: _mur_t |= _mur_key[1] << 8; \ |
530 | case 3: _mur_t |= _mur_key[0]; \ |
531 | } \ |
532 | _mur_t <<= (8 * _mur_align); \ |
533 | _mur_key += 4-_mur_align; \ |
534 | _mur_len -= 4-_mur_align; \ |
535 | int _mur_sl = 8 * (4-_mur_align); \ |
536 | int _mur_sr = 8 * _mur_align; \ |
537 | \ |
538 | for (;_mur_len >= 4; _mur_len-=4) { \ |
539 | _mur_d = *(unsigned *)_mur_key; \ |
540 | _mur_t = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \ |
541 | unsigned _mur_k = _mur_t; \ |
542 | _mur_k *= _mur_m; \ |
543 | _mur_k ^= _mur_k >> _mur_r; \ |
544 | _mur_k *= _mur_m; \ |
545 | hashv *= _mur_m; \ |
546 | hashv ^= _mur_k; \ |
547 | _mur_t = _mur_d; \ |
548 | _mur_key += 4; \ |
549 | } \ |
550 | _mur_d = 0; \ |
551 | if(_mur_len >= _mur_align) { \ |
552 | switch(_mur_align) { \ |
553 | case 3: _mur_d |= _mur_key[2] << 16; \ |
554 | case 2: _mur_d |= _mur_key[1] << 8; \ |
555 | case 1: _mur_d |= _mur_key[0]; \ |
556 | } \ |
557 | unsigned _mur_k = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \ |
558 | _mur_k *= _mur_m; \ |
559 | _mur_k ^= _mur_k >> _mur_r; \ |
560 | _mur_k *= _mur_m; \ |
561 | hashv *= _mur_m; \ |
562 | hashv ^= _mur_k; \ |
563 | _mur_k += _mur_align; \ |
564 | _mur_len -= _mur_align; \ |
565 | \ |
566 | switch(_mur_len) \ |
567 | { \ |
568 | case 3: hashv ^= _mur_key[2] << 16; \ |
569 | case 2: hashv ^= _mur_key[1] << 8; \ |
570 | case 1: hashv ^= _mur_key[0]; \ |
571 | hashv *= _mur_m; \ |
572 | } \ |
573 | } else { \ |
574 | switch(_mur_len) \ |
575 | { \ |
576 | case 3: _mur_d ^= _mur_key[2] << 16; \ |
577 | case 2: _mur_d ^= _mur_key[1] << 8; \ |
578 | case 1: _mur_d ^= _mur_key[0]; \ |
579 | case 0: hashv ^= (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \ |
580 | hashv *= _mur_m; \ |
581 | } \ |
582 | } \ |
583 | \ |
584 | hashv ^= hashv >> 13; \ |
585 | hashv *= _mur_m; \ |
586 | hashv ^= hashv >> 15; \ |
587 | } else { \ |
588 | for (;_mur_len >= 4; _mur_len-=4) { \ |
589 | unsigned _mur_k = *(unsigned*)_mur_key; \ |
590 | _mur_k *= _mur_m; \ |
591 | _mur_k ^= _mur_k >> _mur_r; \ |
592 | _mur_k *= _mur_m; \ |
593 | hashv *= _mur_m; \ |
594 | hashv ^= _mur_k; \ |
595 | _mur_key += 4; \ |
596 | } \ |
597 | switch(_mur_len) \ |
598 | { \ |
599 | case 3: hashv ^= _mur_key[2] << 16; \ |
600 | case 2: hashv ^= _mur_key[1] << 8; \ |
601 | case 1: hashv ^= _mur_key[0]; \ |
602 | hashv *= _mur_m; \ |
603 | } \ |
604 | \ |
605 | hashv ^= hashv >> 13; \ |
606 | hashv *= _mur_m; \ |
607 | hashv ^= hashv >> 15; \ |
608 | } \ |
609 | bkt = hashv & (num_bkts-1); \ |
610 | } while(0) |
611 | #endif /* HASH_USING_NO_STRICT_ALIASING */ |
612 | |
613 | /* key comparison function; return 0 if keys equal */ |
614 | #define HASH_KEYCMP(a,b,len) memcmp(a,b,len) |
615 | |
616 | /* iterate over items in a known bucket to find desired item */ |
617 | #define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \ |
618 | do { \ |
619 | if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \ |
620 | else out=NULL; \ |
621 | while (out) { \ |
622 | if (out->hh.keylen == keylen_in) { \ |
623 | if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \ |
624 | } \ |
625 | if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \ |
626 | else out = NULL; \ |
627 | } \ |
628 | } while(0) |
629 | |
630 | /* add an item to a bucket */ |
631 | #define HASH_ADD_TO_BKT(head,addhh) \ |
632 | do { \ |
633 | head.count++; \ |
634 | (addhh)->hh_next = head.hh_head; \ |
635 | (addhh)->hh_prev = NULL; \ |
636 | if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \ |
637 | (head).hh_head=addhh; \ |
638 | if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \ |
639 | && (addhh)->tbl->noexpand != 1) { \ |
640 | HASH_EXPAND_BUCKETS((addhh)->tbl); \ |
641 | } \ |
642 | } while(0) |
643 | |
644 | /* remove an item from a given bucket */ |
645 | #define HASH_DEL_IN_BKT(hh,head,hh_del) \ |
646 | (head).count--; \ |
647 | if ((head).hh_head == hh_del) { \ |
648 | (head).hh_head = hh_del->hh_next; \ |
649 | } \ |
650 | if (hh_del->hh_prev) { \ |
651 | hh_del->hh_prev->hh_next = hh_del->hh_next; \ |
652 | } \ |
653 | if (hh_del->hh_next) { \ |
654 | hh_del->hh_next->hh_prev = hh_del->hh_prev; \ |
655 | } |
656 | |
657 | /* Bucket expansion has the effect of doubling the number of buckets |
658 | * and redistributing the items into the new buckets. Ideally the |
659 | * items will distribute more or less evenly into the new buckets |
660 | * (the extent to which this is true is a measure of the quality of |
661 | * the hash function as it applies to the key domain). |
662 | * |
663 | * With the items distributed into more buckets, the chain length |
664 | * (item count) in each bucket is reduced. Thus by expanding buckets |
665 | * the hash keeps a bound on the chain length. This bounded chain |
666 | * length is the essence of how a hash provides constant time lookup. |
667 | * |
668 | * The calculation of tbl->ideal_chain_maxlen below deserves some |
669 | * explanation. First, keep in mind that we're calculating the ideal |
670 | * maximum chain length based on the *new* (doubled) bucket count. |
671 | * In fractions this is just n/b (n=number of items,b=new num buckets). |
672 | * Since the ideal chain length is an integer, we want to calculate |
673 | * ceil(n/b). We don't depend on floating point arithmetic in this |
674 | * hash, so to calculate ceil(n/b) with integers we could write |
675 | * |
676 | * ceil(n/b) = (n/b) + ((n%b)?1:0) |
677 | * |
678 | * and in fact a previous version of this hash did just that. |
679 | * But now we have improved things a bit by recognizing that b is |
680 | * always a power of two. We keep its base 2 log handy (call it lb), |
681 | * so now we can write this with a bit shift and logical AND: |
682 | * |
683 | * ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0) |
684 | * |
685 | */ |
686 | #define HASH_EXPAND_BUCKETS(tbl) \ |
687 | do { \ |
688 | unsigned _he_bkt; \ |
689 | unsigned _he_bkt_i; \ |
690 | struct UT_hash_handle *_he_thh, *_he_hh_nxt; \ |
691 | UT_hash_bucket *_he_new_buckets, *_he_newbkt; \ |
692 | _he_new_buckets = (UT_hash_bucket*)uthash_malloc( \ |
693 | 2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ |
694 | if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \ |
695 | memset(_he_new_buckets, 0, \ |
696 | 2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ |
697 | tbl->ideal_chain_maxlen = \ |
698 | (tbl->num_items >> (tbl->log2_num_buckets+1)) + \ |
699 | ((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \ |
700 | tbl->nonideal_items = 0; \ |
701 | for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \ |
702 | { \ |
703 | _he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \ |
704 | while (_he_thh) { \ |
705 | _he_hh_nxt = _he_thh->hh_next; \ |
706 | HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \ |
707 | _he_newbkt = &(_he_new_buckets[ _he_bkt ]); \ |
708 | if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \ |
709 | tbl->nonideal_items++; \ |
710 | _he_newbkt->expand_mult = _he_newbkt->count / \ |
711 | tbl->ideal_chain_maxlen; \ |
712 | } \ |
713 | _he_thh->hh_prev = NULL; \ |
714 | _he_thh->hh_next = _he_newbkt->hh_head; \ |
715 | if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \ |
716 | _he_thh; \ |
717 | _he_newbkt->hh_head = _he_thh; \ |
718 | _he_thh = _he_hh_nxt; \ |
719 | } \ |
720 | } \ |
721 | tbl->num_buckets *= 2; \ |
722 | tbl->log2_num_buckets++; \ |
723 | uthash_free( tbl->buckets ); \ |
724 | tbl->buckets = _he_new_buckets; \ |
725 | tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \ |
726 | (tbl->ineff_expands+1) : 0; \ |
727 | if (tbl->ineff_expands > 1) { \ |
728 | tbl->noexpand=1; \ |
729 | uthash_noexpand_fyi(tbl); \ |
730 | } \ |
731 | uthash_expand_fyi(tbl); \ |
732 | } while(0) |
733 | |
734 | |
735 | /* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */ |
736 | /* Note that HASH_SORT assumes the hash handle name to be hh. |
737 | * HASH_SRT was added to allow the hash handle name to be passed in. */ |
738 | #define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn) |
739 | #define HASH_SRT(hh,head,cmpfcn) \ |
740 | do { \ |
741 | unsigned _hs_i; \ |
742 | unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \ |
743 | struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \ |
744 | if (head) { \ |
745 | _hs_insize = 1; \ |
746 | _hs_looping = 1; \ |
747 | _hs_list = &((head)->hh); \ |
748 | while (_hs_looping) { \ |
749 | _hs_p = _hs_list; \ |
750 | _hs_list = NULL; \ |
751 | _hs_tail = NULL; \ |
752 | _hs_nmerges = 0; \ |
753 | while (_hs_p) { \ |
754 | _hs_nmerges++; \ |
755 | _hs_q = _hs_p; \ |
756 | _hs_psize = 0; \ |
757 | for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \ |
758 | _hs_psize++; \ |
759 | _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
760 | ((void*)((char*)(_hs_q->next) + \ |
761 | (head)->hh.tbl->hho)) : NULL); \ |
762 | if (! (_hs_q) ) break; \ |
763 | } \ |
764 | _hs_qsize = _hs_insize; \ |
765 | while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \ |
766 | if (_hs_psize == 0) { \ |
767 | _hs_e = _hs_q; \ |
768 | _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
769 | ((void*)((char*)(_hs_q->next) + \ |
770 | (head)->hh.tbl->hho)) : NULL); \ |
771 | _hs_qsize--; \ |
772 | } else if ( (_hs_qsize == 0) || !(_hs_q) ) { \ |
773 | _hs_e = _hs_p; \ |
774 | _hs_p = (UT_hash_handle*)((_hs_p->next) ? \ |
775 | ((void*)((char*)(_hs_p->next) + \ |
776 | (head)->hh.tbl->hho)) : NULL); \ |
777 | _hs_psize--; \ |
778 | } else if (( \ |
779 | cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \ |
780 | DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \ |
781 | ) <= 0) { \ |
782 | _hs_e = _hs_p; \ |
783 | _hs_p = (UT_hash_handle*)((_hs_p->next) ? \ |
784 | ((void*)((char*)(_hs_p->next) + \ |
785 | (head)->hh.tbl->hho)) : NULL); \ |
786 | _hs_psize--; \ |
787 | } else { \ |
788 | _hs_e = _hs_q; \ |
789 | _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
790 | ((void*)((char*)(_hs_q->next) + \ |
791 | (head)->hh.tbl->hho)) : NULL); \ |
792 | _hs_qsize--; \ |
793 | } \ |
794 | if ( _hs_tail ) { \ |
795 | _hs_tail->next = ((_hs_e) ? \ |
796 | ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \ |
797 | } else { \ |
798 | _hs_list = _hs_e; \ |
799 | } \ |
800 | _hs_e->prev = ((_hs_tail) ? \ |
801 | ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \ |
802 | _hs_tail = _hs_e; \ |
803 | } \ |
804 | _hs_p = _hs_q; \ |
805 | } \ |
806 | _hs_tail->next = NULL; \ |
807 | if ( _hs_nmerges <= 1 ) { \ |
808 | _hs_looping=0; \ |
809 | (head)->hh.tbl->tail = _hs_tail; \ |
810 | DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \ |
811 | } \ |
812 | _hs_insize *= 2; \ |
813 | } \ |
814 | HASH_FSCK(hh,head); \ |
815 | } \ |
816 | } while (0) |
817 | |
818 | /* This function selects items from one hash into another hash. |
819 | * The end result is that the selected items have dual presence |
820 | * in both hashes. There is no copy of the items made; rather |
821 | * they are added into the new hash through a secondary hash |
822 | * hash handle that must be present in the structure. */ |
823 | #define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \ |
824 | do { \ |
825 | unsigned _src_bkt, _dst_bkt; \ |
826 | void *_last_elt=NULL, *_elt; \ |
827 | UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \ |
828 | ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \ |
829 | if (src) { \ |
830 | for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \ |
831 | for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \ |
832 | _src_hh; \ |
833 | _src_hh = _src_hh->hh_next) { \ |
834 | _elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \ |
835 | if (cond(_elt)) { \ |
836 | _dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \ |
837 | _dst_hh->key = _src_hh->key; \ |
838 | _dst_hh->keylen = _src_hh->keylen; \ |
839 | _dst_hh->hashv = _src_hh->hashv; \ |
840 | _dst_hh->prev = _last_elt; \ |
841 | _dst_hh->next = NULL; \ |
842 | if (_last_elt_hh) { _last_elt_hh->next = _elt; } \ |
843 | if (!dst) { \ |
844 | DECLTYPE_ASSIGN(dst,_elt); \ |
845 | HASH_MAKE_TABLE(hh_dst,dst); \ |
846 | } else { \ |
847 | _dst_hh->tbl = (dst)->hh_dst.tbl; \ |
848 | } \ |
849 | HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \ |
850 | HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \ |
851 | (dst)->hh_dst.tbl->num_items++; \ |
852 | _last_elt = _elt; \ |
853 | _last_elt_hh = _dst_hh; \ |
854 | } \ |
855 | } \ |
856 | } \ |
857 | } \ |
858 | HASH_FSCK(hh_dst,dst); \ |
859 | } while (0) |
860 | |
861 | #define HASH_CLEAR(hh,head) \ |
862 | do { \ |
863 | if (head) { \ |
864 | uthash_free((head)->hh.tbl->buckets ); \ |
865 | uthash_free((head)->hh.tbl); \ |
866 | (head)=NULL; \ |
867 | } \ |
868 | } while(0) |
869 | |
870 | /* obtain a count of items in the hash */ |
871 | #define HASH_COUNT(head) HASH_CNT(hh,head) |
872 | #define HASH_CNT(hh,head) (head?(head->hh.tbl->num_items):0) |
873 | |
874 | typedef struct UT_hash_bucket { |
875 | struct UT_hash_handle *hh_head; |
876 | unsigned count; |
877 | |
878 | /* expand_mult is normally set to 0. In this situation, the max chain length |
879 | * threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If |
880 | * the bucket's chain exceeds this length, bucket expansion is triggered). |
881 | * However, setting expand_mult to a non-zero value delays bucket expansion |
882 | * (that would be triggered by additions to this particular bucket) |
883 | * until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH. |
884 | * (The multiplier is simply expand_mult+1). The whole idea of this |
885 | * multiplier is to reduce bucket expansions, since they are expensive, in |
886 | * situations where we know that a particular bucket tends to be overused. |
887 | * It is better to let its chain length grow to a longer yet-still-bounded |
888 | * value, than to do an O(n) bucket expansion too often. |
889 | */ |
890 | unsigned expand_mult; |
891 | |
892 | } UT_hash_bucket; |
893 | |
894 | /* random signature used only to find hash tables in external analysis */ |
895 | #define HASH_SIGNATURE 0xa0111fe1 |
896 | #define HASH_BLOOM_SIGNATURE 0xb12220f2 |
897 | |
898 | typedef struct UT_hash_table { |
899 | UT_hash_bucket *buckets; |
900 | unsigned num_buckets, log2_num_buckets; |
901 | unsigned num_items; |
902 | struct UT_hash_handle *tail; /* tail hh in app order, for fast append */ |
903 | ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */ |
904 | |
905 | /* in an ideal situation (all buckets used equally), no bucket would have |
906 | * more than ceil(#items/#buckets) items. that's the ideal chain length. */ |
907 | unsigned ideal_chain_maxlen; |
908 | |
909 | /* nonideal_items is the number of items in the hash whose chain position |
910 | * exceeds the ideal chain maxlen. these items pay the penalty for an uneven |
911 | * hash distribution; reaching them in a chain traversal takes >ideal steps */ |
912 | unsigned nonideal_items; |
913 | |
914 | /* ineffective expands occur when a bucket doubling was performed, but |
915 | * afterward, more than half the items in the hash had nonideal chain |
916 | * positions. If this happens on two consecutive expansions we inhibit any |
917 | * further expansion, as it's not helping; this happens when the hash |
918 | * function isn't a good fit for the key domain. When expansion is inhibited |
919 | * the hash will still work, albeit no longer in constant time. */ |
920 | unsigned ineff_expands, noexpand; |
921 | |
922 | uint32_t signature; /* used only to find hash tables in external analysis */ |
923 | #ifdef HASH_BLOOM |
924 | uint32_t bloom_sig; /* used only to test bloom exists in external analysis */ |
925 | uint8_t *bloom_bv; |
926 | char bloom_nbits; |
927 | #endif |
928 | |
929 | } UT_hash_table; |
930 | |
931 | typedef struct UT_hash_handle { |
932 | struct UT_hash_table *tbl; |
933 | void *prev; /* prev element in app order */ |
934 | void *next; /* next element in app order */ |
935 | struct UT_hash_handle *hh_prev; /* previous hh in bucket order */ |
936 | struct UT_hash_handle *hh_next; /* next hh in bucket order */ |
937 | void *key; /* ptr to enclosing struct's key */ |
938 | unsigned keylen; /* enclosing struct's key len */ |
939 | unsigned hashv; /* result of hash-fcn(key) */ |
940 | } UT_hash_handle; |
941 | |
942 | #endif /* UTHASH_H */ |
943 | |