| 1 | /******************************************************************** |
| 2 | * * |
| 3 | * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. * |
| 4 | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * |
| 5 | * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * |
| 6 | * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * |
| 7 | * * |
| 8 | * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 * |
| 9 | * by the Xiph.Org Foundation and contributors http://www.xiph.org/ * |
| 10 | * * |
| 11 | ******************************************************************** |
| 12 | |
| 13 | function: |
| 14 | last mod: $Id$ |
| 15 | |
| 16 | ********************************************************************/ |
| 17 | |
| 18 | #include <stdlib.h> |
| 19 | #include <string.h> |
| 20 | #include <ogg/ogg.h> |
| 21 | #include "huffdec.h" |
| 22 | #include "decint.h" |
| 23 | |
| 24 | |
| 25 | |
| 26 | /*Instead of storing every branching in the tree, subtrees can be collapsed |
| 27 | into one node, with a table of size 1<<nbits pointing directly to its |
| 28 | descedents nbits levels down. |
| 29 | This allows more than one bit to be read at a time, and avoids following all |
| 30 | the intermediate branches with next to no increased code complexity once |
| 31 | the collapsed tree has been built. |
| 32 | We do _not_ require that a subtree be complete to be collapsed, but instead |
| 33 | store duplicate pointers in the table, and record the actual depth of the |
| 34 | node below its parent. |
| 35 | This tells us the number of bits to advance the stream after reaching it. |
| 36 | |
| 37 | This turns out to be equivalent to the method described in \cite{Hash95}, |
| 38 | without the requirement that codewords be sorted by length. |
| 39 | If the codewords were sorted by length (so-called ``canonical-codes''), they |
| 40 | could be decoded much faster via either Lindell and Moffat's approach or |
| 41 | Hashemian's Condensed Huffman Code approach, the latter of which has an |
| 42 | extremely small memory footprint. |
| 43 | We can't use Choueka et al.'s finite state machine approach, which is |
| 44 | extremely fast, because we can't allow multiple symbols to be output at a |
| 45 | time; the codebook can and does change between symbols. |
| 46 | It also has very large memory requirements, which impairs cache coherency. |
| 47 | |
| 48 | We store the tree packed in an array of 16-bit integers (words). |
| 49 | Each node consists of a single word, followed consecutively by two or more |
| 50 | indices of its children. |
| 51 | Let n be the value of this first word. |
| 52 | This is the number of bits that need to be read to traverse the node, and |
| 53 | must be positive. |
| 54 | 1<<n entries follow in the array, each an index to a child node. |
| 55 | If the child is positive, then it is the index of another internal node in |
| 56 | the table. |
| 57 | If the child is negative or zero, then it is a leaf node. |
| 58 | These are stored directly in the child pointer to save space, since they only |
| 59 | require a single word. |
| 60 | If a leaf node would have been encountered before reading n bits, then it is |
| 61 | duplicated the necessary number of times in this table. |
| 62 | Leaf nodes pack both a token value and their actual depth in the tree. |
| 63 | The token in the leaf node is (-leaf&255). |
| 64 | The number of bits that need to be consumed to reach the leaf, starting from |
| 65 | the current node, is (-leaf>>8). |
| 66 | |
| 67 | @ARTICLE{Hash95, |
| 68 | author="Reza Hashemian", |
| 69 | title="Memory Efficient and High-Speed Search {Huffman} Coding", |
| 70 | journal="{IEEE} Transactions on Communications", |
| 71 | volume=43, |
| 72 | number=10, |
| 73 | pages="2576--2581", |
| 74 | month=Oct, |
| 75 | year=1995 |
| 76 | }*/ |
| 77 | |
| 78 | |
| 79 | |
| 80 | /*The map from external spec-defined tokens to internal tokens. |
| 81 | This is constructed so that any extra bits read with the original token value |
| 82 | can be masked off the least significant bits of its internal token index. |
| 83 | In addition, all of the tokens which require additional extra bits are placed |
| 84 | at the start of the list, and grouped by type. |
| 85 | OC_DCT_REPEAT_RUN3_TOKEN is placed first, as it is an extra-special case, so |
| 86 | giving it index 0 may simplify comparisons on some architectures. |
| 87 | These requirements require some substantial reordering.*/ |
| 88 | static const unsigned char OC_DCT_TOKEN_MAP[TH_NDCT_TOKENS]={ |
| 89 | /*OC_DCT_EOB1_TOKEN (0 extra bits)*/ |
| 90 | 15, |
| 91 | /*OC_DCT_EOB2_TOKEN (0 extra bits)*/ |
| 92 | 16, |
| 93 | /*OC_DCT_EOB3_TOKEN (0 extra bits)*/ |
| 94 | 17, |
| 95 | /*OC_DCT_REPEAT_RUN0_TOKEN (2 extra bits)*/ |
| 96 | 88, |
| 97 | /*OC_DCT_REPEAT_RUN1_TOKEN (3 extra bits)*/ |
| 98 | 80, |
| 99 | /*OC_DCT_REPEAT_RUN2_TOKEN (4 extra bits)*/ |
| 100 | 1, |
| 101 | /*OC_DCT_REPEAT_RUN3_TOKEN (12 extra bits)*/ |
| 102 | 0, |
| 103 | /*OC_DCT_SHORT_ZRL_TOKEN (3 extra bits)*/ |
| 104 | 48, |
| 105 | /*OC_DCT_ZRL_TOKEN (6 extra bits)*/ |
| 106 | 14, |
| 107 | /*OC_ONE_TOKEN (0 extra bits)*/ |
| 108 | 56, |
| 109 | /*OC_MINUS_ONE_TOKEN (0 extra bits)*/ |
| 110 | 57, |
| 111 | /*OC_TWO_TOKEN (0 extra bits)*/ |
| 112 | 58, |
| 113 | /*OC_MINUS_TWO_TOKEN (0 extra bits)*/ |
| 114 | 59, |
| 115 | /*OC_DCT_VAL_CAT2 (1 extra bit)*/ |
| 116 | 60, |
| 117 | 62, |
| 118 | 64, |
| 119 | 66, |
| 120 | /*OC_DCT_VAL_CAT3 (2 extra bits)*/ |
| 121 | 68, |
| 122 | /*OC_DCT_VAL_CAT4 (3 extra bits)*/ |
| 123 | 72, |
| 124 | /*OC_DCT_VAL_CAT5 (4 extra bits)*/ |
| 125 | 2, |
| 126 | /*OC_DCT_VAL_CAT6 (5 extra bits)*/ |
| 127 | 4, |
| 128 | /*OC_DCT_VAL_CAT7 (6 extra bits)*/ |
| 129 | 6, |
| 130 | /*OC_DCT_VAL_CAT8 (10 extra bits)*/ |
| 131 | 8, |
| 132 | /*OC_DCT_RUN_CAT1A (1 extra bit)*/ |
| 133 | 18, |
| 134 | 20, |
| 135 | 22, |
| 136 | 24, |
| 137 | 26, |
| 138 | /*OC_DCT_RUN_CAT1B (3 extra bits)*/ |
| 139 | 32, |
| 140 | /*OC_DCT_RUN_CAT1C (4 extra bits)*/ |
| 141 | 12, |
| 142 | /*OC_DCT_RUN_CAT2A (2 extra bits)*/ |
| 143 | 28, |
| 144 | /*OC_DCT_RUN_CAT2B (3 extra bits)*/ |
| 145 | 40 |
| 146 | }; |
| 147 | |
| 148 | /*The log base 2 of number of internal tokens associated with each of the spec |
| 149 | tokens (i.e., how many of the extra bits are folded into the token value). |
| 150 | Increasing the maximum value beyond 3 will enlarge the amount of stack |
| 151 | required for tree construction.*/ |
| 152 | static const unsigned char OC_DCT_TOKEN_MAP_LOG_NENTRIES[TH_NDCT_TOKENS]={ |
| 153 | 0,0,0,2,3,0,0,3,0,0,0,0,0,1,1,1,1,2,3,1,1,1,2,1,1,1,1,1,3,1,2,3 |
| 154 | }; |
| 155 | |
| 156 | |
| 157 | /*The size a lookup table is allowed to grow to relative to the number of |
| 158 | unique nodes it contains. |
| 159 | E.g., if OC_HUFF_SLUSH is 4, then at most 75% of the space in the tree is |
| 160 | wasted (1/4 of the space must be used). |
| 161 | Larger numbers can decode tokens with fewer read operations, while smaller |
| 162 | numbers may save more space. |
| 163 | With a sample file: |
| 164 | 32233473 read calls are required when no tree collapsing is done (100.0%). |
| 165 | 19269269 read calls are required when OC_HUFF_SLUSH is 1 (59.8%). |
| 166 | 11144969 read calls are required when OC_HUFF_SLUSH is 2 (34.6%). |
| 167 | 10538563 read calls are required when OC_HUFF_SLUSH is 4 (32.7%). |
| 168 | 10192578 read calls are required when OC_HUFF_SLUSH is 8 (31.6%). |
| 169 | Since a value of 2 gets us the vast majority of the speed-up with only a |
| 170 | small amount of wasted memory, this is what we use. |
| 171 | This value must be less than 128, or you could create a tree with more than |
| 172 | 32767 entries, which would overflow the 16-bit words used to index it.*/ |
| 173 | #define OC_HUFF_SLUSH (2) |
| 174 | /*The root of the tree is on the fast path, and a larger value here is more |
| 175 | beneficial than elsewhere in the tree. |
| 176 | 7 appears to give the best performance, trading off between increased use of |
| 177 | the single-read fast path and cache footprint for the tables, though |
| 178 | obviously this will depend on your cache size. |
| 179 | Using 7 here, the VP3 tables are about twice as large compared to using 2.*/ |
| 180 | #define OC_ROOT_HUFF_SLUSH (7) |
| 181 | |
| 182 | |
| 183 | |
| 184 | /*Unpacks a Huffman codebook. |
| 185 | _opb: The buffer to unpack from. |
| 186 | _tokens: Stores a list of internal tokens, in the order they were found in |
| 187 | the codebook, and the lengths of their corresponding codewords. |
| 188 | This is enough to completely define the codebook, while minimizing |
| 189 | stack usage and avoiding temporary allocations (for platforms |
| 190 | where free() is a no-op). |
| 191 | Return: The number of internal tokens in the codebook, or a negative value |
| 192 | on error.*/ |
| 193 | int oc_huff_tree_unpack(oc_pack_buf *_opb,unsigned char _tokens[256][2]){ |
| 194 | ogg_uint32_t code; |
| 195 | int len; |
| 196 | int ntokens; |
| 197 | int nleaves; |
| 198 | code=0; |
| 199 | len=ntokens=nleaves=0; |
| 200 | for(;;){ |
| 201 | long bits; |
| 202 | bits=oc_pack_read1(_opb); |
| 203 | /*Only process nodes so long as there's more bits in the buffer.*/ |
| 204 | if(oc_pack_bytes_left(_opb)<0)return TH_EBADHEADER; |
| 205 | /*Read an internal node:*/ |
| 206 | if(!bits){ |
| 207 | len++; |
| 208 | /*Don't allow codewords longer than 32 bits.*/ |
| 209 | if(len>32)return TH_EBADHEADER; |
| 210 | } |
| 211 | /*Read a leaf node:*/ |
| 212 | else{ |
| 213 | ogg_uint32_t code_bit; |
| 214 | int neb; |
| 215 | int nentries; |
| 216 | int token; |
| 217 | /*Don't allow more than 32 spec-tokens per codebook.*/ |
| 218 | if(++nleaves>32)return TH_EBADHEADER; |
| 219 | bits=oc_pack_read(_opb,OC_NDCT_TOKEN_BITS); |
| 220 | neb=OC_DCT_TOKEN_MAP_LOG_NENTRIES[bits]; |
| 221 | token=OC_DCT_TOKEN_MAP[bits]; |
| 222 | nentries=1<<neb; |
| 223 | while(nentries-->0){ |
| 224 | _tokens[ntokens][0]=(unsigned char)token++; |
| 225 | _tokens[ntokens][1]=(unsigned char)(len+neb); |
| 226 | ntokens++; |
| 227 | } |
| 228 | code_bit=0x80000000U>>len-1; |
| 229 | while(len>0&&(code&code_bit)){ |
| 230 | code^=code_bit; |
| 231 | code_bit<<=1; |
| 232 | len--; |
| 233 | } |
| 234 | if(len<=0)break; |
| 235 | code|=code_bit; |
| 236 | } |
| 237 | } |
| 238 | return ntokens; |
| 239 | } |
| 240 | |
| 241 | /*Count how many tokens would be required to fill a subtree at depth _depth. |
| 242 | _tokens: A list of internal tokens, in the order they are found in the |
| 243 | codebook, and the lengths of their corresponding codewords. |
| 244 | _depth: The depth of the desired node in the corresponding tree structure. |
| 245 | Return: The number of tokens that belong to that subtree.*/ |
| 246 | static int oc_huff_subtree_tokens(unsigned char _tokens[][2],int _depth){ |
| 247 | ogg_uint32_t code; |
| 248 | int ti; |
| 249 | code=0; |
| 250 | ti=0; |
| 251 | do{ |
| 252 | if(_tokens[ti][1]-_depth<32)code+=0x80000000U>>_tokens[ti++][1]-_depth; |
| 253 | else{ |
| 254 | /*Because of the expanded internal tokens, we can have codewords as long |
| 255 | as 35 bits. |
| 256 | A single recursion here is enough to advance past them.*/ |
| 257 | code++; |
| 258 | ti+=oc_huff_subtree_tokens(_tokens+ti,_depth+31); |
| 259 | } |
| 260 | } |
| 261 | while(code<0x80000000U); |
| 262 | return ti; |
| 263 | } |
| 264 | |
| 265 | /*Compute the number of bits to use for a collapsed tree node at the given |
| 266 | depth. |
| 267 | _tokens: A list of internal tokens, in the order they are found in the |
| 268 | codebook, and the lengths of their corresponding codewords. |
| 269 | _ntokens: The number of tokens corresponding to this tree node. |
| 270 | _depth: The depth of this tree node. |
| 271 | Return: The number of bits to use for a collapsed tree node rooted here. |
| 272 | This is always at least one, even if this was a leaf node.*/ |
| 273 | static int oc_huff_tree_collapse_depth(unsigned char _tokens[][2], |
| 274 | int _ntokens,int _depth){ |
| 275 | int got_leaves; |
| 276 | int loccupancy; |
| 277 | int occupancy; |
| 278 | int slush; |
| 279 | int nbits; |
| 280 | int best_nbits; |
| 281 | slush=_depth>0?OC_HUFF_SLUSH:OC_ROOT_HUFF_SLUSH; |
| 282 | /*It's legal to have a tree with just a single node, which requires no bits |
| 283 | to decode and always returns the same token. |
| 284 | However, no encoder actually does this (yet). |
| 285 | To avoid a special case in oc_huff_token_decode(), we force the number of |
| 286 | lookahead bits to be at least one. |
| 287 | This will produce a tree that looks ahead one bit and then advances the |
| 288 | stream zero bits.*/ |
| 289 | nbits=1; |
| 290 | occupancy=2; |
| 291 | got_leaves=1; |
| 292 | do{ |
| 293 | int ti; |
| 294 | if(got_leaves)best_nbits=nbits; |
| 295 | nbits++; |
| 296 | got_leaves=0; |
| 297 | loccupancy=occupancy; |
| 298 | for(occupancy=ti=0;ti<_ntokens;occupancy++){ |
| 299 | if(_tokens[ti][1]<_depth+nbits)ti++; |
| 300 | else if(_tokens[ti][1]==_depth+nbits){ |
| 301 | got_leaves=1; |
| 302 | ti++; |
| 303 | } |
| 304 | else ti+=oc_huff_subtree_tokens(_tokens+ti,_depth+nbits); |
| 305 | } |
| 306 | } |
| 307 | while(occupancy>loccupancy&&occupancy*slush>=1<<nbits); |
| 308 | return best_nbits; |
| 309 | } |
| 310 | |
| 311 | /*Determines the size in words of a Huffman tree node that represents a |
| 312 | subtree of depth _nbits. |
| 313 | _nbits: The depth of the subtree. |
| 314 | This must be greater than zero. |
| 315 | Return: The number of words required to store the node.*/ |
| 316 | static size_t oc_huff_node_size(int _nbits){ |
| 317 | return 1+(1<<_nbits); |
| 318 | } |
| 319 | |
| 320 | /*Produces a collapsed-tree representation of the given token list. |
| 321 | _tree: The storage for the collapsed Huffman tree. |
| 322 | This may be NULL to compute the required storage size instead of |
| 323 | constructing the tree. |
| 324 | _tokens: A list of internal tokens, in the order they are found in the |
| 325 | codebook, and the lengths of their corresponding codewords. |
| 326 | _ntokens: The number of tokens corresponding to this tree node. |
| 327 | Return: The number of words required to store the tree.*/ |
| 328 | static size_t oc_huff_tree_collapse(ogg_int16_t *_tree, |
| 329 | unsigned char _tokens[][2],int _ntokens){ |
| 330 | ogg_int16_t node[34]; |
| 331 | unsigned char depth[34]; |
| 332 | unsigned char last[34]; |
| 333 | size_t ntree; |
| 334 | int ti; |
| 335 | int l; |
| 336 | depth[0]=0; |
| 337 | last[0]=(unsigned char)(_ntokens-1); |
| 338 | ntree=0; |
| 339 | ti=0; |
| 340 | l=0; |
| 341 | do{ |
| 342 | int nbits; |
| 343 | nbits=oc_huff_tree_collapse_depth(_tokens+ti,last[l]+1-ti,depth[l]); |
| 344 | node[l]=(ogg_int16_t)ntree; |
| 345 | ntree+=oc_huff_node_size(nbits); |
| 346 | if(_tree!=NULL)_tree[node[l]++]=(ogg_int16_t)nbits; |
| 347 | do{ |
| 348 | while(ti<=last[l]&&_tokens[ti][1]<=depth[l]+nbits){ |
| 349 | if(_tree!=NULL){ |
| 350 | ogg_int16_t leaf; |
| 351 | int nentries; |
| 352 | nentries=1<<depth[l]+nbits-_tokens[ti][1]; |
| 353 | leaf=(ogg_int16_t)-(_tokens[ti][1]-depth[l]<<8|_tokens[ti][0]); |
| 354 | while(nentries-->0)_tree[node[l]++]=leaf; |
| 355 | } |
| 356 | ti++; |
| 357 | } |
| 358 | if(ti<=last[l]){ |
| 359 | /*We need to recurse*/ |
| 360 | depth[l+1]=(unsigned char)(depth[l]+nbits); |
| 361 | if(_tree!=NULL)_tree[node[l]++]=(ogg_int16_t)ntree; |
| 362 | l++; |
| 363 | last[l]= |
| 364 | (unsigned char)(ti+oc_huff_subtree_tokens(_tokens+ti,depth[l])-1); |
| 365 | break; |
| 366 | } |
| 367 | /*Pop back up a level of recursion.*/ |
| 368 | else if(l-->0)nbits=depth[l+1]-depth[l]; |
| 369 | } |
| 370 | while(l>=0); |
| 371 | } |
| 372 | while(l>=0); |
| 373 | return ntree; |
| 374 | } |
| 375 | |
| 376 | /*Unpacks a set of Huffman trees, and reduces them to a collapsed |
| 377 | representation. |
| 378 | _opb: The buffer to unpack the trees from. |
| 379 | _nodes: The table to fill with the Huffman trees. |
| 380 | Return: 0 on success, or a negative value on error. |
| 381 | The caller is responsible for cleaning up any partially initialized |
| 382 | _nodes on failure.*/ |
| 383 | int oc_huff_trees_unpack(oc_pack_buf *_opb, |
| 384 | ogg_int16_t *_nodes[TH_NHUFFMAN_TABLES]){ |
| 385 | int i; |
| 386 | for(i=0;i<TH_NHUFFMAN_TABLES;i++){ |
| 387 | unsigned char tokens[256][2]; |
| 388 | int ntokens; |
| 389 | ogg_int16_t *tree; |
| 390 | size_t size; |
| 391 | /*Unpack the full tree into a temporary buffer.*/ |
| 392 | ntokens=oc_huff_tree_unpack(_opb,tokens); |
| 393 | if(ntokens<0)return ntokens; |
| 394 | /*Figure out how big the collapsed tree will be and allocate space for it.*/ |
| 395 | size=oc_huff_tree_collapse(NULL,tokens,ntokens); |
| 396 | /*This should never happen; if it does it means you set OC_HUFF_SLUSH or |
| 397 | OC_ROOT_HUFF_SLUSH too large.*/ |
| 398 | if(size>32767)return TH_EIMPL; |
| 399 | tree=(ogg_int16_t *)_ogg_malloc(size*sizeof(*tree)); |
| 400 | if(tree==NULL)return TH_EFAULT; |
| 401 | /*Construct the collapsed the tree.*/ |
| 402 | oc_huff_tree_collapse(tree,tokens,ntokens); |
| 403 | _nodes[i]=tree; |
| 404 | } |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | /*Determines the size in words of a Huffman subtree. |
| 409 | _tree: The complete Huffman tree. |
| 410 | _node: The index of the root of the desired subtree. |
| 411 | Return: The number of words required to store the tree.*/ |
| 412 | static size_t oc_huff_tree_size(const ogg_int16_t *_tree,int _node){ |
| 413 | size_t size; |
| 414 | int nchildren; |
| 415 | int n; |
| 416 | int i; |
| 417 | n=_tree[_node]; |
| 418 | size=oc_huff_node_size(n); |
| 419 | nchildren=1<<n; |
| 420 | i=0; |
| 421 | do{ |
| 422 | int child; |
| 423 | child=_tree[_node+i+1]; |
| 424 | if(child<=0)i+=1<<n-(-child>>8); |
| 425 | else{ |
| 426 | size+=oc_huff_tree_size(_tree,child); |
| 427 | i++; |
| 428 | } |
| 429 | } |
| 430 | while(i<nchildren); |
| 431 | return size; |
| 432 | } |
| 433 | |
| 434 | /*Makes a copy of the given set of Huffman trees. |
| 435 | _dst: The array to store the copy in. |
| 436 | _src: The array of trees to copy.*/ |
| 437 | int oc_huff_trees_copy(ogg_int16_t *_dst[TH_NHUFFMAN_TABLES], |
| 438 | const ogg_int16_t *const _src[TH_NHUFFMAN_TABLES]){ |
| 439 | int total; |
| 440 | int i; |
| 441 | total=0; |
| 442 | for(i=0;i<TH_NHUFFMAN_TABLES;i++){ |
| 443 | size_t size; |
| 444 | size=oc_huff_tree_size(_src[i],0); |
| 445 | total+=size; |
| 446 | _dst[i]=(ogg_int16_t *)_ogg_malloc(size*sizeof(*_dst[i])); |
| 447 | if(_dst[i]==NULL){ |
| 448 | while(i-->0)_ogg_free(_dst[i]); |
| 449 | return TH_EFAULT; |
| 450 | } |
| 451 | memcpy(_dst[i],_src[i],size*sizeof(*_dst[i])); |
| 452 | } |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | /*Frees the memory used by a set of Huffman trees. |
| 457 | _nodes: The array of trees to free.*/ |
| 458 | void oc_huff_trees_clear(ogg_int16_t *_nodes[TH_NHUFFMAN_TABLES]){ |
| 459 | int i; |
| 460 | for(i=0;i<TH_NHUFFMAN_TABLES;i++)_ogg_free(_nodes[i]); |
| 461 | } |
| 462 | |
| 463 | |
| 464 | /*Unpacks a single token using the given Huffman tree. |
| 465 | _opb: The buffer to unpack the token from. |
| 466 | _node: The tree to unpack the token with. |
| 467 | Return: The token value.*/ |
| 468 | int oc_huff_token_decode_c(oc_pack_buf *_opb,const ogg_int16_t *_tree){ |
| 469 | const unsigned char *ptr; |
| 470 | const unsigned char *stop; |
| 471 | oc_pb_window window; |
| 472 | int available; |
| 473 | long bits; |
| 474 | int node; |
| 475 | int n; |
| 476 | ptr=_opb->ptr; |
| 477 | window=_opb->window; |
| 478 | stop=_opb->stop; |
| 479 | available=_opb->bits; |
| 480 | node=0; |
| 481 | for(;;){ |
| 482 | n=_tree[node]; |
| 483 | if(n>available){ |
| 484 | unsigned shift; |
| 485 | shift=OC_PB_WINDOW_SIZE-available; |
| 486 | do{ |
| 487 | /*We don't bother setting eof because we won't check for it after we've |
| 488 | started decoding DCT tokens.*/ |
| 489 | if(ptr>=stop){ |
| 490 | shift=(unsigned)-OC_LOTS_OF_BITS; |
| 491 | break; |
| 492 | } |
| 493 | shift-=8; |
| 494 | window|=(oc_pb_window)*ptr++<<shift; |
| 495 | } |
| 496 | while(shift>=8); |
| 497 | /*Note: We never request more than 24 bits, so there's no need to fill in |
| 498 | the last partial byte here.*/ |
| 499 | available=OC_PB_WINDOW_SIZE-shift; |
| 500 | } |
| 501 | bits=window>>OC_PB_WINDOW_SIZE-n; |
| 502 | node=_tree[node+1+bits]; |
| 503 | if(node<=0)break; |
| 504 | window<<=n; |
| 505 | available-=n; |
| 506 | } |
| 507 | node=-node; |
| 508 | n=node>>8; |
| 509 | window<<=n; |
| 510 | available-=n; |
| 511 | _opb->ptr=ptr; |
| 512 | _opb->window=window; |
| 513 | _opb->bits=available; |
| 514 | return node&255; |
| 515 | } |
| 516 | |