| 1 | // Copyright 2010 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Frame-reconstruction function. Memory allocation. |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include <stdlib.h> |
| 15 | #include "src/dec/vp8i_dec.h" |
| 16 | #include "src/utils/utils.h" |
| 17 | |
| 18 | //------------------------------------------------------------------------------ |
| 19 | // Main reconstruction function. |
| 20 | |
| 21 | static const uint16_t kScan[16] = { |
| 22 | 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 23 | 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 24 | 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 25 | 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
| 26 | }; |
| 27 | |
| 28 | static int CheckMode(int mb_x, int mb_y, int mode) { |
| 29 | if (mode == B_DC_PRED) { |
| 30 | if (mb_x == 0) { |
| 31 | return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
| 32 | } else { |
| 33 | return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
| 34 | } |
| 35 | } |
| 36 | return mode; |
| 37 | } |
| 38 | |
| 39 | static void Copy32b(uint8_t* const dst, const uint8_t* const src) { |
| 40 | memcpy(dst, src, 4); |
| 41 | } |
| 42 | |
| 43 | static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, |
| 44 | uint8_t* const dst) { |
| 45 | switch (bits >> 30) { |
| 46 | case 3: |
| 47 | VP8Transform(src, dst, 0); |
| 48 | break; |
| 49 | case 2: |
| 50 | VP8TransformAC3(src, dst); |
| 51 | break; |
| 52 | case 1: |
| 53 | VP8TransformDC(src, dst); |
| 54 | break; |
| 55 | default: |
| 56 | break; |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | static void DoUVTransform(uint32_t bits, const int16_t* const src, |
| 61 | uint8_t* const dst) { |
| 62 | if (bits & 0xff) { // any non-zero coeff at all? |
| 63 | if (bits & 0xaa) { // any non-zero AC coefficient? |
| 64 | VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V |
| 65 | } else { |
| 66 | VP8TransformDCUV(src, dst); |
| 67 | } |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | static void ReconstructRow(const VP8Decoder* const dec, |
| 72 | const VP8ThreadContext* ctx) { |
| 73 | int j; |
| 74 | int mb_x; |
| 75 | const int mb_y = ctx->mb_y_; |
| 76 | const int cache_id = ctx->id_; |
| 77 | uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
| 78 | uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
| 79 | uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
| 80 | |
| 81 | // Initialize left-most block. |
| 82 | for (j = 0; j < 16; ++j) { |
| 83 | y_dst[j * BPS - 1] = 129; |
| 84 | } |
| 85 | for (j = 0; j < 8; ++j) { |
| 86 | u_dst[j * BPS - 1] = 129; |
| 87 | v_dst[j * BPS - 1] = 129; |
| 88 | } |
| 89 | |
| 90 | // Init top-left sample on left column too. |
| 91 | if (mb_y > 0) { |
| 92 | y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
| 93 | } else { |
| 94 | // we only need to do this init once at block (0,0). |
| 95 | // Afterward, it remains valid for the whole topmost row. |
| 96 | memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
| 97 | memset(u_dst - BPS - 1, 127, 8 + 1); |
| 98 | memset(v_dst - BPS - 1, 127, 8 + 1); |
| 99 | } |
| 100 | |
| 101 | // Reconstruct one row. |
| 102 | for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { |
| 103 | const VP8MBData* const block = ctx->mb_data_ + mb_x; |
| 104 | |
| 105 | // Rotate in the left samples from previously decoded block. We move four |
| 106 | // pixels at a time for alignment reason, and because of in-loop filter. |
| 107 | if (mb_x > 0) { |
| 108 | for (j = -1; j < 16; ++j) { |
| 109 | Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
| 110 | } |
| 111 | for (j = -1; j < 8; ++j) { |
| 112 | Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
| 113 | Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
| 114 | } |
| 115 | } |
| 116 | { |
| 117 | // bring top samples into the cache |
| 118 | VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; |
| 119 | const int16_t* const coeffs = block->coeffs_; |
| 120 | uint32_t bits = block->non_zero_y_; |
| 121 | int n; |
| 122 | |
| 123 | if (mb_y > 0) { |
| 124 | memcpy(y_dst - BPS, top_yuv[0].y, 16); |
| 125 | memcpy(u_dst - BPS, top_yuv[0].u, 8); |
| 126 | memcpy(v_dst - BPS, top_yuv[0].v, 8); |
| 127 | } |
| 128 | |
| 129 | // predict and add residuals |
| 130 | if (block->is_i4x4_) { // 4x4 |
| 131 | uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
| 132 | |
| 133 | if (mb_y > 0) { |
| 134 | if (mb_x >= dec->mb_w_ - 1) { // on rightmost border |
| 135 | memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); |
| 136 | } else { |
| 137 | memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); |
| 138 | } |
| 139 | } |
| 140 | // replicate the top-right pixels below |
| 141 | top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
| 142 | |
| 143 | // predict and add residuals for all 4x4 blocks in turn. |
| 144 | for (n = 0; n < 16; ++n, bits <<= 2) { |
| 145 | uint8_t* const dst = y_dst + kScan[n]; |
| 146 | VP8PredLuma4[block->imodes_[n]](dst); |
| 147 | DoTransform(bits, coeffs + n * 16, dst); |
| 148 | } |
| 149 | } else { // 16x16 |
| 150 | const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]); |
| 151 | VP8PredLuma16[pred_func](y_dst); |
| 152 | if (bits != 0) { |
| 153 | for (n = 0; n < 16; ++n, bits <<= 2) { |
| 154 | DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | { |
| 159 | // Chroma |
| 160 | const uint32_t bits_uv = block->non_zero_uv_; |
| 161 | const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); |
| 162 | VP8PredChroma8[pred_func](u_dst); |
| 163 | VP8PredChroma8[pred_func](v_dst); |
| 164 | DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); |
| 165 | DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); |
| 166 | } |
| 167 | |
| 168 | // stash away top samples for next block |
| 169 | if (mb_y < dec->mb_h_ - 1) { |
| 170 | memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); |
| 171 | memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); |
| 172 | memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); |
| 173 | } |
| 174 | } |
| 175 | // Transfer reconstructed samples from yuv_b_ cache to final destination. |
| 176 | { |
| 177 | const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
| 178 | const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
| 179 | uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; |
| 180 | uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; |
| 181 | uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; |
| 182 | for (j = 0; j < 16; ++j) { |
| 183 | memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
| 184 | } |
| 185 | for (j = 0; j < 8; ++j) { |
| 186 | memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
| 187 | memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | //------------------------------------------------------------------------------ |
| 194 | // Filtering |
| 195 | |
| 196 | // kFilterExtraRows[] = How many extra lines are needed on the MB boundary |
| 197 | // for caching, given a filtering level. |
| 198 | // Simple filter: up to 2 luma samples are read and 1 is written. |
| 199 | // Complex filter: up to 4 luma samples are read and 3 are written. Same for |
| 200 | // U/V, so it's 8 samples total (because of the 2x upsampling). |
| 201 | static const uint8_t [3] = { 0, 2, 8 }; |
| 202 | |
| 203 | static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
| 204 | const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 205 | const int cache_id = ctx->id_; |
| 206 | const int y_bps = dec->cache_y_stride_; |
| 207 | const VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
| 208 | uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; |
| 209 | const int ilevel = f_info->f_ilevel_; |
| 210 | const int limit = f_info->f_limit_; |
| 211 | if (limit == 0) { |
| 212 | return; |
| 213 | } |
| 214 | assert(limit >= 3); |
| 215 | if (dec->filter_type_ == 1) { // simple |
| 216 | if (mb_x > 0) { |
| 217 | VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
| 218 | } |
| 219 | if (f_info->f_inner_) { |
| 220 | VP8SimpleHFilter16i(y_dst, y_bps, limit); |
| 221 | } |
| 222 | if (mb_y > 0) { |
| 223 | VP8SimpleVFilter16(y_dst, y_bps, limit + 4); |
| 224 | } |
| 225 | if (f_info->f_inner_) { |
| 226 | VP8SimpleVFilter16i(y_dst, y_bps, limit); |
| 227 | } |
| 228 | } else { // complex |
| 229 | const int uv_bps = dec->cache_uv_stride_; |
| 230 | uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 231 | uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 232 | const int hev_thresh = f_info->hev_thresh_; |
| 233 | if (mb_x > 0) { |
| 234 | VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| 235 | VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| 236 | } |
| 237 | if (f_info->f_inner_) { |
| 238 | VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| 239 | VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| 240 | } |
| 241 | if (mb_y > 0) { |
| 242 | VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| 243 | VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| 244 | } |
| 245 | if (f_info->f_inner_) { |
| 246 | VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| 247 | VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | // Filter the decoded macroblock row (if needed) |
| 253 | static void FilterRow(const VP8Decoder* const dec) { |
| 254 | int mb_x; |
| 255 | const int mb_y = dec->thread_ctx_.mb_y_; |
| 256 | assert(dec->thread_ctx_.filter_row_); |
| 257 | for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| 258 | DoFilter(dec, mb_x, mb_y); |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | //------------------------------------------------------------------------------ |
| 263 | // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. |
| 264 | |
| 265 | static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
| 266 | if (dec->filter_type_ > 0) { |
| 267 | int s; |
| 268 | const VP8FilterHeader* const hdr = &dec->filter_hdr_; |
| 269 | for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| 270 | int i4x4; |
| 271 | // First, compute the initial level |
| 272 | int base_level; |
| 273 | if (dec->segment_hdr_.use_segment_) { |
| 274 | base_level = dec->segment_hdr_.filter_strength_[s]; |
| 275 | if (!dec->segment_hdr_.absolute_delta_) { |
| 276 | base_level += hdr->level_; |
| 277 | } |
| 278 | } else { |
| 279 | base_level = hdr->level_; |
| 280 | } |
| 281 | for (i4x4 = 0; i4x4 <= 1; ++i4x4) { |
| 282 | VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; |
| 283 | int level = base_level; |
| 284 | if (hdr->use_lf_delta_) { |
| 285 | level += hdr->ref_lf_delta_[0]; |
| 286 | if (i4x4) { |
| 287 | level += hdr->mode_lf_delta_[0]; |
| 288 | } |
| 289 | } |
| 290 | level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
| 291 | if (level > 0) { |
| 292 | int ilevel = level; |
| 293 | if (hdr->sharpness_ > 0) { |
| 294 | if (hdr->sharpness_ > 4) { |
| 295 | ilevel >>= 2; |
| 296 | } else { |
| 297 | ilevel >>= 1; |
| 298 | } |
| 299 | if (ilevel > 9 - hdr->sharpness_) { |
| 300 | ilevel = 9 - hdr->sharpness_; |
| 301 | } |
| 302 | } |
| 303 | if (ilevel < 1) ilevel = 1; |
| 304 | info->f_ilevel_ = ilevel; |
| 305 | info->f_limit_ = 2 * level + ilevel; |
| 306 | info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
| 307 | } else { |
| 308 | info->f_limit_ = 0; // no filtering |
| 309 | } |
| 310 | info->f_inner_ = i4x4; |
| 311 | } |
| 312 | } |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | //------------------------------------------------------------------------------ |
| 317 | // Dithering |
| 318 | |
| 319 | // minimal amp that will provide a non-zero dithering effect |
| 320 | #define MIN_DITHER_AMP 4 |
| 321 | |
| 322 | #define DITHER_AMP_TAB_SIZE 12 |
| 323 | static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { |
| 324 | // roughly, it's dqm->uv_mat_[1] |
| 325 | 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 |
| 326 | }; |
| 327 | |
| 328 | void VP8InitDithering(const WebPDecoderOptions* const options, |
| 329 | VP8Decoder* const dec) { |
| 330 | assert(dec != NULL); |
| 331 | if (options != NULL) { |
| 332 | const int d = options->dithering_strength; |
| 333 | const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; |
| 334 | const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); |
| 335 | if (f > 0) { |
| 336 | int s; |
| 337 | int all_amp = 0; |
| 338 | for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| 339 | VP8QuantMatrix* const dqm = &dec->dqm_[s]; |
| 340 | if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { |
| 341 | const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; |
| 342 | dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; |
| 343 | } |
| 344 | all_amp |= dqm->dither_; |
| 345 | } |
| 346 | if (all_amp != 0) { |
| 347 | VP8InitRandom(&dec->dithering_rg_, 1.0f); |
| 348 | dec->dither_ = 1; |
| 349 | } |
| 350 | } |
| 351 | // potentially allow alpha dithering |
| 352 | dec->alpha_dithering_ = options->alpha_dithering_strength; |
| 353 | if (dec->alpha_dithering_ > 100) { |
| 354 | dec->alpha_dithering_ = 100; |
| 355 | } else if (dec->alpha_dithering_ < 0) { |
| 356 | dec->alpha_dithering_ = 0; |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 |
| 362 | static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { |
| 363 | uint8_t dither[64]; |
| 364 | int i; |
| 365 | for (i = 0; i < 8 * 8; ++i) { |
| 366 | dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp); |
| 367 | } |
| 368 | VP8DitherCombine8x8(dither, dst, bps); |
| 369 | } |
| 370 | |
| 371 | static void DitherRow(VP8Decoder* const dec) { |
| 372 | int mb_x; |
| 373 | assert(dec->dither_); |
| 374 | for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| 375 | const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 376 | const VP8MBData* const data = ctx->mb_data_ + mb_x; |
| 377 | const int cache_id = ctx->id_; |
| 378 | const int uv_bps = dec->cache_uv_stride_; |
| 379 | if (data->dither_ >= MIN_DITHER_AMP) { |
| 380 | uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 381 | uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 382 | Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); |
| 383 | Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | //------------------------------------------------------------------------------ |
| 389 | // This function is called after a row of macroblocks is finished decoding. |
| 390 | // It also takes into account the following restrictions: |
| 391 | // * In case of in-loop filtering, we must hold off sending some of the bottom |
| 392 | // pixels as they are yet unfiltered. They will be when the next macroblock |
| 393 | // row is decoded. Meanwhile, we must preserve them by rotating them in the |
| 394 | // cache area. This doesn't hold for the very bottom row of the uncropped |
| 395 | // picture of course. |
| 396 | // * we must clip the remaining pixels against the cropping area. The VP8Io |
| 397 | // struct must have the following fields set correctly before calling put(): |
| 398 | |
| 399 | #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB |
| 400 | |
| 401 | // Finalize and transmit a complete row. Return false in case of user-abort. |
| 402 | static int FinishRow(void* arg1, void* arg2) { |
| 403 | VP8Decoder* const dec = (VP8Decoder*)arg1; |
| 404 | VP8Io* const io = (VP8Io*)arg2; |
| 405 | int ok = 1; |
| 406 | const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 407 | const int cache_id = ctx->id_; |
| 408 | const int = kFilterExtraRows[dec->filter_type_]; |
| 409 | const int ysize = extra_y_rows * dec->cache_y_stride_; |
| 410 | const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
| 411 | const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
| 412 | const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
| 413 | uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
| 414 | uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
| 415 | uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
| 416 | const int mb_y = ctx->mb_y_; |
| 417 | const int is_first_row = (mb_y == 0); |
| 418 | const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); |
| 419 | |
| 420 | if (dec->mt_method_ == 2) { |
| 421 | ReconstructRow(dec, ctx); |
| 422 | } |
| 423 | |
| 424 | if (ctx->filter_row_) { |
| 425 | FilterRow(dec); |
| 426 | } |
| 427 | |
| 428 | if (dec->dither_) { |
| 429 | DitherRow(dec); |
| 430 | } |
| 431 | |
| 432 | if (io->put != NULL) { |
| 433 | int y_start = MACROBLOCK_VPOS(mb_y); |
| 434 | int y_end = MACROBLOCK_VPOS(mb_y + 1); |
| 435 | if (!is_first_row) { |
| 436 | y_start -= extra_y_rows; |
| 437 | io->y = ydst; |
| 438 | io->u = udst; |
| 439 | io->v = vdst; |
| 440 | } else { |
| 441 | io->y = dec->cache_y_ + y_offset; |
| 442 | io->u = dec->cache_u_ + uv_offset; |
| 443 | io->v = dec->cache_v_ + uv_offset; |
| 444 | } |
| 445 | |
| 446 | if (!is_last_row) { |
| 447 | y_end -= extra_y_rows; |
| 448 | } |
| 449 | if (y_end > io->crop_bottom) { |
| 450 | y_end = io->crop_bottom; // make sure we don't overflow on last row. |
| 451 | } |
| 452 | // If dec->alpha_data_ is not NULL, we have some alpha plane present. |
| 453 | io->a = NULL; |
| 454 | if (dec->alpha_data_ != NULL && y_start < y_end) { |
| 455 | io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start); |
| 456 | if (io->a == NULL) { |
| 457 | return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
| 458 | "Could not decode alpha data." ); |
| 459 | } |
| 460 | } |
| 461 | if (y_start < io->crop_top) { |
| 462 | const int delta_y = io->crop_top - y_start; |
| 463 | y_start = io->crop_top; |
| 464 | assert(!(delta_y & 1)); |
| 465 | io->y += dec->cache_y_stride_ * delta_y; |
| 466 | io->u += dec->cache_uv_stride_ * (delta_y >> 1); |
| 467 | io->v += dec->cache_uv_stride_ * (delta_y >> 1); |
| 468 | if (io->a != NULL) { |
| 469 | io->a += io->width * delta_y; |
| 470 | } |
| 471 | } |
| 472 | if (y_start < y_end) { |
| 473 | io->y += io->crop_left; |
| 474 | io->u += io->crop_left >> 1; |
| 475 | io->v += io->crop_left >> 1; |
| 476 | if (io->a != NULL) { |
| 477 | io->a += io->crop_left; |
| 478 | } |
| 479 | io->mb_y = y_start - io->crop_top; |
| 480 | io->mb_w = io->crop_right - io->crop_left; |
| 481 | io->mb_h = y_end - y_start; |
| 482 | ok = io->put(io); |
| 483 | } |
| 484 | } |
| 485 | // rotate top samples if needed |
| 486 | if (cache_id + 1 == dec->num_caches_) { |
| 487 | if (!is_last_row) { |
| 488 | memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
| 489 | memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
| 490 | memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | return ok; |
| 495 | } |
| 496 | |
| 497 | #undef MACROBLOCK_VPOS |
| 498 | |
| 499 | //------------------------------------------------------------------------------ |
| 500 | |
| 501 | int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
| 502 | int ok = 1; |
| 503 | VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 504 | const int filter_row = |
| 505 | (dec->filter_type_ > 0) && |
| 506 | (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); |
| 507 | if (dec->mt_method_ == 0) { |
| 508 | // ctx->id_ and ctx->f_info_ are already set |
| 509 | ctx->mb_y_ = dec->mb_y_; |
| 510 | ctx->filter_row_ = filter_row; |
| 511 | ReconstructRow(dec, ctx); |
| 512 | ok = FinishRow(dec, io); |
| 513 | } else { |
| 514 | WebPWorker* const worker = &dec->worker_; |
| 515 | // Finish previous job *before* updating context |
| 516 | ok &= WebPGetWorkerInterface()->Sync(worker); |
| 517 | assert(worker->status_ == OK); |
| 518 | if (ok) { // spawn a new deblocking/output job |
| 519 | ctx->io_ = *io; |
| 520 | ctx->id_ = dec->cache_id_; |
| 521 | ctx->mb_y_ = dec->mb_y_; |
| 522 | ctx->filter_row_ = filter_row; |
| 523 | if (dec->mt_method_ == 2) { // swap macroblock data |
| 524 | VP8MBData* const tmp = ctx->mb_data_; |
| 525 | ctx->mb_data_ = dec->mb_data_; |
| 526 | dec->mb_data_ = tmp; |
| 527 | } else { |
| 528 | // perform reconstruction directly in main thread |
| 529 | ReconstructRow(dec, ctx); |
| 530 | } |
| 531 | if (filter_row) { // swap filter info |
| 532 | VP8FInfo* const tmp = ctx->f_info_; |
| 533 | ctx->f_info_ = dec->f_info_; |
| 534 | dec->f_info_ = tmp; |
| 535 | } |
| 536 | // (reconstruct)+filter in parallel |
| 537 | WebPGetWorkerInterface()->Launch(worker); |
| 538 | if (++dec->cache_id_ == dec->num_caches_) { |
| 539 | dec->cache_id_ = 0; |
| 540 | } |
| 541 | } |
| 542 | } |
| 543 | return ok; |
| 544 | } |
| 545 | |
| 546 | //------------------------------------------------------------------------------ |
| 547 | // Finish setting up the decoding parameter once user's setup() is called. |
| 548 | |
| 549 | VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
| 550 | // Call setup() first. This may trigger additional decoding features on 'io'. |
| 551 | // Note: Afterward, we must call teardown() no matter what. |
| 552 | if (io->setup != NULL && !io->setup(io)) { |
| 553 | VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed" ); |
| 554 | return dec->status_; |
| 555 | } |
| 556 | |
| 557 | // Disable filtering per user request |
| 558 | if (io->bypass_filtering) { |
| 559 | dec->filter_type_ = 0; |
| 560 | } |
| 561 | |
| 562 | // Define the area where we can skip in-loop filtering, in case of cropping. |
| 563 | // |
| 564 | // 'Simple' filter reads two luma samples outside of the macroblock |
| 565 | // and filters one. It doesn't filter the chroma samples. Hence, we can |
| 566 | // avoid doing the in-loop filtering before crop_top/crop_left position. |
| 567 | // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
| 568 | // Means: there's a dependency chain that goes all the way up to the |
| 569 | // top-left corner of the picture (MB #0). We must filter all the previous |
| 570 | // macroblocks. |
| 571 | { |
| 572 | const int = kFilterExtraRows[dec->filter_type_]; |
| 573 | if (dec->filter_type_ == 2) { |
| 574 | // For complex filter, we need to preserve the dependency chain. |
| 575 | dec->tl_mb_x_ = 0; |
| 576 | dec->tl_mb_y_ = 0; |
| 577 | } else { |
| 578 | // For simple filter, we can filter only the cropped region. |
| 579 | // We include 'extra_pixels' on the other side of the boundary, since |
| 580 | // vertical or horizontal filtering of the previous macroblock can |
| 581 | // modify some abutting pixels. |
| 582 | dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; |
| 583 | dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; |
| 584 | if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; |
| 585 | if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; |
| 586 | } |
| 587 | // We need some 'extra' pixels on the right/bottom. |
| 588 | dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; |
| 589 | dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; |
| 590 | if (dec->br_mb_x_ > dec->mb_w_) { |
| 591 | dec->br_mb_x_ = dec->mb_w_; |
| 592 | } |
| 593 | if (dec->br_mb_y_ > dec->mb_h_) { |
| 594 | dec->br_mb_y_ = dec->mb_h_; |
| 595 | } |
| 596 | } |
| 597 | PrecomputeFilterStrengths(dec); |
| 598 | return VP8_STATUS_OK; |
| 599 | } |
| 600 | |
| 601 | int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
| 602 | int ok = 1; |
| 603 | if (dec->mt_method_ > 0) { |
| 604 | ok = WebPGetWorkerInterface()->Sync(&dec->worker_); |
| 605 | } |
| 606 | |
| 607 | if (io->teardown != NULL) { |
| 608 | io->teardown(io); |
| 609 | } |
| 610 | return ok; |
| 611 | } |
| 612 | |
| 613 | //------------------------------------------------------------------------------ |
| 614 | // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. |
| 615 | // |
| 616 | // Reason is: the deblocking filter cannot deblock the bottom horizontal edges |
| 617 | // immediately, and needs to wait for first few rows of the next macroblock to |
| 618 | // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending |
| 619 | // on strength). |
| 620 | // With two threads, the vertical positions of the rows being decoded are: |
| 621 | // Decode: [ 0..15][16..31][32..47][48..63][64..79][... |
| 622 | // Deblock: [ 0..11][12..27][28..43][44..59][... |
| 623 | // If we use two threads and two caches of 16 pixels, the sequence would be: |
| 624 | // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... |
| 625 | // Deblock: [ 0..11][12..27!!][-4..11][12..27][... |
| 626 | // The problem occurs during row [12..15!!] that both the decoding and |
| 627 | // deblocking threads are writing simultaneously. |
| 628 | // With 3 cache lines, one get a safe write pattern: |
| 629 | // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. |
| 630 | // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... |
| 631 | // Note that multi-threaded output _without_ deblocking can make use of two |
| 632 | // cache lines of 16 pixels only, since there's no lagging behind. The decoding |
| 633 | // and output process have non-concurrent writing: |
| 634 | // Decode: [ 0..15][16..31][ 0..15][16..31][... |
| 635 | // io->put: [ 0..15][16..31][ 0..15][... |
| 636 | |
| 637 | #define MT_CACHE_LINES 3 |
| 638 | #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case |
| 639 | |
| 640 | // Initialize multi/single-thread worker |
| 641 | static int InitThreadContext(VP8Decoder* const dec) { |
| 642 | dec->cache_id_ = 0; |
| 643 | if (dec->mt_method_ > 0) { |
| 644 | WebPWorker* const worker = &dec->worker_; |
| 645 | if (!WebPGetWorkerInterface()->Reset(worker)) { |
| 646 | return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| 647 | "thread initialization failed." ); |
| 648 | } |
| 649 | worker->data1 = dec; |
| 650 | worker->data2 = (void*)&dec->thread_ctx_.io_; |
| 651 | worker->hook = FinishRow; |
| 652 | dec->num_caches_ = |
| 653 | (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; |
| 654 | } else { |
| 655 | dec->num_caches_ = ST_CACHE_LINES; |
| 656 | } |
| 657 | return 1; |
| 658 | } |
| 659 | |
| 660 | int VP8GetThreadMethod(const WebPDecoderOptions* const options, |
| 661 | const WebPHeaderStructure* const , |
| 662 | int width, int height) { |
| 663 | if (options == NULL || options->use_threads == 0) { |
| 664 | return 0; |
| 665 | } |
| 666 | (void)headers; |
| 667 | (void)width; |
| 668 | (void)height; |
| 669 | assert(headers == NULL || !headers->is_lossless); |
| 670 | #if defined(WEBP_USE_THREAD) |
| 671 | if (width >= MIN_WIDTH_FOR_THREADS) return 2; |
| 672 | #endif |
| 673 | return 0; |
| 674 | } |
| 675 | |
| 676 | #undef MT_CACHE_LINES |
| 677 | #undef ST_CACHE_LINES |
| 678 | |
| 679 | //------------------------------------------------------------------------------ |
| 680 | // Memory setup |
| 681 | |
| 682 | static int AllocateMemory(VP8Decoder* const dec) { |
| 683 | const int num_caches = dec->num_caches_; |
| 684 | const int mb_w = dec->mb_w_; |
| 685 | // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
| 686 | const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
| 687 | const size_t top_size = sizeof(VP8TopSamples) * mb_w; |
| 688 | const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
| 689 | const size_t f_info_size = |
| 690 | (dec->filter_type_ > 0) ? |
| 691 | mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) |
| 692 | : 0; |
| 693 | const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
| 694 | const size_t mb_data_size = |
| 695 | (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); |
| 696 | const size_t cache_height = (16 * num_caches |
| 697 | + kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
| 698 | const size_t cache_size = top_size * cache_height; |
| 699 | // alpha_size is the only one that scales as width x height. |
| 700 | const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? |
| 701 | (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
| 702 | const uint64_t needed = (uint64_t)intra_pred_mode_size |
| 703 | + top_size + mb_info_size + f_info_size |
| 704 | + yuv_size + mb_data_size |
| 705 | + cache_size + alpha_size + WEBP_ALIGN_CST; |
| 706 | uint8_t* mem; |
| 707 | |
| 708 | if (!CheckSizeOverflow(needed)) return 0; // check for overflow |
| 709 | if (needed > dec->mem_size_) { |
| 710 | WebPSafeFree(dec->mem_); |
| 711 | dec->mem_size_ = 0; |
| 712 | dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); |
| 713 | if (dec->mem_ == NULL) { |
| 714 | return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| 715 | "no memory during frame initialization." ); |
| 716 | } |
| 717 | // down-cast is ok, thanks to WebPSafeMalloc() above. |
| 718 | dec->mem_size_ = (size_t)needed; |
| 719 | } |
| 720 | |
| 721 | mem = (uint8_t*)dec->mem_; |
| 722 | dec->intra_t_ = mem; |
| 723 | mem += intra_pred_mode_size; |
| 724 | |
| 725 | dec->yuv_t_ = (VP8TopSamples*)mem; |
| 726 | mem += top_size; |
| 727 | |
| 728 | dec->mb_info_ = ((VP8MB*)mem) + 1; |
| 729 | mem += mb_info_size; |
| 730 | |
| 731 | dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; |
| 732 | mem += f_info_size; |
| 733 | dec->thread_ctx_.id_ = 0; |
| 734 | dec->thread_ctx_.f_info_ = dec->f_info_; |
| 735 | if (dec->filter_type_ > 0 && dec->mt_method_ > 0) { |
| 736 | // secondary cache line. The deblocking process need to make use of the |
| 737 | // filtering strength from previous macroblock row, while the new ones |
| 738 | // are being decoded in parallel. We'll just swap the pointers. |
| 739 | dec->thread_ctx_.f_info_ += mb_w; |
| 740 | } |
| 741 | |
| 742 | mem = (uint8_t*)WEBP_ALIGN(mem); |
| 743 | assert((yuv_size & WEBP_ALIGN_CST) == 0); |
| 744 | dec->yuv_b_ = mem; |
| 745 | mem += yuv_size; |
| 746 | |
| 747 | dec->mb_data_ = (VP8MBData*)mem; |
| 748 | dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; |
| 749 | if (dec->mt_method_ == 2) { |
| 750 | dec->thread_ctx_.mb_data_ += mb_w; |
| 751 | } |
| 752 | mem += mb_data_size; |
| 753 | |
| 754 | dec->cache_y_stride_ = 16 * mb_w; |
| 755 | dec->cache_uv_stride_ = 8 * mb_w; |
| 756 | { |
| 757 | const int = kFilterExtraRows[dec->filter_type_]; |
| 758 | const int = extra_rows * dec->cache_y_stride_; |
| 759 | const int = (extra_rows / 2) * dec->cache_uv_stride_; |
| 760 | dec->cache_y_ = mem + extra_y; |
| 761 | dec->cache_u_ = dec->cache_y_ |
| 762 | + 16 * num_caches * dec->cache_y_stride_ + extra_uv; |
| 763 | dec->cache_v_ = dec->cache_u_ |
| 764 | + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; |
| 765 | dec->cache_id_ = 0; |
| 766 | } |
| 767 | mem += cache_size; |
| 768 | |
| 769 | // alpha plane |
| 770 | dec->alpha_plane_ = alpha_size ? mem : NULL; |
| 771 | mem += alpha_size; |
| 772 | assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); |
| 773 | |
| 774 | // note: left/top-info is initialized once for all. |
| 775 | memset(dec->mb_info_ - 1, 0, mb_info_size); |
| 776 | VP8InitScanline(dec); // initialize left too. |
| 777 | |
| 778 | // initialize top |
| 779 | memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
| 780 | |
| 781 | return 1; |
| 782 | } |
| 783 | |
| 784 | static void InitIo(VP8Decoder* const dec, VP8Io* io) { |
| 785 | // prepare 'io' |
| 786 | io->mb_y = 0; |
| 787 | io->y = dec->cache_y_; |
| 788 | io->u = dec->cache_u_; |
| 789 | io->v = dec->cache_v_; |
| 790 | io->y_stride = dec->cache_y_stride_; |
| 791 | io->uv_stride = dec->cache_uv_stride_; |
| 792 | io->a = NULL; |
| 793 | } |
| 794 | |
| 795 | int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) { |
| 796 | if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. |
| 797 | if (!AllocateMemory(dec)) return 0; |
| 798 | InitIo(dec, io); |
| 799 | VP8DspInit(); // Init critical function pointers and look-up tables. |
| 800 | return 1; |
| 801 | } |
| 802 | |
| 803 | //------------------------------------------------------------------------------ |
| 804 | |