1 | /******************************************************************** |
2 | * * |
3 | * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * |
4 | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * |
5 | * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * |
6 | * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * |
7 | * * |
8 | * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * |
9 | * by the Xiph.Org Foundation https://xiph.org/ * |
10 | * * |
11 | ******************************************************************** |
12 | |
13 | function: *unnormalized* fft transform |
14 | |
15 | ********************************************************************/ |
16 | |
17 | /* FFT implementation from OggSquish, minus cosine transforms, |
18 | * minus all but radix 2/4 case. In Vorbis we only need this |
19 | * cut-down version. |
20 | * |
21 | * To do more than just power-of-two sized vectors, see the full |
22 | * version I wrote for NetLib. |
23 | * |
24 | * Note that the packing is a little strange; rather than the FFT r/i |
25 | * packing following R_0, I_n, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, |
26 | * it follows R_0, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, I_n like the |
27 | * FORTRAN version |
28 | */ |
29 | |
30 | #include <stdlib.h> |
31 | #include <string.h> |
32 | #include <math.h> |
33 | #include "smallft.h" |
34 | #include "os.h" |
35 | #include "misc.h" |
36 | |
37 | static void drfti1(int n, float *wa, int *ifac){ |
38 | static int ntryh[4] = { 4,2,3,5 }; |
39 | static float tpi = 6.28318530717958648f; |
40 | float arg,argh,argld,fi; |
41 | int ntry=0,i,j=-1; |
42 | int k1, l1, l2, ib; |
43 | int ld, ii, ip, is, nq, nr; |
44 | int ido, ipm, nfm1; |
45 | int nl=n; |
46 | int nf=0; |
47 | |
48 | L101: |
49 | j++; |
50 | if (j < 4) |
51 | ntry=ntryh[j]; |
52 | else |
53 | ntry+=2; |
54 | |
55 | L104: |
56 | nq=nl/ntry; |
57 | nr=nl-ntry*nq; |
58 | if (nr!=0) goto L101; |
59 | |
60 | nf++; |
61 | ifac[nf+1]=ntry; |
62 | nl=nq; |
63 | if(ntry!=2)goto L107; |
64 | if(nf==1)goto L107; |
65 | |
66 | for (i=1;i<nf;i++){ |
67 | ib=nf-i+1; |
68 | ifac[ib+1]=ifac[ib]; |
69 | } |
70 | ifac[2] = 2; |
71 | |
72 | L107: |
73 | if(nl!=1)goto L104; |
74 | ifac[0]=n; |
75 | ifac[1]=nf; |
76 | argh=tpi/n; |
77 | is=0; |
78 | nfm1=nf-1; |
79 | l1=1; |
80 | |
81 | if(nfm1==0)return; |
82 | |
83 | for (k1=0;k1<nfm1;k1++){ |
84 | ip=ifac[k1+2]; |
85 | ld=0; |
86 | l2=l1*ip; |
87 | ido=n/l2; |
88 | ipm=ip-1; |
89 | |
90 | for (j=0;j<ipm;j++){ |
91 | ld+=l1; |
92 | i=is; |
93 | argld=(float)ld*argh; |
94 | fi=0.f; |
95 | for (ii=2;ii<ido;ii+=2){ |
96 | fi+=1.f; |
97 | arg=fi*argld; |
98 | wa[i++]=cos(arg); |
99 | wa[i++]=sin(arg); |
100 | } |
101 | is+=ido; |
102 | } |
103 | l1=l2; |
104 | } |
105 | } |
106 | |
107 | static void fdrffti(int n, float *wsave, int *ifac){ |
108 | |
109 | if (n == 1) return; |
110 | drfti1(n, wsave+n, ifac); |
111 | } |
112 | |
113 | static void dradf2(int ido,int l1,float *cc,float *ch,float *wa1){ |
114 | int i,k; |
115 | float ti2,tr2; |
116 | int t0,t1,t2,t3,t4,t5,t6; |
117 | |
118 | t1=0; |
119 | t0=(t2=l1*ido); |
120 | t3=ido<<1; |
121 | for(k=0;k<l1;k++){ |
122 | ch[t1<<1]=cc[t1]+cc[t2]; |
123 | ch[(t1<<1)+t3-1]=cc[t1]-cc[t2]; |
124 | t1+=ido; |
125 | t2+=ido; |
126 | } |
127 | |
128 | if(ido<2)return; |
129 | if(ido==2)goto L105; |
130 | |
131 | t1=0; |
132 | t2=t0; |
133 | for(k=0;k<l1;k++){ |
134 | t3=t2; |
135 | t4=(t1<<1)+(ido<<1); |
136 | t5=t1; |
137 | t6=t1+t1; |
138 | for(i=2;i<ido;i+=2){ |
139 | t3+=2; |
140 | t4-=2; |
141 | t5+=2; |
142 | t6+=2; |
143 | tr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3]; |
144 | ti2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1]; |
145 | ch[t6]=cc[t5]+ti2; |
146 | ch[t4]=ti2-cc[t5]; |
147 | ch[t6-1]=cc[t5-1]+tr2; |
148 | ch[t4-1]=cc[t5-1]-tr2; |
149 | } |
150 | t1+=ido; |
151 | t2+=ido; |
152 | } |
153 | |
154 | if(ido%2==1)return; |
155 | |
156 | L105: |
157 | t3=(t2=(t1=ido)-1); |
158 | t2+=t0; |
159 | for(k=0;k<l1;k++){ |
160 | ch[t1]=-cc[t2]; |
161 | ch[t1-1]=cc[t3]; |
162 | t1+=ido<<1; |
163 | t2+=ido; |
164 | t3+=ido; |
165 | } |
166 | } |
167 | |
168 | static void dradf4(int ido,int l1,float *cc,float *ch,float *wa1, |
169 | float *wa2,float *wa3){ |
170 | static float hsqt2 = .70710678118654752f; |
171 | int i,k,t0,t1,t2,t3,t4,t5,t6; |
172 | float ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4; |
173 | t0=l1*ido; |
174 | |
175 | t1=t0; |
176 | t4=t1<<1; |
177 | t2=t1+(t1<<1); |
178 | t3=0; |
179 | |
180 | for(k=0;k<l1;k++){ |
181 | tr1=cc[t1]+cc[t2]; |
182 | tr2=cc[t3]+cc[t4]; |
183 | |
184 | ch[t5=t3<<2]=tr1+tr2; |
185 | ch[(ido<<2)+t5-1]=tr2-tr1; |
186 | ch[(t5+=(ido<<1))-1]=cc[t3]-cc[t4]; |
187 | ch[t5]=cc[t2]-cc[t1]; |
188 | |
189 | t1+=ido; |
190 | t2+=ido; |
191 | t3+=ido; |
192 | t4+=ido; |
193 | } |
194 | |
195 | if(ido<2)return; |
196 | if(ido==2)goto L105; |
197 | |
198 | |
199 | t1=0; |
200 | for(k=0;k<l1;k++){ |
201 | t2=t1; |
202 | t4=t1<<2; |
203 | t5=(t6=ido<<1)+t4; |
204 | for(i=2;i<ido;i+=2){ |
205 | t3=(t2+=2); |
206 | t4+=2; |
207 | t5-=2; |
208 | |
209 | t3+=t0; |
210 | cr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3]; |
211 | ci2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1]; |
212 | t3+=t0; |
213 | cr3=wa2[i-2]*cc[t3-1]+wa2[i-1]*cc[t3]; |
214 | ci3=wa2[i-2]*cc[t3]-wa2[i-1]*cc[t3-1]; |
215 | t3+=t0; |
216 | cr4=wa3[i-2]*cc[t3-1]+wa3[i-1]*cc[t3]; |
217 | ci4=wa3[i-2]*cc[t3]-wa3[i-1]*cc[t3-1]; |
218 | |
219 | tr1=cr2+cr4; |
220 | tr4=cr4-cr2; |
221 | ti1=ci2+ci4; |
222 | ti4=ci2-ci4; |
223 | |
224 | ti2=cc[t2]+ci3; |
225 | ti3=cc[t2]-ci3; |
226 | tr2=cc[t2-1]+cr3; |
227 | tr3=cc[t2-1]-cr3; |
228 | |
229 | ch[t4-1]=tr1+tr2; |
230 | ch[t4]=ti1+ti2; |
231 | |
232 | ch[t5-1]=tr3-ti4; |
233 | ch[t5]=tr4-ti3; |
234 | |
235 | ch[t4+t6-1]=ti4+tr3; |
236 | ch[t4+t6]=tr4+ti3; |
237 | |
238 | ch[t5+t6-1]=tr2-tr1; |
239 | ch[t5+t6]=ti1-ti2; |
240 | } |
241 | t1+=ido; |
242 | } |
243 | if(ido&1)return; |
244 | |
245 | L105: |
246 | |
247 | t2=(t1=t0+ido-1)+(t0<<1); |
248 | t3=ido<<2; |
249 | t4=ido; |
250 | t5=ido<<1; |
251 | t6=ido; |
252 | |
253 | for(k=0;k<l1;k++){ |
254 | ti1=-hsqt2*(cc[t1]+cc[t2]); |
255 | tr1=hsqt2*(cc[t1]-cc[t2]); |
256 | |
257 | ch[t4-1]=tr1+cc[t6-1]; |
258 | ch[t4+t5-1]=cc[t6-1]-tr1; |
259 | |
260 | ch[t4]=ti1-cc[t1+t0]; |
261 | ch[t4+t5]=ti1+cc[t1+t0]; |
262 | |
263 | t1+=ido; |
264 | t2+=ido; |
265 | t4+=t3; |
266 | t6+=ido; |
267 | } |
268 | } |
269 | |
270 | static void dradfg(int ido,int ip,int l1,int idl1,float *cc,float *c1, |
271 | float *c2,float *ch,float *ch2,float *wa){ |
272 | |
273 | static float tpi=6.283185307179586f; |
274 | int idij,ipph,i,j,k,l,ic,ik,is; |
275 | int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10; |
276 | float dc2,ai1,ai2,ar1,ar2,ds2; |
277 | int nbd; |
278 | float dcp,arg,dsp,ar1h,ar2h; |
279 | int idp2,ipp2; |
280 | |
281 | arg=tpi/(float)ip; |
282 | dcp=cos(arg); |
283 | dsp=sin(arg); |
284 | ipph=(ip+1)>>1; |
285 | ipp2=ip; |
286 | idp2=ido; |
287 | nbd=(ido-1)>>1; |
288 | t0=l1*ido; |
289 | t10=ip*ido; |
290 | |
291 | if(ido==1)goto L119; |
292 | for(ik=0;ik<idl1;ik++)ch2[ik]=c2[ik]; |
293 | |
294 | t1=0; |
295 | for(j=1;j<ip;j++){ |
296 | t1+=t0; |
297 | t2=t1; |
298 | for(k=0;k<l1;k++){ |
299 | ch[t2]=c1[t2]; |
300 | t2+=ido; |
301 | } |
302 | } |
303 | |
304 | is=-ido; |
305 | t1=0; |
306 | if(nbd>l1){ |
307 | for(j=1;j<ip;j++){ |
308 | t1+=t0; |
309 | is+=ido; |
310 | t2= -ido+t1; |
311 | for(k=0;k<l1;k++){ |
312 | idij=is-1; |
313 | t2+=ido; |
314 | t3=t2; |
315 | for(i=2;i<ido;i+=2){ |
316 | idij+=2; |
317 | t3+=2; |
318 | ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3]; |
319 | ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1]; |
320 | } |
321 | } |
322 | } |
323 | }else{ |
324 | |
325 | for(j=1;j<ip;j++){ |
326 | is+=ido; |
327 | idij=is-1; |
328 | t1+=t0; |
329 | t2=t1; |
330 | for(i=2;i<ido;i+=2){ |
331 | idij+=2; |
332 | t2+=2; |
333 | t3=t2; |
334 | for(k=0;k<l1;k++){ |
335 | ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3]; |
336 | ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1]; |
337 | t3+=ido; |
338 | } |
339 | } |
340 | } |
341 | } |
342 | |
343 | t1=0; |
344 | t2=ipp2*t0; |
345 | if(nbd<l1){ |
346 | for(j=1;j<ipph;j++){ |
347 | t1+=t0; |
348 | t2-=t0; |
349 | t3=t1; |
350 | t4=t2; |
351 | for(i=2;i<ido;i+=2){ |
352 | t3+=2; |
353 | t4+=2; |
354 | t5=t3-ido; |
355 | t6=t4-ido; |
356 | for(k=0;k<l1;k++){ |
357 | t5+=ido; |
358 | t6+=ido; |
359 | c1[t5-1]=ch[t5-1]+ch[t6-1]; |
360 | c1[t6-1]=ch[t5]-ch[t6]; |
361 | c1[t5]=ch[t5]+ch[t6]; |
362 | c1[t6]=ch[t6-1]-ch[t5-1]; |
363 | } |
364 | } |
365 | } |
366 | }else{ |
367 | for(j=1;j<ipph;j++){ |
368 | t1+=t0; |
369 | t2-=t0; |
370 | t3=t1; |
371 | t4=t2; |
372 | for(k=0;k<l1;k++){ |
373 | t5=t3; |
374 | t6=t4; |
375 | for(i=2;i<ido;i+=2){ |
376 | t5+=2; |
377 | t6+=2; |
378 | c1[t5-1]=ch[t5-1]+ch[t6-1]; |
379 | c1[t6-1]=ch[t5]-ch[t6]; |
380 | c1[t5]=ch[t5]+ch[t6]; |
381 | c1[t6]=ch[t6-1]-ch[t5-1]; |
382 | } |
383 | t3+=ido; |
384 | t4+=ido; |
385 | } |
386 | } |
387 | } |
388 | |
389 | L119: |
390 | for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik]; |
391 | |
392 | t1=0; |
393 | t2=ipp2*idl1; |
394 | for(j=1;j<ipph;j++){ |
395 | t1+=t0; |
396 | t2-=t0; |
397 | t3=t1-ido; |
398 | t4=t2-ido; |
399 | for(k=0;k<l1;k++){ |
400 | t3+=ido; |
401 | t4+=ido; |
402 | c1[t3]=ch[t3]+ch[t4]; |
403 | c1[t4]=ch[t4]-ch[t3]; |
404 | } |
405 | } |
406 | |
407 | ar1=1.f; |
408 | ai1=0.f; |
409 | t1=0; |
410 | t2=ipp2*idl1; |
411 | t3=(ip-1)*idl1; |
412 | for(l=1;l<ipph;l++){ |
413 | t1+=idl1; |
414 | t2-=idl1; |
415 | ar1h=dcp*ar1-dsp*ai1; |
416 | ai1=dcp*ai1+dsp*ar1; |
417 | ar1=ar1h; |
418 | t4=t1; |
419 | t5=t2; |
420 | t6=t3; |
421 | t7=idl1; |
422 | |
423 | for(ik=0;ik<idl1;ik++){ |
424 | ch2[t4++]=c2[ik]+ar1*c2[t7++]; |
425 | ch2[t5++]=ai1*c2[t6++]; |
426 | } |
427 | |
428 | dc2=ar1; |
429 | ds2=ai1; |
430 | ar2=ar1; |
431 | ai2=ai1; |
432 | |
433 | t4=idl1; |
434 | t5=(ipp2-1)*idl1; |
435 | for(j=2;j<ipph;j++){ |
436 | t4+=idl1; |
437 | t5-=idl1; |
438 | |
439 | ar2h=dc2*ar2-ds2*ai2; |
440 | ai2=dc2*ai2+ds2*ar2; |
441 | ar2=ar2h; |
442 | |
443 | t6=t1; |
444 | t7=t2; |
445 | t8=t4; |
446 | t9=t5; |
447 | for(ik=0;ik<idl1;ik++){ |
448 | ch2[t6++]+=ar2*c2[t8++]; |
449 | ch2[t7++]+=ai2*c2[t9++]; |
450 | } |
451 | } |
452 | } |
453 | |
454 | t1=0; |
455 | for(j=1;j<ipph;j++){ |
456 | t1+=idl1; |
457 | t2=t1; |
458 | for(ik=0;ik<idl1;ik++)ch2[ik]+=c2[t2++]; |
459 | } |
460 | |
461 | if(ido<l1)goto L132; |
462 | |
463 | t1=0; |
464 | t2=0; |
465 | for(k=0;k<l1;k++){ |
466 | t3=t1; |
467 | t4=t2; |
468 | for(i=0;i<ido;i++)cc[t4++]=ch[t3++]; |
469 | t1+=ido; |
470 | t2+=t10; |
471 | } |
472 | |
473 | goto L135; |
474 | |
475 | L132: |
476 | for(i=0;i<ido;i++){ |
477 | t1=i; |
478 | t2=i; |
479 | for(k=0;k<l1;k++){ |
480 | cc[t2]=ch[t1]; |
481 | t1+=ido; |
482 | t2+=t10; |
483 | } |
484 | } |
485 | |
486 | L135: |
487 | t1=0; |
488 | t2=ido<<1; |
489 | t3=0; |
490 | t4=ipp2*t0; |
491 | for(j=1;j<ipph;j++){ |
492 | |
493 | t1+=t2; |
494 | t3+=t0; |
495 | t4-=t0; |
496 | |
497 | t5=t1; |
498 | t6=t3; |
499 | t7=t4; |
500 | |
501 | for(k=0;k<l1;k++){ |
502 | cc[t5-1]=ch[t6]; |
503 | cc[t5]=ch[t7]; |
504 | t5+=t10; |
505 | t6+=ido; |
506 | t7+=ido; |
507 | } |
508 | } |
509 | |
510 | if(ido==1)return; |
511 | if(nbd<l1)goto L141; |
512 | |
513 | t1=-ido; |
514 | t3=0; |
515 | t4=0; |
516 | t5=ipp2*t0; |
517 | for(j=1;j<ipph;j++){ |
518 | t1+=t2; |
519 | t3+=t2; |
520 | t4+=t0; |
521 | t5-=t0; |
522 | t6=t1; |
523 | t7=t3; |
524 | t8=t4; |
525 | t9=t5; |
526 | for(k=0;k<l1;k++){ |
527 | for(i=2;i<ido;i+=2){ |
528 | ic=idp2-i; |
529 | cc[i+t7-1]=ch[i+t8-1]+ch[i+t9-1]; |
530 | cc[ic+t6-1]=ch[i+t8-1]-ch[i+t9-1]; |
531 | cc[i+t7]=ch[i+t8]+ch[i+t9]; |
532 | cc[ic+t6]=ch[i+t9]-ch[i+t8]; |
533 | } |
534 | t6+=t10; |
535 | t7+=t10; |
536 | t8+=ido; |
537 | t9+=ido; |
538 | } |
539 | } |
540 | return; |
541 | |
542 | L141: |
543 | |
544 | t1=-ido; |
545 | t3=0; |
546 | t4=0; |
547 | t5=ipp2*t0; |
548 | for(j=1;j<ipph;j++){ |
549 | t1+=t2; |
550 | t3+=t2; |
551 | t4+=t0; |
552 | t5-=t0; |
553 | for(i=2;i<ido;i+=2){ |
554 | t6=idp2+t1-i; |
555 | t7=i+t3; |
556 | t8=i+t4; |
557 | t9=i+t5; |
558 | for(k=0;k<l1;k++){ |
559 | cc[t7-1]=ch[t8-1]+ch[t9-1]; |
560 | cc[t6-1]=ch[t8-1]-ch[t9-1]; |
561 | cc[t7]=ch[t8]+ch[t9]; |
562 | cc[t6]=ch[t9]-ch[t8]; |
563 | t6+=t10; |
564 | t7+=t10; |
565 | t8+=ido; |
566 | t9+=ido; |
567 | } |
568 | } |
569 | } |
570 | } |
571 | |
572 | static void drftf1(int n,float *c,float *ch,float *wa,int *ifac){ |
573 | int i,k1,l1,l2; |
574 | int na,kh,nf; |
575 | int ip,iw,ido,idl1,ix2,ix3; |
576 | |
577 | nf=ifac[1]; |
578 | na=1; |
579 | l2=n; |
580 | iw=n; |
581 | |
582 | for(k1=0;k1<nf;k1++){ |
583 | kh=nf-k1; |
584 | ip=ifac[kh+1]; |
585 | l1=l2/ip; |
586 | ido=n/l2; |
587 | idl1=ido*l1; |
588 | iw-=(ip-1)*ido; |
589 | na=1-na; |
590 | |
591 | if(ip!=4)goto L102; |
592 | |
593 | ix2=iw+ido; |
594 | ix3=ix2+ido; |
595 | if(na!=0) |
596 | dradf4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1); |
597 | else |
598 | dradf4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1); |
599 | goto L110; |
600 | |
601 | L102: |
602 | if(ip!=2)goto L104; |
603 | if(na!=0)goto L103; |
604 | |
605 | dradf2(ido,l1,c,ch,wa+iw-1); |
606 | goto L110; |
607 | |
608 | L103: |
609 | dradf2(ido,l1,ch,c,wa+iw-1); |
610 | goto L110; |
611 | |
612 | L104: |
613 | if(ido==1)na=1-na; |
614 | if(na!=0)goto L109; |
615 | |
616 | dradfg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1); |
617 | na=1; |
618 | goto L110; |
619 | |
620 | L109: |
621 | dradfg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1); |
622 | na=0; |
623 | |
624 | L110: |
625 | l2=l1; |
626 | } |
627 | |
628 | if(na==1)return; |
629 | |
630 | for(i=0;i<n;i++)c[i]=ch[i]; |
631 | } |
632 | |
633 | static void dradb2(int ido,int l1,float *cc,float *ch,float *wa1){ |
634 | int i,k,t0,t1,t2,t3,t4,t5,t6; |
635 | float ti2,tr2; |
636 | |
637 | t0=l1*ido; |
638 | |
639 | t1=0; |
640 | t2=0; |
641 | t3=(ido<<1)-1; |
642 | for(k=0;k<l1;k++){ |
643 | ch[t1]=cc[t2]+cc[t3+t2]; |
644 | ch[t1+t0]=cc[t2]-cc[t3+t2]; |
645 | t2=(t1+=ido)<<1; |
646 | } |
647 | |
648 | if(ido<2)return; |
649 | if(ido==2)goto L105; |
650 | |
651 | t1=0; |
652 | t2=0; |
653 | for(k=0;k<l1;k++){ |
654 | t3=t1; |
655 | t5=(t4=t2)+(ido<<1); |
656 | t6=t0+t1; |
657 | for(i=2;i<ido;i+=2){ |
658 | t3+=2; |
659 | t4+=2; |
660 | t5-=2; |
661 | t6+=2; |
662 | ch[t3-1]=cc[t4-1]+cc[t5-1]; |
663 | tr2=cc[t4-1]-cc[t5-1]; |
664 | ch[t3]=cc[t4]-cc[t5]; |
665 | ti2=cc[t4]+cc[t5]; |
666 | ch[t6-1]=wa1[i-2]*tr2-wa1[i-1]*ti2; |
667 | ch[t6]=wa1[i-2]*ti2+wa1[i-1]*tr2; |
668 | } |
669 | t2=(t1+=ido)<<1; |
670 | } |
671 | |
672 | if(ido%2==1)return; |
673 | |
674 | L105: |
675 | t1=ido-1; |
676 | t2=ido-1; |
677 | for(k=0;k<l1;k++){ |
678 | ch[t1]=cc[t2]+cc[t2]; |
679 | ch[t1+t0]=-(cc[t2+1]+cc[t2+1]); |
680 | t1+=ido; |
681 | t2+=ido<<1; |
682 | } |
683 | } |
684 | |
685 | static void dradb3(int ido,int l1,float *cc,float *ch,float *wa1, |
686 | float *wa2){ |
687 | static float taur = -.5f; |
688 | static float taui = .8660254037844386f; |
689 | int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10; |
690 | float ci2,ci3,di2,di3,cr2,cr3,dr2,dr3,ti2,tr2; |
691 | t0=l1*ido; |
692 | |
693 | t1=0; |
694 | t2=t0<<1; |
695 | t3=ido<<1; |
696 | t4=ido+(ido<<1); |
697 | t5=0; |
698 | for(k=0;k<l1;k++){ |
699 | tr2=cc[t3-1]+cc[t3-1]; |
700 | cr2=cc[t5]+(taur*tr2); |
701 | ch[t1]=cc[t5]+tr2; |
702 | ci3=taui*(cc[t3]+cc[t3]); |
703 | ch[t1+t0]=cr2-ci3; |
704 | ch[t1+t2]=cr2+ci3; |
705 | t1+=ido; |
706 | t3+=t4; |
707 | t5+=t4; |
708 | } |
709 | |
710 | if(ido==1)return; |
711 | |
712 | t1=0; |
713 | t3=ido<<1; |
714 | for(k=0;k<l1;k++){ |
715 | t7=t1+(t1<<1); |
716 | t6=(t5=t7+t3); |
717 | t8=t1; |
718 | t10=(t9=t1+t0)+t0; |
719 | |
720 | for(i=2;i<ido;i+=2){ |
721 | t5+=2; |
722 | t6-=2; |
723 | t7+=2; |
724 | t8+=2; |
725 | t9+=2; |
726 | t10+=2; |
727 | tr2=cc[t5-1]+cc[t6-1]; |
728 | cr2=cc[t7-1]+(taur*tr2); |
729 | ch[t8-1]=cc[t7-1]+tr2; |
730 | ti2=cc[t5]-cc[t6]; |
731 | ci2=cc[t7]+(taur*ti2); |
732 | ch[t8]=cc[t7]+ti2; |
733 | cr3=taui*(cc[t5-1]-cc[t6-1]); |
734 | ci3=taui*(cc[t5]+cc[t6]); |
735 | dr2=cr2-ci3; |
736 | dr3=cr2+ci3; |
737 | di2=ci2+cr3; |
738 | di3=ci2-cr3; |
739 | ch[t9-1]=wa1[i-2]*dr2-wa1[i-1]*di2; |
740 | ch[t9]=wa1[i-2]*di2+wa1[i-1]*dr2; |
741 | ch[t10-1]=wa2[i-2]*dr3-wa2[i-1]*di3; |
742 | ch[t10]=wa2[i-2]*di3+wa2[i-1]*dr3; |
743 | } |
744 | t1+=ido; |
745 | } |
746 | } |
747 | |
748 | static void dradb4(int ido,int l1,float *cc,float *ch,float *wa1, |
749 | float *wa2,float *wa3){ |
750 | static float sqrt2=1.414213562373095f; |
751 | int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8; |
752 | float ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4; |
753 | t0=l1*ido; |
754 | |
755 | t1=0; |
756 | t2=ido<<2; |
757 | t3=0; |
758 | t6=ido<<1; |
759 | for(k=0;k<l1;k++){ |
760 | t4=t3+t6; |
761 | t5=t1; |
762 | tr3=cc[t4-1]+cc[t4-1]; |
763 | tr4=cc[t4]+cc[t4]; |
764 | tr1=cc[t3]-cc[(t4+=t6)-1]; |
765 | tr2=cc[t3]+cc[t4-1]; |
766 | ch[t5]=tr2+tr3; |
767 | ch[t5+=t0]=tr1-tr4; |
768 | ch[t5+=t0]=tr2-tr3; |
769 | ch[t5+=t0]=tr1+tr4; |
770 | t1+=ido; |
771 | t3+=t2; |
772 | } |
773 | |
774 | if(ido<2)return; |
775 | if(ido==2)goto L105; |
776 | |
777 | t1=0; |
778 | for(k=0;k<l1;k++){ |
779 | t5=(t4=(t3=(t2=t1<<2)+t6))+t6; |
780 | t7=t1; |
781 | for(i=2;i<ido;i+=2){ |
782 | t2+=2; |
783 | t3+=2; |
784 | t4-=2; |
785 | t5-=2; |
786 | t7+=2; |
787 | ti1=cc[t2]+cc[t5]; |
788 | ti2=cc[t2]-cc[t5]; |
789 | ti3=cc[t3]-cc[t4]; |
790 | tr4=cc[t3]+cc[t4]; |
791 | tr1=cc[t2-1]-cc[t5-1]; |
792 | tr2=cc[t2-1]+cc[t5-1]; |
793 | ti4=cc[t3-1]-cc[t4-1]; |
794 | tr3=cc[t3-1]+cc[t4-1]; |
795 | ch[t7-1]=tr2+tr3; |
796 | cr3=tr2-tr3; |
797 | ch[t7]=ti2+ti3; |
798 | ci3=ti2-ti3; |
799 | cr2=tr1-tr4; |
800 | cr4=tr1+tr4; |
801 | ci2=ti1+ti4; |
802 | ci4=ti1-ti4; |
803 | |
804 | ch[(t8=t7+t0)-1]=wa1[i-2]*cr2-wa1[i-1]*ci2; |
805 | ch[t8]=wa1[i-2]*ci2+wa1[i-1]*cr2; |
806 | ch[(t8+=t0)-1]=wa2[i-2]*cr3-wa2[i-1]*ci3; |
807 | ch[t8]=wa2[i-2]*ci3+wa2[i-1]*cr3; |
808 | ch[(t8+=t0)-1]=wa3[i-2]*cr4-wa3[i-1]*ci4; |
809 | ch[t8]=wa3[i-2]*ci4+wa3[i-1]*cr4; |
810 | } |
811 | t1+=ido; |
812 | } |
813 | |
814 | if(ido%2 == 1)return; |
815 | |
816 | L105: |
817 | |
818 | t1=ido; |
819 | t2=ido<<2; |
820 | t3=ido-1; |
821 | t4=ido+(ido<<1); |
822 | for(k=0;k<l1;k++){ |
823 | t5=t3; |
824 | ti1=cc[t1]+cc[t4]; |
825 | ti2=cc[t4]-cc[t1]; |
826 | tr1=cc[t1-1]-cc[t4-1]; |
827 | tr2=cc[t1-1]+cc[t4-1]; |
828 | ch[t5]=tr2+tr2; |
829 | ch[t5+=t0]=sqrt2*(tr1-ti1); |
830 | ch[t5+=t0]=ti2+ti2; |
831 | ch[t5+=t0]=-sqrt2*(tr1+ti1); |
832 | |
833 | t3+=ido; |
834 | t1+=t2; |
835 | t4+=t2; |
836 | } |
837 | } |
838 | |
839 | static void dradbg(int ido,int ip,int l1,int idl1,float *cc,float *c1, |
840 | float *c2,float *ch,float *ch2,float *wa){ |
841 | static float tpi=6.283185307179586f; |
842 | int idij,ipph,i,j,k,l,ik,is,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10, |
843 | t11,t12; |
844 | float dc2,ai1,ai2,ar1,ar2,ds2; |
845 | int nbd; |
846 | float dcp,arg,dsp,ar1h,ar2h; |
847 | int ipp2; |
848 | |
849 | t10=ip*ido; |
850 | t0=l1*ido; |
851 | arg=tpi/(float)ip; |
852 | dcp=cos(arg); |
853 | dsp=sin(arg); |
854 | nbd=(ido-1)>>1; |
855 | ipp2=ip; |
856 | ipph=(ip+1)>>1; |
857 | if(ido<l1)goto L103; |
858 | |
859 | t1=0; |
860 | t2=0; |
861 | for(k=0;k<l1;k++){ |
862 | t3=t1; |
863 | t4=t2; |
864 | for(i=0;i<ido;i++){ |
865 | ch[t3]=cc[t4]; |
866 | t3++; |
867 | t4++; |
868 | } |
869 | t1+=ido; |
870 | t2+=t10; |
871 | } |
872 | goto L106; |
873 | |
874 | L103: |
875 | t1=0; |
876 | for(i=0;i<ido;i++){ |
877 | t2=t1; |
878 | t3=t1; |
879 | for(k=0;k<l1;k++){ |
880 | ch[t2]=cc[t3]; |
881 | t2+=ido; |
882 | t3+=t10; |
883 | } |
884 | t1++; |
885 | } |
886 | |
887 | L106: |
888 | t1=0; |
889 | t2=ipp2*t0; |
890 | t7=(t5=ido<<1); |
891 | for(j=1;j<ipph;j++){ |
892 | t1+=t0; |
893 | t2-=t0; |
894 | t3=t1; |
895 | t4=t2; |
896 | t6=t5; |
897 | for(k=0;k<l1;k++){ |
898 | ch[t3]=cc[t6-1]+cc[t6-1]; |
899 | ch[t4]=cc[t6]+cc[t6]; |
900 | t3+=ido; |
901 | t4+=ido; |
902 | t6+=t10; |
903 | } |
904 | t5+=t7; |
905 | } |
906 | |
907 | if (ido == 1)goto L116; |
908 | if(nbd<l1)goto L112; |
909 | |
910 | t1=0; |
911 | t2=ipp2*t0; |
912 | t7=0; |
913 | for(j=1;j<ipph;j++){ |
914 | t1+=t0; |
915 | t2-=t0; |
916 | t3=t1; |
917 | t4=t2; |
918 | |
919 | t7+=(ido<<1); |
920 | t8=t7; |
921 | for(k=0;k<l1;k++){ |
922 | t5=t3; |
923 | t6=t4; |
924 | t9=t8; |
925 | t11=t8; |
926 | for(i=2;i<ido;i+=2){ |
927 | t5+=2; |
928 | t6+=2; |
929 | t9+=2; |
930 | t11-=2; |
931 | ch[t5-1]=cc[t9-1]+cc[t11-1]; |
932 | ch[t6-1]=cc[t9-1]-cc[t11-1]; |
933 | ch[t5]=cc[t9]-cc[t11]; |
934 | ch[t6]=cc[t9]+cc[t11]; |
935 | } |
936 | t3+=ido; |
937 | t4+=ido; |
938 | t8+=t10; |
939 | } |
940 | } |
941 | goto L116; |
942 | |
943 | L112: |
944 | t1=0; |
945 | t2=ipp2*t0; |
946 | t7=0; |
947 | for(j=1;j<ipph;j++){ |
948 | t1+=t0; |
949 | t2-=t0; |
950 | t3=t1; |
951 | t4=t2; |
952 | t7+=(ido<<1); |
953 | t8=t7; |
954 | t9=t7; |
955 | for(i=2;i<ido;i+=2){ |
956 | t3+=2; |
957 | t4+=2; |
958 | t8+=2; |
959 | t9-=2; |
960 | t5=t3; |
961 | t6=t4; |
962 | t11=t8; |
963 | t12=t9; |
964 | for(k=0;k<l1;k++){ |
965 | ch[t5-1]=cc[t11-1]+cc[t12-1]; |
966 | ch[t6-1]=cc[t11-1]-cc[t12-1]; |
967 | ch[t5]=cc[t11]-cc[t12]; |
968 | ch[t6]=cc[t11]+cc[t12]; |
969 | t5+=ido; |
970 | t6+=ido; |
971 | t11+=t10; |
972 | t12+=t10; |
973 | } |
974 | } |
975 | } |
976 | |
977 | L116: |
978 | ar1=1.f; |
979 | ai1=0.f; |
980 | t1=0; |
981 | t9=(t2=ipp2*idl1); |
982 | t3=(ip-1)*idl1; |
983 | for(l=1;l<ipph;l++){ |
984 | t1+=idl1; |
985 | t2-=idl1; |
986 | |
987 | ar1h=dcp*ar1-dsp*ai1; |
988 | ai1=dcp*ai1+dsp*ar1; |
989 | ar1=ar1h; |
990 | t4=t1; |
991 | t5=t2; |
992 | t6=0; |
993 | t7=idl1; |
994 | t8=t3; |
995 | for(ik=0;ik<idl1;ik++){ |
996 | c2[t4++]=ch2[t6++]+ar1*ch2[t7++]; |
997 | c2[t5++]=ai1*ch2[t8++]; |
998 | } |
999 | dc2=ar1; |
1000 | ds2=ai1; |
1001 | ar2=ar1; |
1002 | ai2=ai1; |
1003 | |
1004 | t6=idl1; |
1005 | t7=t9-idl1; |
1006 | for(j=2;j<ipph;j++){ |
1007 | t6+=idl1; |
1008 | t7-=idl1; |
1009 | ar2h=dc2*ar2-ds2*ai2; |
1010 | ai2=dc2*ai2+ds2*ar2; |
1011 | ar2=ar2h; |
1012 | t4=t1; |
1013 | t5=t2; |
1014 | t11=t6; |
1015 | t12=t7; |
1016 | for(ik=0;ik<idl1;ik++){ |
1017 | c2[t4++]+=ar2*ch2[t11++]; |
1018 | c2[t5++]+=ai2*ch2[t12++]; |
1019 | } |
1020 | } |
1021 | } |
1022 | |
1023 | t1=0; |
1024 | for(j=1;j<ipph;j++){ |
1025 | t1+=idl1; |
1026 | t2=t1; |
1027 | for(ik=0;ik<idl1;ik++)ch2[ik]+=ch2[t2++]; |
1028 | } |
1029 | |
1030 | t1=0; |
1031 | t2=ipp2*t0; |
1032 | for(j=1;j<ipph;j++){ |
1033 | t1+=t0; |
1034 | t2-=t0; |
1035 | t3=t1; |
1036 | t4=t2; |
1037 | for(k=0;k<l1;k++){ |
1038 | ch[t3]=c1[t3]-c1[t4]; |
1039 | ch[t4]=c1[t3]+c1[t4]; |
1040 | t3+=ido; |
1041 | t4+=ido; |
1042 | } |
1043 | } |
1044 | |
1045 | if(ido==1)goto L132; |
1046 | if(nbd<l1)goto L128; |
1047 | |
1048 | t1=0; |
1049 | t2=ipp2*t0; |
1050 | for(j=1;j<ipph;j++){ |
1051 | t1+=t0; |
1052 | t2-=t0; |
1053 | t3=t1; |
1054 | t4=t2; |
1055 | for(k=0;k<l1;k++){ |
1056 | t5=t3; |
1057 | t6=t4; |
1058 | for(i=2;i<ido;i+=2){ |
1059 | t5+=2; |
1060 | t6+=2; |
1061 | ch[t5-1]=c1[t5-1]-c1[t6]; |
1062 | ch[t6-1]=c1[t5-1]+c1[t6]; |
1063 | ch[t5]=c1[t5]+c1[t6-1]; |
1064 | ch[t6]=c1[t5]-c1[t6-1]; |
1065 | } |
1066 | t3+=ido; |
1067 | t4+=ido; |
1068 | } |
1069 | } |
1070 | goto L132; |
1071 | |
1072 | L128: |
1073 | t1=0; |
1074 | t2=ipp2*t0; |
1075 | for(j=1;j<ipph;j++){ |
1076 | t1+=t0; |
1077 | t2-=t0; |
1078 | t3=t1; |
1079 | t4=t2; |
1080 | for(i=2;i<ido;i+=2){ |
1081 | t3+=2; |
1082 | t4+=2; |
1083 | t5=t3; |
1084 | t6=t4; |
1085 | for(k=0;k<l1;k++){ |
1086 | ch[t5-1]=c1[t5-1]-c1[t6]; |
1087 | ch[t6-1]=c1[t5-1]+c1[t6]; |
1088 | ch[t5]=c1[t5]+c1[t6-1]; |
1089 | ch[t6]=c1[t5]-c1[t6-1]; |
1090 | t5+=ido; |
1091 | t6+=ido; |
1092 | } |
1093 | } |
1094 | } |
1095 | |
1096 | L132: |
1097 | if(ido==1)return; |
1098 | |
1099 | for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik]; |
1100 | |
1101 | t1=0; |
1102 | for(j=1;j<ip;j++){ |
1103 | t2=(t1+=t0); |
1104 | for(k=0;k<l1;k++){ |
1105 | c1[t2]=ch[t2]; |
1106 | t2+=ido; |
1107 | } |
1108 | } |
1109 | |
1110 | if(nbd>l1)goto L139; |
1111 | |
1112 | is= -ido-1; |
1113 | t1=0; |
1114 | for(j=1;j<ip;j++){ |
1115 | is+=ido; |
1116 | t1+=t0; |
1117 | idij=is; |
1118 | t2=t1; |
1119 | for(i=2;i<ido;i+=2){ |
1120 | t2+=2; |
1121 | idij+=2; |
1122 | t3=t2; |
1123 | for(k=0;k<l1;k++){ |
1124 | c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3]; |
1125 | c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1]; |
1126 | t3+=ido; |
1127 | } |
1128 | } |
1129 | } |
1130 | return; |
1131 | |
1132 | L139: |
1133 | is= -ido-1; |
1134 | t1=0; |
1135 | for(j=1;j<ip;j++){ |
1136 | is+=ido; |
1137 | t1+=t0; |
1138 | t2=t1; |
1139 | for(k=0;k<l1;k++){ |
1140 | idij=is; |
1141 | t3=t2; |
1142 | for(i=2;i<ido;i+=2){ |
1143 | idij+=2; |
1144 | t3+=2; |
1145 | c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3]; |
1146 | c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1]; |
1147 | } |
1148 | t2+=ido; |
1149 | } |
1150 | } |
1151 | } |
1152 | |
1153 | static void drftb1(int n, float *c, float *ch, float *wa, int *ifac){ |
1154 | int i,k1,l1,l2; |
1155 | int na; |
1156 | int nf,ip,iw,ix2,ix3,ido,idl1; |
1157 | |
1158 | nf=ifac[1]; |
1159 | na=0; |
1160 | l1=1; |
1161 | iw=1; |
1162 | |
1163 | for(k1=0;k1<nf;k1++){ |
1164 | ip=ifac[k1 + 2]; |
1165 | l2=ip*l1; |
1166 | ido=n/l2; |
1167 | idl1=ido*l1; |
1168 | if(ip!=4)goto L103; |
1169 | ix2=iw+ido; |
1170 | ix3=ix2+ido; |
1171 | |
1172 | if(na!=0) |
1173 | dradb4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1); |
1174 | else |
1175 | dradb4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1); |
1176 | na=1-na; |
1177 | goto L115; |
1178 | |
1179 | L103: |
1180 | if(ip!=2)goto L106; |
1181 | |
1182 | if(na!=0) |
1183 | dradb2(ido,l1,ch,c,wa+iw-1); |
1184 | else |
1185 | dradb2(ido,l1,c,ch,wa+iw-1); |
1186 | na=1-na; |
1187 | goto L115; |
1188 | |
1189 | L106: |
1190 | if(ip!=3)goto L109; |
1191 | |
1192 | ix2=iw+ido; |
1193 | if(na!=0) |
1194 | dradb3(ido,l1,ch,c,wa+iw-1,wa+ix2-1); |
1195 | else |
1196 | dradb3(ido,l1,c,ch,wa+iw-1,wa+ix2-1); |
1197 | na=1-na; |
1198 | goto L115; |
1199 | |
1200 | L109: |
1201 | /* The radix five case can be translated later..... */ |
1202 | /* if(ip!=5)goto L112; |
1203 | |
1204 | ix2=iw+ido; |
1205 | ix3=ix2+ido; |
1206 | ix4=ix3+ido; |
1207 | if(na!=0) |
1208 | dradb5(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1); |
1209 | else |
1210 | dradb5(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1); |
1211 | na=1-na; |
1212 | goto L115; |
1213 | |
1214 | L112:*/ |
1215 | if(na!=0) |
1216 | dradbg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1); |
1217 | else |
1218 | dradbg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1); |
1219 | if(ido==1)na=1-na; |
1220 | |
1221 | L115: |
1222 | l1=l2; |
1223 | iw+=(ip-1)*ido; |
1224 | } |
1225 | |
1226 | if(na==0)return; |
1227 | |
1228 | for(i=0;i<n;i++)c[i]=ch[i]; |
1229 | } |
1230 | |
1231 | void drft_forward(drft_lookup *l,float *data){ |
1232 | if(l->n==1)return; |
1233 | drftf1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache); |
1234 | } |
1235 | |
1236 | void drft_backward(drft_lookup *l,float *data){ |
1237 | if (l->n==1)return; |
1238 | drftb1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache); |
1239 | } |
1240 | |
1241 | void drft_init(drft_lookup *l,int n){ |
1242 | l->n=n; |
1243 | l->trigcache=_ogg_calloc(3*n,sizeof(*l->trigcache)); |
1244 | l->splitcache=_ogg_calloc(32,sizeof(*l->splitcache)); |
1245 | fdrffti(n, l->trigcache, l->splitcache); |
1246 | } |
1247 | |
1248 | void drft_clear(drft_lookup *l){ |
1249 | if(l){ |
1250 | if(l->trigcache)_ogg_free(l->trigcache); |
1251 | if(l->splitcache)_ogg_free(l->splitcache); |
1252 | memset(l,0,sizeof(*l)); |
1253 | } |
1254 | } |
1255 | |