| 1 | // Copyright 2016 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // SSE2 code common to several files. |
| 11 | // |
| 12 | // Author: Vincent Rabaud (vrabaud@google.com) |
| 13 | |
| 14 | #ifndef WEBP_DSP_COMMON_SSE2_H_ |
| 15 | #define WEBP_DSP_COMMON_SSE2_H_ |
| 16 | |
| 17 | #ifdef __cplusplus |
| 18 | extern "C" { |
| 19 | #endif |
| 20 | |
| 21 | #if defined(WEBP_USE_SSE2) |
| 22 | |
| 23 | #include <emmintrin.h> |
| 24 | |
| 25 | //------------------------------------------------------------------------------ |
| 26 | // Quite useful macro for debugging. Left here for convenience. |
| 27 | |
| 28 | #if 0 |
| 29 | #include <stdio.h> |
| 30 | static WEBP_INLINE void PrintReg(const __m128i r, const char* const name, |
| 31 | int size) { |
| 32 | int n; |
| 33 | union { |
| 34 | __m128i r; |
| 35 | uint8_t i8[16]; |
| 36 | uint16_t i16[8]; |
| 37 | uint32_t i32[4]; |
| 38 | uint64_t i64[2]; |
| 39 | } tmp; |
| 40 | tmp.r = r; |
| 41 | fprintf(stderr, "%s\t: " , name); |
| 42 | if (size == 8) { |
| 43 | for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x " , tmp.i8[n]); |
| 44 | } else if (size == 16) { |
| 45 | for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x " , tmp.i16[n]); |
| 46 | } else if (size == 32) { |
| 47 | for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x " , tmp.i32[n]); |
| 48 | } else { |
| 49 | for (n = 0; n < 2; ++n) fprintf(stderr, "%.16lx " , tmp.i64[n]); |
| 50 | } |
| 51 | fprintf(stderr, "\n" ); |
| 52 | } |
| 53 | #endif |
| 54 | |
| 55 | //------------------------------------------------------------------------------ |
| 56 | // Math functions. |
| 57 | |
| 58 | // Return the sum of all the 8b in the register. |
| 59 | static WEBP_INLINE int VP8HorizontalAdd8b(const __m128i* const a) { |
| 60 | const __m128i zero = _mm_setzero_si128(); |
| 61 | const __m128i sad8x2 = _mm_sad_epu8(*a, zero); |
| 62 | // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| 63 | const __m128i sum = _mm_add_epi32(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| 64 | return _mm_cvtsi128_si32(sum); |
| 65 | } |
| 66 | |
| 67 | // Transpose two 4x4 16b matrices horizontally stored in registers. |
| 68 | static WEBP_INLINE void VP8Transpose_2_4x4_16b( |
| 69 | const __m128i* const in0, const __m128i* const in1, |
| 70 | const __m128i* const in2, const __m128i* const in3, __m128i* const out0, |
| 71 | __m128i* const out1, __m128i* const out2, __m128i* const out3) { |
| 72 | // Transpose the two 4x4. |
| 73 | // a00 a01 a02 a03 b00 b01 b02 b03 |
| 74 | // a10 a11 a12 a13 b10 b11 b12 b13 |
| 75 | // a20 a21 a22 a23 b20 b21 b22 b23 |
| 76 | // a30 a31 a32 a33 b30 b31 b32 b33 |
| 77 | const __m128i transpose0_0 = _mm_unpacklo_epi16(*in0, *in1); |
| 78 | const __m128i transpose0_1 = _mm_unpacklo_epi16(*in2, *in3); |
| 79 | const __m128i transpose0_2 = _mm_unpackhi_epi16(*in0, *in1); |
| 80 | const __m128i transpose0_3 = _mm_unpackhi_epi16(*in2, *in3); |
| 81 | // a00 a10 a01 a11 a02 a12 a03 a13 |
| 82 | // a20 a30 a21 a31 a22 a32 a23 a33 |
| 83 | // b00 b10 b01 b11 b02 b12 b03 b13 |
| 84 | // b20 b30 b21 b31 b22 b32 b23 b33 |
| 85 | const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| 86 | const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| 87 | const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| 88 | const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| 89 | // a00 a10 a20 a30 a01 a11 a21 a31 |
| 90 | // b00 b10 b20 b30 b01 b11 b21 b31 |
| 91 | // a02 a12 a22 a32 a03 a13 a23 a33 |
| 92 | // b02 b12 a22 b32 b03 b13 b23 b33 |
| 93 | *out0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| 94 | *out1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| 95 | *out2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| 96 | *out3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| 97 | // a00 a10 a20 a30 b00 b10 b20 b30 |
| 98 | // a01 a11 a21 a31 b01 b11 b21 b31 |
| 99 | // a02 a12 a22 a32 b02 b12 b22 b32 |
| 100 | // a03 a13 a23 a33 b03 b13 b23 b33 |
| 101 | } |
| 102 | |
| 103 | //------------------------------------------------------------------------------ |
| 104 | // Channel mixing. |
| 105 | |
| 106 | // Function used several times in VP8PlanarTo24b. |
| 107 | // It samples the in buffer as follows: one every two unsigned char is stored |
| 108 | // at the beginning of the buffer, while the other half is stored at the end. |
| 109 | #define VP8PlanarTo24bHelper(IN, OUT) \ |
| 110 | do { \ |
| 111 | const __m128i v_mask = _mm_set1_epi16(0x00ff); \ |
| 112 | /* Take one every two upper 8b values.*/ \ |
| 113 | (OUT##0) = _mm_packus_epi16(_mm_and_si128((IN##0), v_mask), \ |
| 114 | _mm_and_si128((IN##1), v_mask)); \ |
| 115 | (OUT##1) = _mm_packus_epi16(_mm_and_si128((IN##2), v_mask), \ |
| 116 | _mm_and_si128((IN##3), v_mask)); \ |
| 117 | (OUT##2) = _mm_packus_epi16(_mm_and_si128((IN##4), v_mask), \ |
| 118 | _mm_and_si128((IN##5), v_mask)); \ |
| 119 | /* Take one every two lower 8b values.*/ \ |
| 120 | (OUT##3) = _mm_packus_epi16(_mm_srli_epi16((IN##0), 8), \ |
| 121 | _mm_srli_epi16((IN##1), 8)); \ |
| 122 | (OUT##4) = _mm_packus_epi16(_mm_srli_epi16((IN##2), 8), \ |
| 123 | _mm_srli_epi16((IN##3), 8)); \ |
| 124 | (OUT##5) = _mm_packus_epi16(_mm_srli_epi16((IN##4), 8), \ |
| 125 | _mm_srli_epi16((IN##5), 8)); \ |
| 126 | } while (0) |
| 127 | |
| 128 | // Pack the planar buffers |
| 129 | // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... |
| 130 | // triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... |
| 131 | static WEBP_INLINE void VP8PlanarTo24b_SSE2( |
| 132 | __m128i* const in0, __m128i* const in1, __m128i* const in2, |
| 133 | __m128i* const in3, __m128i* const in4, __m128i* const in5) { |
| 134 | // The input is 6 registers of sixteen 8b but for the sake of explanation, |
| 135 | // let's take 6 registers of four 8b values. |
| 136 | // To pack, we will keep taking one every two 8b integer and move it |
| 137 | // around as follows: |
| 138 | // Input: |
| 139 | // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 |
| 140 | // Split the 6 registers in two sets of 3 registers: the first set as the even |
| 141 | // 8b bytes, the second the odd ones: |
| 142 | // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 |
| 143 | // Repeat the same permutations twice more: |
| 144 | // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 |
| 145 | // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 |
| 146 | __m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
| 147 | VP8PlanarTo24bHelper(*in, tmp); |
| 148 | VP8PlanarTo24bHelper(tmp, *in); |
| 149 | VP8PlanarTo24bHelper(*in, tmp); |
| 150 | // We need to do it two more times than the example as we have sixteen bytes. |
| 151 | { |
| 152 | __m128i out0, out1, out2, out3, out4, out5; |
| 153 | VP8PlanarTo24bHelper(tmp, out); |
| 154 | VP8PlanarTo24bHelper(out, *in); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | #undef VP8PlanarTo24bHelper |
| 159 | |
| 160 | // Convert four packed four-channel buffers like argbargbargbargb... into the |
| 161 | // split channels aaaaa ... rrrr ... gggg .... bbbbb ...... |
| 162 | static WEBP_INLINE void VP8L32bToPlanar_SSE2(__m128i* const in0, |
| 163 | __m128i* const in1, |
| 164 | __m128i* const in2, |
| 165 | __m128i* const in3) { |
| 166 | // Column-wise transpose. |
| 167 | const __m128i A0 = _mm_unpacklo_epi8(*in0, *in1); |
| 168 | const __m128i A1 = _mm_unpackhi_epi8(*in0, *in1); |
| 169 | const __m128i A2 = _mm_unpacklo_epi8(*in2, *in3); |
| 170 | const __m128i A3 = _mm_unpackhi_epi8(*in2, *in3); |
| 171 | const __m128i B0 = _mm_unpacklo_epi8(A0, A1); |
| 172 | const __m128i B1 = _mm_unpackhi_epi8(A0, A1); |
| 173 | const __m128i B2 = _mm_unpacklo_epi8(A2, A3); |
| 174 | const __m128i B3 = _mm_unpackhi_epi8(A2, A3); |
| 175 | // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0 |
| 176 | // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0 |
| 177 | const __m128i C0 = _mm_unpacklo_epi8(B0, B1); |
| 178 | const __m128i C1 = _mm_unpackhi_epi8(B0, B1); |
| 179 | const __m128i C2 = _mm_unpacklo_epi8(B2, B3); |
| 180 | const __m128i C3 = _mm_unpackhi_epi8(B2, B3); |
| 181 | // Gather the channels. |
| 182 | *in0 = _mm_unpackhi_epi64(C1, C3); |
| 183 | *in1 = _mm_unpacklo_epi64(C1, C3); |
| 184 | *in2 = _mm_unpackhi_epi64(C0, C2); |
| 185 | *in3 = _mm_unpacklo_epi64(C0, C2); |
| 186 | } |
| 187 | |
| 188 | #endif // WEBP_USE_SSE2 |
| 189 | |
| 190 | #ifdef __cplusplus |
| 191 | } // extern "C" |
| 192 | #endif |
| 193 | |
| 194 | #endif // WEBP_DSP_COMMON_SSE2_H_ |
| 195 | |