| 1 | /******************************************************************** |
| 2 | * * |
| 3 | * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * |
| 4 | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * |
| 5 | * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * |
| 6 | * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * |
| 7 | * * |
| 8 | * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * |
| 9 | * by the Xiph.Org Foundation https://xiph.org/ * |
| 10 | * * |
| 11 | ******************************************************************** |
| 12 | |
| 13 | function: LSP (also called LSF) conversion routines |
| 14 | |
| 15 | The LSP generation code is taken (with minimal modification and a |
| 16 | few bugfixes) from "On the Computation of the LSP Frequencies" by |
| 17 | Joseph Rothweiler (see http://www.rothweiler.us for contact info). |
| 18 | |
| 19 | The paper is available at: |
| 20 | |
| 21 | https://web.archive.org/web/20110810174000/http://home.myfairpoint.net/vzenxj75/myown1/joe/lsf/index.html |
| 22 | |
| 23 | ********************************************************************/ |
| 24 | |
| 25 | /* Note that the lpc-lsp conversion finds the roots of polynomial with |
| 26 | an iterative root polisher (CACM algorithm 283). It *is* possible |
| 27 | to confuse this algorithm into not converging; that should only |
| 28 | happen with absurdly closely spaced roots (very sharp peaks in the |
| 29 | LPC f response) which in turn should be impossible in our use of |
| 30 | the code. If this *does* happen anyway, it's a bug in the floor |
| 31 | finder; find the cause of the confusion (probably a single bin |
| 32 | spike or accidental near-float-limit resolution problems) and |
| 33 | correct it. */ |
| 34 | |
| 35 | #include <math.h> |
| 36 | #include <string.h> |
| 37 | #include <stdlib.h> |
| 38 | #include "lsp.h" |
| 39 | #include "os.h" |
| 40 | #include "misc.h" |
| 41 | #include "lookup.h" |
| 42 | #include "scales.h" |
| 43 | |
| 44 | /* three possible LSP to f curve functions; the exact computation |
| 45 | (float), a lookup based float implementation, and an integer |
| 46 | implementation. The float lookup is likely the optimal choice on |
| 47 | any machine with an FPU. The integer implementation is *not* fixed |
| 48 | point (due to the need for a large dynamic range and thus a |
| 49 | separately tracked exponent) and thus much more complex than the |
| 50 | relatively simple float implementations. It's mostly for future |
| 51 | work on a fully fixed point implementation for processors like the |
| 52 | ARM family. */ |
| 53 | |
| 54 | /* define either of these (preferably FLOAT_LOOKUP) to have faster |
| 55 | but less precise implementation. */ |
| 56 | #undef FLOAT_LOOKUP |
| 57 | #undef INT_LOOKUP |
| 58 | |
| 59 | #ifdef FLOAT_LOOKUP |
| 60 | #include "lookup.c" /* catch this in the build system; we #include for |
| 61 | compilers (like gcc) that can't inline across |
| 62 | modules */ |
| 63 | |
| 64 | /* side effect: changes *lsp to cosines of lsp */ |
| 65 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
| 66 | float amp,float ampoffset){ |
| 67 | int i; |
| 68 | float wdel=M_PI/ln; |
| 69 | vorbis_fpu_control fpu; |
| 70 | |
| 71 | vorbis_fpu_setround(&fpu); |
| 72 | for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); |
| 73 | |
| 74 | i=0; |
| 75 | while(i<n){ |
| 76 | int k=map[i]; |
| 77 | int qexp; |
| 78 | float p=.7071067812f; |
| 79 | float q=.7071067812f; |
| 80 | float w=vorbis_coslook(wdel*k); |
| 81 | float *ftmp=lsp; |
| 82 | int c=m>>1; |
| 83 | |
| 84 | while(c--){ |
| 85 | q*=ftmp[0]-w; |
| 86 | p*=ftmp[1]-w; |
| 87 | ftmp+=2; |
| 88 | } |
| 89 | |
| 90 | if(m&1){ |
| 91 | /* odd order filter; slightly assymetric */ |
| 92 | /* the last coefficient */ |
| 93 | q*=ftmp[0]-w; |
| 94 | q*=q; |
| 95 | p*=p*(1.f-w*w); |
| 96 | }else{ |
| 97 | /* even order filter; still symmetric */ |
| 98 | q*=q*(1.f+w); |
| 99 | p*=p*(1.f-w); |
| 100 | } |
| 101 | |
| 102 | q=frexp(p+q,&qexp); |
| 103 | q=vorbis_fromdBlook(amp* |
| 104 | vorbis_invsqlook(q)* |
| 105 | vorbis_invsq2explook(qexp+m)- |
| 106 | ampoffset); |
| 107 | |
| 108 | do{ |
| 109 | curve[i++]*=q; |
| 110 | }while(map[i]==k); |
| 111 | } |
| 112 | vorbis_fpu_restore(fpu); |
| 113 | } |
| 114 | |
| 115 | #else |
| 116 | |
| 117 | #ifdef INT_LOOKUP |
| 118 | #include "lookup.c" /* catch this in the build system; we #include for |
| 119 | compilers (like gcc) that can't inline across |
| 120 | modules */ |
| 121 | |
| 122 | static const int MLOOP_1[64]={ |
| 123 | 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, |
| 124 | 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, |
| 125 | 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, |
| 126 | 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, |
| 127 | }; |
| 128 | |
| 129 | static const int MLOOP_2[64]={ |
| 130 | 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, |
| 131 | 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, |
| 132 | 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, |
| 133 | 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, |
| 134 | }; |
| 135 | |
| 136 | static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; |
| 137 | |
| 138 | |
| 139 | /* side effect: changes *lsp to cosines of lsp */ |
| 140 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
| 141 | float amp,float ampoffset){ |
| 142 | |
| 143 | /* 0 <= m < 256 */ |
| 144 | |
| 145 | /* set up for using all int later */ |
| 146 | int i; |
| 147 | int ampoffseti=rint(ampoffset*4096.f); |
| 148 | int ampi=rint(amp*16.f); |
| 149 | long *ilsp=alloca(m*sizeof(*ilsp)); |
| 150 | for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); |
| 151 | |
| 152 | i=0; |
| 153 | while(i<n){ |
| 154 | int j,k=map[i]; |
| 155 | unsigned long pi=46341; /* 2**-.5 in 0.16 */ |
| 156 | unsigned long qi=46341; |
| 157 | int qexp=0,shift; |
| 158 | long wi=vorbis_coslook_i(k*65536/ln); |
| 159 | |
| 160 | qi*=labs(ilsp[0]-wi); |
| 161 | pi*=labs(ilsp[1]-wi); |
| 162 | |
| 163 | for(j=3;j<m;j+=2){ |
| 164 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
| 165 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
| 166 | shift=MLOOP_3[(pi|qi)>>16]; |
| 167 | qi=(qi>>shift)*labs(ilsp[j-1]-wi); |
| 168 | pi=(pi>>shift)*labs(ilsp[j]-wi); |
| 169 | qexp+=shift; |
| 170 | } |
| 171 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
| 172 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
| 173 | shift=MLOOP_3[(pi|qi)>>16]; |
| 174 | |
| 175 | /* pi,qi normalized collectively, both tracked using qexp */ |
| 176 | |
| 177 | if(m&1){ |
| 178 | /* odd order filter; slightly assymetric */ |
| 179 | /* the last coefficient */ |
| 180 | qi=(qi>>shift)*labs(ilsp[j-1]-wi); |
| 181 | pi=(pi>>shift)<<14; |
| 182 | qexp+=shift; |
| 183 | |
| 184 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
| 185 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
| 186 | shift=MLOOP_3[(pi|qi)>>16]; |
| 187 | |
| 188 | pi>>=shift; |
| 189 | qi>>=shift; |
| 190 | qexp+=shift-14*((m+1)>>1); |
| 191 | |
| 192 | pi=((pi*pi)>>16); |
| 193 | qi=((qi*qi)>>16); |
| 194 | qexp=qexp*2+m; |
| 195 | |
| 196 | pi*=(1<<14)-((wi*wi)>>14); |
| 197 | qi+=pi>>14; |
| 198 | |
| 199 | }else{ |
| 200 | /* even order filter; still symmetric */ |
| 201 | |
| 202 | /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't |
| 203 | worth tracking step by step */ |
| 204 | |
| 205 | pi>>=shift; |
| 206 | qi>>=shift; |
| 207 | qexp+=shift-7*m; |
| 208 | |
| 209 | pi=((pi*pi)>>16); |
| 210 | qi=((qi*qi)>>16); |
| 211 | qexp=qexp*2+m; |
| 212 | |
| 213 | pi*=(1<<14)-wi; |
| 214 | qi*=(1<<14)+wi; |
| 215 | qi=(qi+pi)>>14; |
| 216 | |
| 217 | } |
| 218 | |
| 219 | |
| 220 | /* we've let the normalization drift because it wasn't important; |
| 221 | however, for the lookup, things must be normalized again. We |
| 222 | need at most one right shift or a number of left shifts */ |
| 223 | |
| 224 | if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ |
| 225 | qi>>=1; qexp++; |
| 226 | }else |
| 227 | while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ |
| 228 | qi<<=1; qexp--; |
| 229 | } |
| 230 | |
| 231 | amp=vorbis_fromdBlook_i(ampi* /* n.4 */ |
| 232 | vorbis_invsqlook_i(qi,qexp)- |
| 233 | /* m.8, m+n<=8 */ |
| 234 | ampoffseti); /* 8.12[0] */ |
| 235 | |
| 236 | curve[i]*=amp; |
| 237 | while(map[++i]==k)curve[i]*=amp; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | #else |
| 242 | |
| 243 | /* old, nonoptimized but simple version for any poor sap who needs to |
| 244 | figure out what the hell this code does, or wants the other |
| 245 | fraction of a dB precision */ |
| 246 | |
| 247 | /* side effect: changes *lsp to cosines of lsp */ |
| 248 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
| 249 | float amp,float ampoffset){ |
| 250 | int i; |
| 251 | float wdel=M_PI/ln; |
| 252 | for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); |
| 253 | |
| 254 | i=0; |
| 255 | while(i<n){ |
| 256 | int j,k=map[i]; |
| 257 | float p=.5f; |
| 258 | float q=.5f; |
| 259 | float w=2.f*cos(wdel*k); |
| 260 | for(j=1;j<m;j+=2){ |
| 261 | q *= w-lsp[j-1]; |
| 262 | p *= w-lsp[j]; |
| 263 | } |
| 264 | if(j==m){ |
| 265 | /* odd order filter; slightly assymetric */ |
| 266 | /* the last coefficient */ |
| 267 | q*=w-lsp[j-1]; |
| 268 | p*=p*(4.f-w*w); |
| 269 | q*=q; |
| 270 | }else{ |
| 271 | /* even order filter; still symmetric */ |
| 272 | p*=p*(2.f-w); |
| 273 | q*=q*(2.f+w); |
| 274 | } |
| 275 | |
| 276 | q=fromdB(amp/sqrt(p+q)-ampoffset); |
| 277 | |
| 278 | curve[i]*=q; |
| 279 | while(map[++i]==k)curve[i]*=q; |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | #endif |
| 284 | #endif |
| 285 | |
| 286 | static void cheby(float *g, int ord) { |
| 287 | int i, j; |
| 288 | |
| 289 | g[0] *= .5f; |
| 290 | for(i=2; i<= ord; i++) { |
| 291 | for(j=ord; j >= i; j--) { |
| 292 | g[j-2] -= g[j]; |
| 293 | g[j] += g[j]; |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | static int comp(const void *a,const void *b){ |
| 299 | return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); |
| 300 | } |
| 301 | |
| 302 | /* Newton-Raphson-Maehly actually functioned as a decent root finder, |
| 303 | but there are root sets for which it gets into limit cycles |
| 304 | (exacerbated by zero suppression) and fails. We can't afford to |
| 305 | fail, even if the failure is 1 in 100,000,000, so we now use |
| 306 | Laguerre and later polish with Newton-Raphson (which can then |
| 307 | afford to fail) */ |
| 308 | |
| 309 | #define EPSILON 10e-7 |
| 310 | static int Laguerre_With_Deflation(float *a,int ord,float *r){ |
| 311 | int i,m; |
| 312 | double *defl=alloca(sizeof(*defl)*(ord+1)); |
| 313 | for(i=0;i<=ord;i++)defl[i]=a[i]; |
| 314 | |
| 315 | for(m=ord;m>0;m--){ |
| 316 | double new=0.f,delta; |
| 317 | |
| 318 | /* iterate a root */ |
| 319 | while(1){ |
| 320 | double p=defl[m],pp=0.f,ppp=0.f,denom; |
| 321 | |
| 322 | /* eval the polynomial and its first two derivatives */ |
| 323 | for(i=m;i>0;i--){ |
| 324 | ppp = new*ppp + pp; |
| 325 | pp = new*pp + p; |
| 326 | p = new*p + defl[i-1]; |
| 327 | } |
| 328 | |
| 329 | /* Laguerre's method */ |
| 330 | denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); |
| 331 | if(denom<0) |
| 332 | return(-1); /* complex root! The LPC generator handed us a bad filter */ |
| 333 | |
| 334 | if(pp>0){ |
| 335 | denom = pp + sqrt(denom); |
| 336 | if(denom<EPSILON)denom=EPSILON; |
| 337 | }else{ |
| 338 | denom = pp - sqrt(denom); |
| 339 | if(denom>-(EPSILON))denom=-(EPSILON); |
| 340 | } |
| 341 | |
| 342 | delta = m*p/denom; |
| 343 | new -= delta; |
| 344 | |
| 345 | if(delta<0.f)delta*=-1; |
| 346 | |
| 347 | if(fabs(delta/new)<10e-12)break; |
| 348 | } |
| 349 | |
| 350 | r[m-1]=new; |
| 351 | |
| 352 | /* forward deflation */ |
| 353 | |
| 354 | for(i=m;i>0;i--) |
| 355 | defl[i-1]+=new*defl[i]; |
| 356 | defl++; |
| 357 | |
| 358 | } |
| 359 | return(0); |
| 360 | } |
| 361 | |
| 362 | |
| 363 | /* for spit-and-polish only */ |
| 364 | static int Newton_Raphson(float *a,int ord,float *r){ |
| 365 | int i, k, count=0; |
| 366 | double error=1.f; |
| 367 | double *root=alloca(ord*sizeof(*root)); |
| 368 | |
| 369 | for(i=0; i<ord;i++) root[i] = r[i]; |
| 370 | |
| 371 | while(error>1e-20){ |
| 372 | error=0; |
| 373 | |
| 374 | for(i=0; i<ord; i++) { /* Update each point. */ |
| 375 | double pp=0.,delta; |
| 376 | double rooti=root[i]; |
| 377 | double p=a[ord]; |
| 378 | for(k=ord-1; k>= 0; k--) { |
| 379 | |
| 380 | pp= pp* rooti + p; |
| 381 | p = p * rooti + a[k]; |
| 382 | } |
| 383 | |
| 384 | delta = p/pp; |
| 385 | root[i] -= delta; |
| 386 | error+= delta*delta; |
| 387 | } |
| 388 | |
| 389 | if(count>40)return(-1); |
| 390 | |
| 391 | count++; |
| 392 | } |
| 393 | |
| 394 | /* Replaced the original bubble sort with a real sort. With your |
| 395 | help, we can eliminate the bubble sort in our lifetime. --Monty */ |
| 396 | |
| 397 | for(i=0; i<ord;i++) r[i] = root[i]; |
| 398 | return(0); |
| 399 | } |
| 400 | |
| 401 | |
| 402 | /* Convert lpc coefficients to lsp coefficients */ |
| 403 | int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ |
| 404 | int order2=(m+1)>>1; |
| 405 | int g1_order,g2_order; |
| 406 | float *g1=alloca(sizeof(*g1)*(order2+1)); |
| 407 | float *g2=alloca(sizeof(*g2)*(order2+1)); |
| 408 | float *g1r=alloca(sizeof(*g1r)*(order2+1)); |
| 409 | float *g2r=alloca(sizeof(*g2r)*(order2+1)); |
| 410 | int i; |
| 411 | |
| 412 | /* even and odd are slightly different base cases */ |
| 413 | g1_order=(m+1)>>1; |
| 414 | g2_order=(m) >>1; |
| 415 | |
| 416 | /* Compute the lengths of the x polynomials. */ |
| 417 | /* Compute the first half of K & R F1 & F2 polynomials. */ |
| 418 | /* Compute half of the symmetric and antisymmetric polynomials. */ |
| 419 | /* Remove the roots at +1 and -1. */ |
| 420 | |
| 421 | g1[g1_order] = 1.f; |
| 422 | for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; |
| 423 | g2[g2_order] = 1.f; |
| 424 | for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; |
| 425 | |
| 426 | if(g1_order>g2_order){ |
| 427 | for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; |
| 428 | }else{ |
| 429 | for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; |
| 430 | for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; |
| 431 | } |
| 432 | |
| 433 | /* Convert into polynomials in cos(alpha) */ |
| 434 | cheby(g1,g1_order); |
| 435 | cheby(g2,g2_order); |
| 436 | |
| 437 | /* Find the roots of the 2 even polynomials.*/ |
| 438 | if(Laguerre_With_Deflation(g1,g1_order,g1r) || |
| 439 | Laguerre_With_Deflation(g2,g2_order,g2r)) |
| 440 | return(-1); |
| 441 | |
| 442 | Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ |
| 443 | Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ |
| 444 | |
| 445 | qsort(g1r,g1_order,sizeof(*g1r),comp); |
| 446 | qsort(g2r,g2_order,sizeof(*g2r),comp); |
| 447 | |
| 448 | for(i=0;i<g1_order;i++) |
| 449 | lsp[i*2] = acos(g1r[i]); |
| 450 | |
| 451 | for(i=0;i<g2_order;i++) |
| 452 | lsp[i*2+1] = acos(g2r[i]); |
| 453 | return(0); |
| 454 | } |
| 455 | |