1 | /******************************************************************** |
2 | * * |
3 | * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * |
4 | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * |
5 | * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * |
6 | * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * |
7 | * * |
8 | * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * |
9 | * by the Xiph.Org Foundation https://xiph.org/ * |
10 | * * |
11 | ******************************************************************** |
12 | |
13 | function: LSP (also called LSF) conversion routines |
14 | |
15 | The LSP generation code is taken (with minimal modification and a |
16 | few bugfixes) from "On the Computation of the LSP Frequencies" by |
17 | Joseph Rothweiler (see http://www.rothweiler.us for contact info). |
18 | |
19 | The paper is available at: |
20 | |
21 | https://web.archive.org/web/20110810174000/http://home.myfairpoint.net/vzenxj75/myown1/joe/lsf/index.html |
22 | |
23 | ********************************************************************/ |
24 | |
25 | /* Note that the lpc-lsp conversion finds the roots of polynomial with |
26 | an iterative root polisher (CACM algorithm 283). It *is* possible |
27 | to confuse this algorithm into not converging; that should only |
28 | happen with absurdly closely spaced roots (very sharp peaks in the |
29 | LPC f response) which in turn should be impossible in our use of |
30 | the code. If this *does* happen anyway, it's a bug in the floor |
31 | finder; find the cause of the confusion (probably a single bin |
32 | spike or accidental near-float-limit resolution problems) and |
33 | correct it. */ |
34 | |
35 | #include <math.h> |
36 | #include <string.h> |
37 | #include <stdlib.h> |
38 | #include "lsp.h" |
39 | #include "os.h" |
40 | #include "misc.h" |
41 | #include "lookup.h" |
42 | #include "scales.h" |
43 | |
44 | /* three possible LSP to f curve functions; the exact computation |
45 | (float), a lookup based float implementation, and an integer |
46 | implementation. The float lookup is likely the optimal choice on |
47 | any machine with an FPU. The integer implementation is *not* fixed |
48 | point (due to the need for a large dynamic range and thus a |
49 | separately tracked exponent) and thus much more complex than the |
50 | relatively simple float implementations. It's mostly for future |
51 | work on a fully fixed point implementation for processors like the |
52 | ARM family. */ |
53 | |
54 | /* define either of these (preferably FLOAT_LOOKUP) to have faster |
55 | but less precise implementation. */ |
56 | #undef FLOAT_LOOKUP |
57 | #undef INT_LOOKUP |
58 | |
59 | #ifdef FLOAT_LOOKUP |
60 | #include "lookup.c" /* catch this in the build system; we #include for |
61 | compilers (like gcc) that can't inline across |
62 | modules */ |
63 | |
64 | /* side effect: changes *lsp to cosines of lsp */ |
65 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
66 | float amp,float ampoffset){ |
67 | int i; |
68 | float wdel=M_PI/ln; |
69 | vorbis_fpu_control fpu; |
70 | |
71 | vorbis_fpu_setround(&fpu); |
72 | for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); |
73 | |
74 | i=0; |
75 | while(i<n){ |
76 | int k=map[i]; |
77 | int qexp; |
78 | float p=.7071067812f; |
79 | float q=.7071067812f; |
80 | float w=vorbis_coslook(wdel*k); |
81 | float *ftmp=lsp; |
82 | int c=m>>1; |
83 | |
84 | while(c--){ |
85 | q*=ftmp[0]-w; |
86 | p*=ftmp[1]-w; |
87 | ftmp+=2; |
88 | } |
89 | |
90 | if(m&1){ |
91 | /* odd order filter; slightly assymetric */ |
92 | /* the last coefficient */ |
93 | q*=ftmp[0]-w; |
94 | q*=q; |
95 | p*=p*(1.f-w*w); |
96 | }else{ |
97 | /* even order filter; still symmetric */ |
98 | q*=q*(1.f+w); |
99 | p*=p*(1.f-w); |
100 | } |
101 | |
102 | q=frexp(p+q,&qexp); |
103 | q=vorbis_fromdBlook(amp* |
104 | vorbis_invsqlook(q)* |
105 | vorbis_invsq2explook(qexp+m)- |
106 | ampoffset); |
107 | |
108 | do{ |
109 | curve[i++]*=q; |
110 | }while(map[i]==k); |
111 | } |
112 | vorbis_fpu_restore(fpu); |
113 | } |
114 | |
115 | #else |
116 | |
117 | #ifdef INT_LOOKUP |
118 | #include "lookup.c" /* catch this in the build system; we #include for |
119 | compilers (like gcc) that can't inline across |
120 | modules */ |
121 | |
122 | static const int MLOOP_1[64]={ |
123 | 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, |
124 | 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, |
125 | 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, |
126 | 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, |
127 | }; |
128 | |
129 | static const int MLOOP_2[64]={ |
130 | 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, |
131 | 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, |
132 | 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, |
133 | 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, |
134 | }; |
135 | |
136 | static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; |
137 | |
138 | |
139 | /* side effect: changes *lsp to cosines of lsp */ |
140 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
141 | float amp,float ampoffset){ |
142 | |
143 | /* 0 <= m < 256 */ |
144 | |
145 | /* set up for using all int later */ |
146 | int i; |
147 | int ampoffseti=rint(ampoffset*4096.f); |
148 | int ampi=rint(amp*16.f); |
149 | long *ilsp=alloca(m*sizeof(*ilsp)); |
150 | for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); |
151 | |
152 | i=0; |
153 | while(i<n){ |
154 | int j,k=map[i]; |
155 | unsigned long pi=46341; /* 2**-.5 in 0.16 */ |
156 | unsigned long qi=46341; |
157 | int qexp=0,shift; |
158 | long wi=vorbis_coslook_i(k*65536/ln); |
159 | |
160 | qi*=labs(ilsp[0]-wi); |
161 | pi*=labs(ilsp[1]-wi); |
162 | |
163 | for(j=3;j<m;j+=2){ |
164 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
165 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
166 | shift=MLOOP_3[(pi|qi)>>16]; |
167 | qi=(qi>>shift)*labs(ilsp[j-1]-wi); |
168 | pi=(pi>>shift)*labs(ilsp[j]-wi); |
169 | qexp+=shift; |
170 | } |
171 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
172 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
173 | shift=MLOOP_3[(pi|qi)>>16]; |
174 | |
175 | /* pi,qi normalized collectively, both tracked using qexp */ |
176 | |
177 | if(m&1){ |
178 | /* odd order filter; slightly assymetric */ |
179 | /* the last coefficient */ |
180 | qi=(qi>>shift)*labs(ilsp[j-1]-wi); |
181 | pi=(pi>>shift)<<14; |
182 | qexp+=shift; |
183 | |
184 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
185 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
186 | shift=MLOOP_3[(pi|qi)>>16]; |
187 | |
188 | pi>>=shift; |
189 | qi>>=shift; |
190 | qexp+=shift-14*((m+1)>>1); |
191 | |
192 | pi=((pi*pi)>>16); |
193 | qi=((qi*qi)>>16); |
194 | qexp=qexp*2+m; |
195 | |
196 | pi*=(1<<14)-((wi*wi)>>14); |
197 | qi+=pi>>14; |
198 | |
199 | }else{ |
200 | /* even order filter; still symmetric */ |
201 | |
202 | /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't |
203 | worth tracking step by step */ |
204 | |
205 | pi>>=shift; |
206 | qi>>=shift; |
207 | qexp+=shift-7*m; |
208 | |
209 | pi=((pi*pi)>>16); |
210 | qi=((qi*qi)>>16); |
211 | qexp=qexp*2+m; |
212 | |
213 | pi*=(1<<14)-wi; |
214 | qi*=(1<<14)+wi; |
215 | qi=(qi+pi)>>14; |
216 | |
217 | } |
218 | |
219 | |
220 | /* we've let the normalization drift because it wasn't important; |
221 | however, for the lookup, things must be normalized again. We |
222 | need at most one right shift or a number of left shifts */ |
223 | |
224 | if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ |
225 | qi>>=1; qexp++; |
226 | }else |
227 | while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ |
228 | qi<<=1; qexp--; |
229 | } |
230 | |
231 | amp=vorbis_fromdBlook_i(ampi* /* n.4 */ |
232 | vorbis_invsqlook_i(qi,qexp)- |
233 | /* m.8, m+n<=8 */ |
234 | ampoffseti); /* 8.12[0] */ |
235 | |
236 | curve[i]*=amp; |
237 | while(map[++i]==k)curve[i]*=amp; |
238 | } |
239 | } |
240 | |
241 | #else |
242 | |
243 | /* old, nonoptimized but simple version for any poor sap who needs to |
244 | figure out what the hell this code does, or wants the other |
245 | fraction of a dB precision */ |
246 | |
247 | /* side effect: changes *lsp to cosines of lsp */ |
248 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
249 | float amp,float ampoffset){ |
250 | int i; |
251 | float wdel=M_PI/ln; |
252 | for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); |
253 | |
254 | i=0; |
255 | while(i<n){ |
256 | int j,k=map[i]; |
257 | float p=.5f; |
258 | float q=.5f; |
259 | float w=2.f*cos(wdel*k); |
260 | for(j=1;j<m;j+=2){ |
261 | q *= w-lsp[j-1]; |
262 | p *= w-lsp[j]; |
263 | } |
264 | if(j==m){ |
265 | /* odd order filter; slightly assymetric */ |
266 | /* the last coefficient */ |
267 | q*=w-lsp[j-1]; |
268 | p*=p*(4.f-w*w); |
269 | q*=q; |
270 | }else{ |
271 | /* even order filter; still symmetric */ |
272 | p*=p*(2.f-w); |
273 | q*=q*(2.f+w); |
274 | } |
275 | |
276 | q=fromdB(amp/sqrt(p+q)-ampoffset); |
277 | |
278 | curve[i]*=q; |
279 | while(map[++i]==k)curve[i]*=q; |
280 | } |
281 | } |
282 | |
283 | #endif |
284 | #endif |
285 | |
286 | static void cheby(float *g, int ord) { |
287 | int i, j; |
288 | |
289 | g[0] *= .5f; |
290 | for(i=2; i<= ord; i++) { |
291 | for(j=ord; j >= i; j--) { |
292 | g[j-2] -= g[j]; |
293 | g[j] += g[j]; |
294 | } |
295 | } |
296 | } |
297 | |
298 | static int comp(const void *a,const void *b){ |
299 | return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); |
300 | } |
301 | |
302 | /* Newton-Raphson-Maehly actually functioned as a decent root finder, |
303 | but there are root sets for which it gets into limit cycles |
304 | (exacerbated by zero suppression) and fails. We can't afford to |
305 | fail, even if the failure is 1 in 100,000,000, so we now use |
306 | Laguerre and later polish with Newton-Raphson (which can then |
307 | afford to fail) */ |
308 | |
309 | #define EPSILON 10e-7 |
310 | static int Laguerre_With_Deflation(float *a,int ord,float *r){ |
311 | int i,m; |
312 | double *defl=alloca(sizeof(*defl)*(ord+1)); |
313 | for(i=0;i<=ord;i++)defl[i]=a[i]; |
314 | |
315 | for(m=ord;m>0;m--){ |
316 | double new=0.f,delta; |
317 | |
318 | /* iterate a root */ |
319 | while(1){ |
320 | double p=defl[m],pp=0.f,ppp=0.f,denom; |
321 | |
322 | /* eval the polynomial and its first two derivatives */ |
323 | for(i=m;i>0;i--){ |
324 | ppp = new*ppp + pp; |
325 | pp = new*pp + p; |
326 | p = new*p + defl[i-1]; |
327 | } |
328 | |
329 | /* Laguerre's method */ |
330 | denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); |
331 | if(denom<0) |
332 | return(-1); /* complex root! The LPC generator handed us a bad filter */ |
333 | |
334 | if(pp>0){ |
335 | denom = pp + sqrt(denom); |
336 | if(denom<EPSILON)denom=EPSILON; |
337 | }else{ |
338 | denom = pp - sqrt(denom); |
339 | if(denom>-(EPSILON))denom=-(EPSILON); |
340 | } |
341 | |
342 | delta = m*p/denom; |
343 | new -= delta; |
344 | |
345 | if(delta<0.f)delta*=-1; |
346 | |
347 | if(fabs(delta/new)<10e-12)break; |
348 | } |
349 | |
350 | r[m-1]=new; |
351 | |
352 | /* forward deflation */ |
353 | |
354 | for(i=m;i>0;i--) |
355 | defl[i-1]+=new*defl[i]; |
356 | defl++; |
357 | |
358 | } |
359 | return(0); |
360 | } |
361 | |
362 | |
363 | /* for spit-and-polish only */ |
364 | static int Newton_Raphson(float *a,int ord,float *r){ |
365 | int i, k, count=0; |
366 | double error=1.f; |
367 | double *root=alloca(ord*sizeof(*root)); |
368 | |
369 | for(i=0; i<ord;i++) root[i] = r[i]; |
370 | |
371 | while(error>1e-20){ |
372 | error=0; |
373 | |
374 | for(i=0; i<ord; i++) { /* Update each point. */ |
375 | double pp=0.,delta; |
376 | double rooti=root[i]; |
377 | double p=a[ord]; |
378 | for(k=ord-1; k>= 0; k--) { |
379 | |
380 | pp= pp* rooti + p; |
381 | p = p * rooti + a[k]; |
382 | } |
383 | |
384 | delta = p/pp; |
385 | root[i] -= delta; |
386 | error+= delta*delta; |
387 | } |
388 | |
389 | if(count>40)return(-1); |
390 | |
391 | count++; |
392 | } |
393 | |
394 | /* Replaced the original bubble sort with a real sort. With your |
395 | help, we can eliminate the bubble sort in our lifetime. --Monty */ |
396 | |
397 | for(i=0; i<ord;i++) r[i] = root[i]; |
398 | return(0); |
399 | } |
400 | |
401 | |
402 | /* Convert lpc coefficients to lsp coefficients */ |
403 | int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ |
404 | int order2=(m+1)>>1; |
405 | int g1_order,g2_order; |
406 | float *g1=alloca(sizeof(*g1)*(order2+1)); |
407 | float *g2=alloca(sizeof(*g2)*(order2+1)); |
408 | float *g1r=alloca(sizeof(*g1r)*(order2+1)); |
409 | float *g2r=alloca(sizeof(*g2r)*(order2+1)); |
410 | int i; |
411 | |
412 | /* even and odd are slightly different base cases */ |
413 | g1_order=(m+1)>>1; |
414 | g2_order=(m) >>1; |
415 | |
416 | /* Compute the lengths of the x polynomials. */ |
417 | /* Compute the first half of K & R F1 & F2 polynomials. */ |
418 | /* Compute half of the symmetric and antisymmetric polynomials. */ |
419 | /* Remove the roots at +1 and -1. */ |
420 | |
421 | g1[g1_order] = 1.f; |
422 | for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; |
423 | g2[g2_order] = 1.f; |
424 | for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; |
425 | |
426 | if(g1_order>g2_order){ |
427 | for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; |
428 | }else{ |
429 | for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; |
430 | for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; |
431 | } |
432 | |
433 | /* Convert into polynomials in cos(alpha) */ |
434 | cheby(g1,g1_order); |
435 | cheby(g2,g2_order); |
436 | |
437 | /* Find the roots of the 2 even polynomials.*/ |
438 | if(Laguerre_With_Deflation(g1,g1_order,g1r) || |
439 | Laguerre_With_Deflation(g2,g2_order,g2r)) |
440 | return(-1); |
441 | |
442 | Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ |
443 | Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ |
444 | |
445 | qsort(g1r,g1_order,sizeof(*g1r),comp); |
446 | qsort(g2r,g2_order,sizeof(*g2r),comp); |
447 | |
448 | for(i=0;i<g1_order;i++) |
449 | lsp[i*2] = acos(g1r[i]); |
450 | |
451 | for(i=0;i<g2_order;i++) |
452 | lsp[i*2+1] = acos(g2r[i]); |
453 | return(0); |
454 | } |
455 | |