1 | // Copyright 2022 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Gamma correction utilities. |
11 | |
12 | #include "sharpyuv/sharpyuv_gamma.h" |
13 | |
14 | #include <assert.h> |
15 | #include <math.h> |
16 | |
17 | #include "src/webp/types.h" |
18 | |
19 | // Gamma correction compensates loss of resolution during chroma subsampling. |
20 | // Size of pre-computed table for converting from gamma to linear. |
21 | #define GAMMA_TO_LINEAR_TAB_BITS 10 |
22 | #define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS) |
23 | static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2]; |
24 | #define LINEAR_TO_GAMMA_TAB_BITS 9 |
25 | #define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS) |
26 | static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2]; |
27 | |
28 | static const double kGammaF = 1. / 0.45; |
29 | #define GAMMA_TO_LINEAR_BITS 16 |
30 | |
31 | static volatile int kGammaTablesSOk = 0; |
32 | void SharpYuvInitGammaTables(void) { |
33 | assert(GAMMA_TO_LINEAR_BITS <= 16); |
34 | if (!kGammaTablesSOk) { |
35 | int v; |
36 | const double a = 0.09929682680944; |
37 | const double thresh = 0.018053968510807; |
38 | const double final_scale = 1 << GAMMA_TO_LINEAR_BITS; |
39 | // Precompute gamma to linear table. |
40 | { |
41 | const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE; |
42 | const double a_rec = 1. / (1. + a); |
43 | for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) { |
44 | const double g = norm * v; |
45 | double value; |
46 | if (g <= thresh * 4.5) { |
47 | value = g / 4.5; |
48 | } else { |
49 | value = pow(a_rec * (g + a), kGammaF); |
50 | } |
51 | kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5); |
52 | } |
53 | // to prevent small rounding errors to cause read-overflow: |
54 | kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] = |
55 | kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE]; |
56 | } |
57 | // Precompute linear to gamma table. |
58 | { |
59 | const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE; |
60 | for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) { |
61 | const double g = scale * v; |
62 | double value; |
63 | if (g <= thresh) { |
64 | value = 4.5 * g; |
65 | } else { |
66 | value = (1. + a) * pow(g, 1. / kGammaF) - a; |
67 | } |
68 | kLinearToGammaTabS[v] = |
69 | (uint32_t)(final_scale * value + 0.5); |
70 | } |
71 | // to prevent small rounding errors to cause read-overflow: |
72 | kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] = |
73 | kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE]; |
74 | } |
75 | kGammaTablesSOk = 1; |
76 | } |
77 | } |
78 | |
79 | static WEBP_INLINE int Shift(int v, int shift) { |
80 | return (shift >= 0) ? (v << shift) : (v >> -shift); |
81 | } |
82 | |
83 | static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab, |
84 | int tab_pos_shift_right, |
85 | int tab_value_shift) { |
86 | const uint32_t tab_pos = Shift(v, -tab_pos_shift_right); |
87 | // fractional part, in 'tab_pos_shift' fixed-point precision |
88 | const uint32_t x = v - (tab_pos << tab_pos_shift_right); // fractional part |
89 | // v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1]) |
90 | const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift); |
91 | const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift); |
92 | // Final interpolation. |
93 | const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0. |
94 | const int half = |
95 | (tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0; |
96 | const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right); |
97 | return result; |
98 | } |
99 | |
100 | uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth) { |
101 | const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth; |
102 | if (shift > 0) { |
103 | return kGammaToLinearTabS[v << shift]; |
104 | } |
105 | return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0); |
106 | } |
107 | |
108 | uint16_t SharpYuvLinearToGamma(uint32_t value, int bit_depth) { |
109 | return FixedPointInterpolation( |
110 | value, kLinearToGammaTabS, |
111 | (GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS), |
112 | bit_depth - GAMMA_TO_LINEAR_BITS); |
113 | } |
114 | |