1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // NEON variant of methods for lossless decoder |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "src/dsp/dsp.h" |
15 | |
16 | #if defined(WEBP_USE_NEON) |
17 | |
18 | #include <arm_neon.h> |
19 | |
20 | #include "src/dsp/lossless.h" |
21 | #include "src/dsp/neon.h" |
22 | |
23 | //------------------------------------------------------------------------------ |
24 | // Colorspace conversion functions |
25 | |
26 | #if !defined(WORK_AROUND_GCC) |
27 | // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for |
28 | // gcc-4.8.x at least. |
29 | static void ConvertBGRAToRGBA_NEON(const uint32_t* src, |
30 | int num_pixels, uint8_t* dst) { |
31 | const uint32_t* const end = src + (num_pixels & ~15); |
32 | for (; src < end; src += 16) { |
33 | uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
34 | // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) |
35 | const uint8x16_t tmp = pixel.val[0]; |
36 | pixel.val[0] = pixel.val[2]; |
37 | pixel.val[2] = tmp; |
38 | vst4q_u8(dst, pixel); |
39 | dst += 64; |
40 | } |
41 | VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs |
42 | } |
43 | |
44 | static void ConvertBGRAToBGR_NEON(const uint32_t* src, |
45 | int num_pixels, uint8_t* dst) { |
46 | const uint32_t* const end = src + (num_pixels & ~15); |
47 | for (; src < end; src += 16) { |
48 | const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
49 | const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; |
50 | vst3q_u8(dst, tmp); |
51 | dst += 48; |
52 | } |
53 | VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs |
54 | } |
55 | |
56 | static void ConvertBGRAToRGB_NEON(const uint32_t* src, |
57 | int num_pixels, uint8_t* dst) { |
58 | const uint32_t* const end = src + (num_pixels & ~15); |
59 | for (; src < end; src += 16) { |
60 | const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
61 | const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; |
62 | vst3q_u8(dst, tmp); |
63 | dst += 48; |
64 | } |
65 | VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs |
66 | } |
67 | |
68 | #else // WORK_AROUND_GCC |
69 | |
70 | // gcc-4.6.0 fallback |
71 | |
72 | static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; |
73 | |
74 | static void ConvertBGRAToRGBA_NEON(const uint32_t* src, |
75 | int num_pixels, uint8_t* dst) { |
76 | const uint32_t* const end = src + (num_pixels & ~1); |
77 | const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); |
78 | for (; src < end; src += 2) { |
79 | const uint8x8_t pixels = vld1_u8((uint8_t*)src); |
80 | vst1_u8(dst, vtbl1_u8(pixels, shuffle)); |
81 | dst += 8; |
82 | } |
83 | VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs |
84 | } |
85 | |
86 | static const uint8_t kBGRShuffle[3][8] = { |
87 | { 0, 1, 2, 4, 5, 6, 8, 9 }, |
88 | { 10, 12, 13, 14, 16, 17, 18, 20 }, |
89 | { 21, 22, 24, 25, 26, 28, 29, 30 } |
90 | }; |
91 | |
92 | static void ConvertBGRAToBGR_NEON(const uint32_t* src, |
93 | int num_pixels, uint8_t* dst) { |
94 | const uint32_t* const end = src + (num_pixels & ~7); |
95 | const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); |
96 | const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); |
97 | const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); |
98 | for (; src < end; src += 8) { |
99 | uint8x8x4_t pixels; |
100 | INIT_VECTOR4(pixels, |
101 | vld1_u8((const uint8_t*)(src + 0)), |
102 | vld1_u8((const uint8_t*)(src + 2)), |
103 | vld1_u8((const uint8_t*)(src + 4)), |
104 | vld1_u8((const uint8_t*)(src + 6))); |
105 | vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); |
106 | vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); |
107 | vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); |
108 | dst += 8 * 3; |
109 | } |
110 | VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs |
111 | } |
112 | |
113 | static const uint8_t kRGBShuffle[3][8] = { |
114 | { 2, 1, 0, 6, 5, 4, 10, 9 }, |
115 | { 8, 14, 13, 12, 18, 17, 16, 22 }, |
116 | { 21, 20, 26, 25, 24, 30, 29, 28 } |
117 | }; |
118 | |
119 | static void ConvertBGRAToRGB_NEON(const uint32_t* src, |
120 | int num_pixels, uint8_t* dst) { |
121 | const uint32_t* const end = src + (num_pixels & ~7); |
122 | const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); |
123 | const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); |
124 | const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); |
125 | for (; src < end; src += 8) { |
126 | uint8x8x4_t pixels; |
127 | INIT_VECTOR4(pixels, |
128 | vld1_u8((const uint8_t*)(src + 0)), |
129 | vld1_u8((const uint8_t*)(src + 2)), |
130 | vld1_u8((const uint8_t*)(src + 4)), |
131 | vld1_u8((const uint8_t*)(src + 6))); |
132 | vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); |
133 | vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); |
134 | vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); |
135 | dst += 8 * 3; |
136 | } |
137 | VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs |
138 | } |
139 | |
140 | #endif // !WORK_AROUND_GCC |
141 | |
142 | //------------------------------------------------------------------------------ |
143 | // Predictor Transform |
144 | |
145 | #define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN))) |
146 | #define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN))) |
147 | #define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN))) |
148 | #define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN))) |
149 | #define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0); |
150 | #define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0); |
151 | #define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN))); |
152 | #define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D |
153 | |
154 | static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) { |
155 | const uint8x8_t A0 = LOAD_U32_AS_U8(a0); |
156 | const uint8x8_t A1 = LOAD_U32_AS_U8(a1); |
157 | return vhadd_u8(A0, A1); |
158 | } |
159 | |
160 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0, |
161 | uint32_t c1, |
162 | uint32_t c2) { |
163 | const uint8x8_t avg = Average2_u8_NEON(c0, c1); |
164 | // Remove one to c2 when bigger than avg. |
165 | const uint8x8_t C2 = LOAD_U32_AS_U8(c2); |
166 | const uint8x8_t cmp = vcgt_u8(C2, avg); |
167 | const uint8x8_t C2_1 = vadd_u8(C2, cmp); |
168 | // Compute half of the difference between avg and c2. |
169 | const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1)); |
170 | // Compute the sum with avg and saturate. |
171 | const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg)); |
172 | const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); |
173 | const uint32_t output = GET_U8_AS_U32(res); |
174 | return output; |
175 | } |
176 | |
177 | static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) { |
178 | const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1); |
179 | const uint32_t avg = GET_U8_AS_U32(avg_u8x8); |
180 | return avg; |
181 | } |
182 | |
183 | static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1, |
184 | uint32_t a2) { |
185 | const uint8x8_t avg0 = Average2_u8_NEON(a0, a2); |
186 | const uint8x8_t A1 = LOAD_U32_AS_U8(a1); |
187 | const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1)); |
188 | return avg; |
189 | } |
190 | |
191 | static uint32_t Predictor5_NEON(const uint32_t* const left, |
192 | const uint32_t* const top) { |
193 | return Average3_NEON(*left, top[0], top[1]); |
194 | } |
195 | static uint32_t Predictor6_NEON(const uint32_t* const left, |
196 | const uint32_t* const top) { |
197 | return Average2_NEON(*left, top[-1]); |
198 | } |
199 | static uint32_t Predictor7_NEON(const uint32_t* const left, |
200 | const uint32_t* const top) { |
201 | return Average2_NEON(*left, top[0]); |
202 | } |
203 | static uint32_t Predictor13_NEON(const uint32_t* const left, |
204 | const uint32_t* const top) { |
205 | return ClampedAddSubtractHalf_NEON(*left, top[0], top[-1]); |
206 | } |
207 | |
208 | // Batch versions of those functions. |
209 | |
210 | // Predictor0: ARGB_BLACK. |
211 | static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper, |
212 | int num_pixels, uint32_t* out) { |
213 | int i; |
214 | const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK)); |
215 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
216 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
217 | const uint8x16_t res = vaddq_u8(src, black); |
218 | STOREQ_U8_AS_U32P(&out[i], res); |
219 | } |
220 | VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); |
221 | } |
222 | |
223 | // Predictor1: left. |
224 | static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper, |
225 | int num_pixels, uint32_t* out) { |
226 | int i; |
227 | const uint8x16_t zero = LOADQ_U32_AS_U8(0); |
228 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
229 | // a | b | c | d |
230 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
231 | // 0 | a | b | c |
232 | const uint8x16_t shift0 = vextq_u8(zero, src, 12); |
233 | // a | a + b | b + c | c + d |
234 | const uint8x16_t sum0 = vaddq_u8(src, shift0); |
235 | // 0 | 0 | a | a + b |
236 | const uint8x16_t shift1 = vextq_u8(zero, sum0, 8); |
237 | // a | a + b | a + b + c | a + b + c + d |
238 | const uint8x16_t sum1 = vaddq_u8(sum0, shift1); |
239 | const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]); |
240 | const uint8x16_t res = vaddq_u8(sum1, prev); |
241 | STOREQ_U8_AS_U32P(&out[i], res); |
242 | } |
243 | VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
244 | } |
245 | |
246 | // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
247 | // per 8 bit channel. |
248 | #define GENERATE_PREDICTOR_1(X, IN) \ |
249 | static void PredictorAdd##X##_NEON(const uint32_t* in, \ |
250 | const uint32_t* upper, int num_pixels, \ |
251 | uint32_t* out) { \ |
252 | int i; \ |
253 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
254 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ |
255 | const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \ |
256 | const uint8x16_t res = vaddq_u8(src, other); \ |
257 | STOREQ_U8_AS_U32P(&out[i], res); \ |
258 | } \ |
259 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
260 | } |
261 | // Predictor2: Top. |
262 | GENERATE_PREDICTOR_1(2, upper[i]) |
263 | // Predictor3: Top-right. |
264 | GENERATE_PREDICTOR_1(3, upper[i + 1]) |
265 | // Predictor4: Top-left. |
266 | GENERATE_PREDICTOR_1(4, upper[i - 1]) |
267 | #undef GENERATE_PREDICTOR_1 |
268 | |
269 | // Predictor5: average(average(left, TR), T) |
270 | #define DO_PRED5(LANE) do { \ |
271 | const uint8x16_t avgLTR = vhaddq_u8(L, TR); \ |
272 | const uint8x16_t avg = vhaddq_u8(avgLTR, T); \ |
273 | const uint8x16_t res = vaddq_u8(avg, src); \ |
274 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
275 | L = ROTATE32_LEFT(res); \ |
276 | } while (0) |
277 | |
278 | static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper, |
279 | int num_pixels, uint32_t* out) { |
280 | int i; |
281 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
282 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
283 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
284 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]); |
285 | const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); |
286 | DO_PRED5(0); |
287 | DO_PRED5(1); |
288 | DO_PRED5(2); |
289 | DO_PRED5(3); |
290 | } |
291 | VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i); |
292 | } |
293 | #undef DO_PRED5 |
294 | |
295 | #define DO_PRED67(LANE) do { \ |
296 | const uint8x16_t avg = vhaddq_u8(L, top); \ |
297 | const uint8x16_t res = vaddq_u8(avg, src); \ |
298 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
299 | L = ROTATE32_LEFT(res); \ |
300 | } while (0) |
301 | |
302 | // Predictor6: average(left, TL) |
303 | static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper, |
304 | int num_pixels, uint32_t* out) { |
305 | int i; |
306 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
307 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
308 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
309 | const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]); |
310 | DO_PRED67(0); |
311 | DO_PRED67(1); |
312 | DO_PRED67(2); |
313 | DO_PRED67(3); |
314 | } |
315 | VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i); |
316 | } |
317 | |
318 | // Predictor7: average(left, T) |
319 | static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper, |
320 | int num_pixels, uint32_t* out) { |
321 | int i; |
322 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
323 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
324 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
325 | const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]); |
326 | DO_PRED67(0); |
327 | DO_PRED67(1); |
328 | DO_PRED67(2); |
329 | DO_PRED67(3); |
330 | } |
331 | VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i); |
332 | } |
333 | #undef DO_PRED67 |
334 | |
335 | #define GENERATE_PREDICTOR_2(X, IN) \ |
336 | static void PredictorAdd##X##_NEON(const uint32_t* in, \ |
337 | const uint32_t* upper, int num_pixels, \ |
338 | uint32_t* out) { \ |
339 | int i; \ |
340 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
341 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ |
342 | const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \ |
343 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \ |
344 | const uint8x16_t avg = vhaddq_u8(T, Tother); \ |
345 | const uint8x16_t res = vaddq_u8(avg, src); \ |
346 | STOREQ_U8_AS_U32P(&out[i], res); \ |
347 | } \ |
348 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
349 | } |
350 | // Predictor8: average TL T. |
351 | GENERATE_PREDICTOR_2(8, upper[i - 1]) |
352 | // Predictor9: average T TR. |
353 | GENERATE_PREDICTOR_2(9, upper[i + 1]) |
354 | #undef GENERATE_PREDICTOR_2 |
355 | |
356 | // Predictor10: average of (average of (L,TL), average of (T, TR)). |
357 | #define DO_PRED10(LANE) do { \ |
358 | const uint8x16_t avgLTL = vhaddq_u8(L, TL); \ |
359 | const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \ |
360 | const uint8x16_t res = vaddq_u8(avg, src); \ |
361 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
362 | L = ROTATE32_LEFT(res); \ |
363 | } while (0) |
364 | |
365 | static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper, |
366 | int num_pixels, uint32_t* out) { |
367 | int i; |
368 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
369 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
370 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
371 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
372 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
373 | const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); |
374 | const uint8x16_t avgTTR = vhaddq_u8(T, TR); |
375 | DO_PRED10(0); |
376 | DO_PRED10(1); |
377 | DO_PRED10(2); |
378 | DO_PRED10(3); |
379 | } |
380 | VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
381 | } |
382 | #undef DO_PRED10 |
383 | |
384 | // Predictor11: select. |
385 | #define DO_PRED11(LANE) do { \ |
386 | const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \ |
387 | const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \ |
388 | const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \ |
389 | const uint32x4_t pa = vpaddlq_u16(sum_LTL); \ |
390 | const uint32x4_t mask = vcleq_u32(pa, pb); \ |
391 | const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \ |
392 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
393 | L = ROTATE32_LEFT(res); \ |
394 | } while (0) |
395 | |
396 | static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper, |
397 | int num_pixels, uint32_t* out) { |
398 | int i; |
399 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
400 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
401 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
402 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
403 | const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL| |
404 | const uint16x8_t sum_TTL = vpaddlq_u8(pTTL); |
405 | const uint32x4_t pb = vpaddlq_u16(sum_TTL); |
406 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
407 | const uint8x16_t sumTin = vaddq_u8(T, src); // in + T |
408 | DO_PRED11(0); |
409 | DO_PRED11(1); |
410 | DO_PRED11(2); |
411 | DO_PRED11(3); |
412 | } |
413 | VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
414 | } |
415 | #undef DO_PRED11 |
416 | |
417 | // Predictor12: ClampedAddSubtractFull. |
418 | #define DO_PRED12(DIFF, LANE) do { \ |
419 | const uint8x8_t pred = \ |
420 | vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \ |
421 | const uint8x8_t res = \ |
422 | vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \ |
423 | const uint16x8_t res16 = vmovl_u8(res); \ |
424 | vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ |
425 | /* rotate in the left predictor for next iteration */ \ |
426 | L = vextq_u16(res16, res16, 4); \ |
427 | } while (0) |
428 | |
429 | static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper, |
430 | int num_pixels, uint32_t* out) { |
431 | int i; |
432 | uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1])); |
433 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
434 | // load four pixels of source |
435 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
436 | // precompute the difference T - TL once for all, stored as s16 |
437 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
438 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
439 | const int16x8_t diff_lo = |
440 | vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL))); |
441 | const int16x8_t diff_hi = |
442 | vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL))); |
443 | // loop over the four reconstructed pixels |
444 | DO_PRED12(diff_lo, 0); |
445 | DO_PRED12(diff_lo, 1); |
446 | DO_PRED12(diff_hi, 2); |
447 | DO_PRED12(diff_hi, 3); |
448 | } |
449 | VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
450 | } |
451 | #undef DO_PRED12 |
452 | |
453 | // Predictor13: ClampedAddSubtractHalf |
454 | #define DO_PRED13(LANE, LOW_OR_HI) do { \ |
455 | const uint8x16_t avg = vhaddq_u8(L, T); \ |
456 | const uint8x16_t cmp = vcgtq_u8(TL, avg); \ |
457 | const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \ |
458 | /* Compute half of the difference between avg and TL'. */ \ |
459 | const int8x8_t diff_avg = \ |
460 | vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \ |
461 | /* Compute the sum with avg and saturate. */ \ |
462 | const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \ |
463 | const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \ |
464 | const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \ |
465 | const uint8x16_t res2 = vcombine_u8(res, res); \ |
466 | vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ |
467 | L = ROTATE32_LEFT(res2); \ |
468 | } while (0) |
469 | |
470 | static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper, |
471 | int num_pixels, uint32_t* out) { |
472 | int i; |
473 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
474 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
475 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
476 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
477 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
478 | DO_PRED13(0, vget_low_u8); |
479 | DO_PRED13(1, vget_low_u8); |
480 | DO_PRED13(2, vget_high_u8); |
481 | DO_PRED13(3, vget_high_u8); |
482 | } |
483 | VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i); |
484 | } |
485 | #undef DO_PRED13 |
486 | |
487 | #undef LOAD_U32_AS_U8 |
488 | #undef LOAD_U32P_AS_U8 |
489 | #undef LOADQ_U32_AS_U8 |
490 | #undef LOADQ_U32P_AS_U8 |
491 | #undef GET_U8_AS_U32 |
492 | #undef GETQ_U8_AS_U32 |
493 | #undef STOREQ_U8_AS_U32P |
494 | #undef ROTATE32_LEFT |
495 | |
496 | //------------------------------------------------------------------------------ |
497 | // Subtract-Green Transform |
498 | |
499 | // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use |
500 | // non-standard versions there. |
501 | #if defined(__APPLE__) && WEBP_AARCH64 && \ |
502 | defined(__apple_build_version__) && (__apple_build_version__< 6020037) |
503 | #define USE_VTBLQ |
504 | #endif |
505 | |
506 | #ifdef USE_VTBLQ |
507 | // 255 = byte will be zeroed |
508 | static const uint8_t kGreenShuffle[16] = { |
509 | 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 |
510 | }; |
511 | |
512 | static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, |
513 | const uint8x16_t shuffle) { |
514 | return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), |
515 | vtbl1q_u8(argb, vget_high_u8(shuffle))); |
516 | } |
517 | #else // !USE_VTBLQ |
518 | // 255 = byte will be zeroed |
519 | static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; |
520 | |
521 | static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, |
522 | const uint8x8_t shuffle) { |
523 | return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), |
524 | vtbl1_u8(vget_high_u8(argb), shuffle)); |
525 | } |
526 | #endif // USE_VTBLQ |
527 | |
528 | static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels, |
529 | uint32_t* dst) { |
530 | const uint32_t* const end = src + (num_pixels & ~3); |
531 | #ifdef USE_VTBLQ |
532 | const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); |
533 | #else |
534 | const uint8x8_t shuffle = vld1_u8(kGreenShuffle); |
535 | #endif |
536 | for (; src < end; src += 4, dst += 4) { |
537 | const uint8x16_t argb = vld1q_u8((const uint8_t*)src); |
538 | const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); |
539 | vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens)); |
540 | } |
541 | // fallthrough and finish off with plain-C |
542 | VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst); |
543 | } |
544 | |
545 | //------------------------------------------------------------------------------ |
546 | // Color Transform |
547 | |
548 | static void TransformColorInverse_NEON(const VP8LMultipliers* const m, |
549 | const uint32_t* const src, |
550 | int num_pixels, uint32_t* dst) { |
551 | // sign-extended multiplying constants, pre-shifted by 6. |
552 | #define CST(X) (((int16_t)(m->X << 8)) >> 6) |
553 | const int16_t rb[8] = { |
554 | CST(green_to_blue_), CST(green_to_red_), |
555 | CST(green_to_blue_), CST(green_to_red_), |
556 | CST(green_to_blue_), CST(green_to_red_), |
557 | CST(green_to_blue_), CST(green_to_red_) |
558 | }; |
559 | const int16x8_t mults_rb = vld1q_s16(rb); |
560 | const int16_t b2[8] = { |
561 | 0, CST(red_to_blue_), 0, CST(red_to_blue_), |
562 | 0, CST(red_to_blue_), 0, CST(red_to_blue_), |
563 | }; |
564 | const int16x8_t mults_b2 = vld1q_s16(b2); |
565 | #undef CST |
566 | #ifdef USE_VTBLQ |
567 | static const uint8_t kg0g0[16] = { |
568 | 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 |
569 | }; |
570 | const uint8x16_t shuffle = vld1q_u8(kg0g0); |
571 | #else |
572 | static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; |
573 | const uint8x8_t shuffle = vld1_u8(k0g0g); |
574 | #endif |
575 | const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u); |
576 | int i; |
577 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
578 | const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i)); |
579 | const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag); |
580 | // 0 g 0 g |
581 | const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); |
582 | // x dr x db1 |
583 | const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); |
584 | // x r' x b' |
585 | const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in), |
586 | vreinterpretq_s8_s16(A)); |
587 | // r' 0 b' 0 |
588 | const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8); |
589 | // x db2 0 0 |
590 | const int16x8_t D = vqdmulhq_s16(C, mults_b2); |
591 | // 0 x db2 0 |
592 | const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8); |
593 | // r' x b'' 0 |
594 | const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E), |
595 | vreinterpretq_s8_s16(C)); |
596 | // 0 r' 0 b'' |
597 | const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8); |
598 | const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0); |
599 | vst1q_u32(dst + i, out); |
600 | } |
601 | // Fall-back to C-version for left-overs. |
602 | VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
603 | } |
604 | |
605 | #undef USE_VTBLQ |
606 | |
607 | //------------------------------------------------------------------------------ |
608 | // Entry point |
609 | |
610 | extern void VP8LDspInitNEON(void); |
611 | |
612 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) { |
613 | VP8LPredictors[5] = Predictor5_NEON; |
614 | VP8LPredictors[6] = Predictor6_NEON; |
615 | VP8LPredictors[7] = Predictor7_NEON; |
616 | VP8LPredictors[13] = Predictor13_NEON; |
617 | |
618 | VP8LPredictorsAdd[0] = PredictorAdd0_NEON; |
619 | VP8LPredictorsAdd[1] = PredictorAdd1_NEON; |
620 | VP8LPredictorsAdd[2] = PredictorAdd2_NEON; |
621 | VP8LPredictorsAdd[3] = PredictorAdd3_NEON; |
622 | VP8LPredictorsAdd[4] = PredictorAdd4_NEON; |
623 | VP8LPredictorsAdd[5] = PredictorAdd5_NEON; |
624 | VP8LPredictorsAdd[6] = PredictorAdd6_NEON; |
625 | VP8LPredictorsAdd[7] = PredictorAdd7_NEON; |
626 | VP8LPredictorsAdd[8] = PredictorAdd8_NEON; |
627 | VP8LPredictorsAdd[9] = PredictorAdd9_NEON; |
628 | VP8LPredictorsAdd[10] = PredictorAdd10_NEON; |
629 | VP8LPredictorsAdd[11] = PredictorAdd11_NEON; |
630 | VP8LPredictorsAdd[12] = PredictorAdd12_NEON; |
631 | VP8LPredictorsAdd[13] = PredictorAdd13_NEON; |
632 | |
633 | VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON; |
634 | VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON; |
635 | VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON; |
636 | |
637 | VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON; |
638 | VP8LTransformColorInverse = TransformColorInverse_NEON; |
639 | } |
640 | |
641 | #else // !WEBP_USE_NEON |
642 | |
643 | WEBP_DSP_INIT_STUB(VP8LDspInitNEON) |
644 | |
645 | #endif // WEBP_USE_NEON |
646 | |