| 1 | // Copyright 2014 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // NEON variant of methods for lossless decoder |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include "src/dsp/dsp.h" |
| 15 | |
| 16 | #if defined(WEBP_USE_NEON) |
| 17 | |
| 18 | #include <arm_neon.h> |
| 19 | |
| 20 | #include "src/dsp/lossless.h" |
| 21 | #include "src/dsp/neon.h" |
| 22 | |
| 23 | //------------------------------------------------------------------------------ |
| 24 | // Colorspace conversion functions |
| 25 | |
| 26 | #if !defined(WORK_AROUND_GCC) |
| 27 | // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for |
| 28 | // gcc-4.8.x at least. |
| 29 | static void ConvertBGRAToRGBA_NEON(const uint32_t* src, |
| 30 | int num_pixels, uint8_t* dst) { |
| 31 | const uint32_t* const end = src + (num_pixels & ~15); |
| 32 | for (; src < end; src += 16) { |
| 33 | uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
| 34 | // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) |
| 35 | const uint8x16_t tmp = pixel.val[0]; |
| 36 | pixel.val[0] = pixel.val[2]; |
| 37 | pixel.val[2] = tmp; |
| 38 | vst4q_u8(dst, pixel); |
| 39 | dst += 64; |
| 40 | } |
| 41 | VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs |
| 42 | } |
| 43 | |
| 44 | static void ConvertBGRAToBGR_NEON(const uint32_t* src, |
| 45 | int num_pixels, uint8_t* dst) { |
| 46 | const uint32_t* const end = src + (num_pixels & ~15); |
| 47 | for (; src < end; src += 16) { |
| 48 | const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
| 49 | const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; |
| 50 | vst3q_u8(dst, tmp); |
| 51 | dst += 48; |
| 52 | } |
| 53 | VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs |
| 54 | } |
| 55 | |
| 56 | static void ConvertBGRAToRGB_NEON(const uint32_t* src, |
| 57 | int num_pixels, uint8_t* dst) { |
| 58 | const uint32_t* const end = src + (num_pixels & ~15); |
| 59 | for (; src < end; src += 16) { |
| 60 | const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
| 61 | const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; |
| 62 | vst3q_u8(dst, tmp); |
| 63 | dst += 48; |
| 64 | } |
| 65 | VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs |
| 66 | } |
| 67 | |
| 68 | #else // WORK_AROUND_GCC |
| 69 | |
| 70 | // gcc-4.6.0 fallback |
| 71 | |
| 72 | static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; |
| 73 | |
| 74 | static void ConvertBGRAToRGBA_NEON(const uint32_t* src, |
| 75 | int num_pixels, uint8_t* dst) { |
| 76 | const uint32_t* const end = src + (num_pixels & ~1); |
| 77 | const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); |
| 78 | for (; src < end; src += 2) { |
| 79 | const uint8x8_t pixels = vld1_u8((uint8_t*)src); |
| 80 | vst1_u8(dst, vtbl1_u8(pixels, shuffle)); |
| 81 | dst += 8; |
| 82 | } |
| 83 | VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs |
| 84 | } |
| 85 | |
| 86 | static const uint8_t kBGRShuffle[3][8] = { |
| 87 | { 0, 1, 2, 4, 5, 6, 8, 9 }, |
| 88 | { 10, 12, 13, 14, 16, 17, 18, 20 }, |
| 89 | { 21, 22, 24, 25, 26, 28, 29, 30 } |
| 90 | }; |
| 91 | |
| 92 | static void ConvertBGRAToBGR_NEON(const uint32_t* src, |
| 93 | int num_pixels, uint8_t* dst) { |
| 94 | const uint32_t* const end = src + (num_pixels & ~7); |
| 95 | const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); |
| 96 | const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); |
| 97 | const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); |
| 98 | for (; src < end; src += 8) { |
| 99 | uint8x8x4_t pixels; |
| 100 | INIT_VECTOR4(pixels, |
| 101 | vld1_u8((const uint8_t*)(src + 0)), |
| 102 | vld1_u8((const uint8_t*)(src + 2)), |
| 103 | vld1_u8((const uint8_t*)(src + 4)), |
| 104 | vld1_u8((const uint8_t*)(src + 6))); |
| 105 | vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); |
| 106 | vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); |
| 107 | vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); |
| 108 | dst += 8 * 3; |
| 109 | } |
| 110 | VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs |
| 111 | } |
| 112 | |
| 113 | static const uint8_t kRGBShuffle[3][8] = { |
| 114 | { 2, 1, 0, 6, 5, 4, 10, 9 }, |
| 115 | { 8, 14, 13, 12, 18, 17, 16, 22 }, |
| 116 | { 21, 20, 26, 25, 24, 30, 29, 28 } |
| 117 | }; |
| 118 | |
| 119 | static void ConvertBGRAToRGB_NEON(const uint32_t* src, |
| 120 | int num_pixels, uint8_t* dst) { |
| 121 | const uint32_t* const end = src + (num_pixels & ~7); |
| 122 | const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); |
| 123 | const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); |
| 124 | const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); |
| 125 | for (; src < end; src += 8) { |
| 126 | uint8x8x4_t pixels; |
| 127 | INIT_VECTOR4(pixels, |
| 128 | vld1_u8((const uint8_t*)(src + 0)), |
| 129 | vld1_u8((const uint8_t*)(src + 2)), |
| 130 | vld1_u8((const uint8_t*)(src + 4)), |
| 131 | vld1_u8((const uint8_t*)(src + 6))); |
| 132 | vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); |
| 133 | vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); |
| 134 | vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); |
| 135 | dst += 8 * 3; |
| 136 | } |
| 137 | VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs |
| 138 | } |
| 139 | |
| 140 | #endif // !WORK_AROUND_GCC |
| 141 | |
| 142 | //------------------------------------------------------------------------------ |
| 143 | // Predictor Transform |
| 144 | |
| 145 | #define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN))) |
| 146 | #define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN))) |
| 147 | #define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN))) |
| 148 | #define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN))) |
| 149 | #define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0); |
| 150 | #define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0); |
| 151 | #define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN))); |
| 152 | #define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D |
| 153 | |
| 154 | static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) { |
| 155 | const uint8x8_t A0 = LOAD_U32_AS_U8(a0); |
| 156 | const uint8x8_t A1 = LOAD_U32_AS_U8(a1); |
| 157 | return vhadd_u8(A0, A1); |
| 158 | } |
| 159 | |
| 160 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0, |
| 161 | uint32_t c1, |
| 162 | uint32_t c2) { |
| 163 | const uint8x8_t avg = Average2_u8_NEON(c0, c1); |
| 164 | // Remove one to c2 when bigger than avg. |
| 165 | const uint8x8_t C2 = LOAD_U32_AS_U8(c2); |
| 166 | const uint8x8_t cmp = vcgt_u8(C2, avg); |
| 167 | const uint8x8_t C2_1 = vadd_u8(C2, cmp); |
| 168 | // Compute half of the difference between avg and c2. |
| 169 | const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1)); |
| 170 | // Compute the sum with avg and saturate. |
| 171 | const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg)); |
| 172 | const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); |
| 173 | const uint32_t output = GET_U8_AS_U32(res); |
| 174 | return output; |
| 175 | } |
| 176 | |
| 177 | static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) { |
| 178 | const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1); |
| 179 | const uint32_t avg = GET_U8_AS_U32(avg_u8x8); |
| 180 | return avg; |
| 181 | } |
| 182 | |
| 183 | static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1, |
| 184 | uint32_t a2) { |
| 185 | const uint8x8_t avg0 = Average2_u8_NEON(a0, a2); |
| 186 | const uint8x8_t A1 = LOAD_U32_AS_U8(a1); |
| 187 | const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1)); |
| 188 | return avg; |
| 189 | } |
| 190 | |
| 191 | static uint32_t Predictor5_NEON(const uint32_t* const left, |
| 192 | const uint32_t* const top) { |
| 193 | return Average3_NEON(*left, top[0], top[1]); |
| 194 | } |
| 195 | static uint32_t Predictor6_NEON(const uint32_t* const left, |
| 196 | const uint32_t* const top) { |
| 197 | return Average2_NEON(*left, top[-1]); |
| 198 | } |
| 199 | static uint32_t Predictor7_NEON(const uint32_t* const left, |
| 200 | const uint32_t* const top) { |
| 201 | return Average2_NEON(*left, top[0]); |
| 202 | } |
| 203 | static uint32_t Predictor13_NEON(const uint32_t* const left, |
| 204 | const uint32_t* const top) { |
| 205 | return ClampedAddSubtractHalf_NEON(*left, top[0], top[-1]); |
| 206 | } |
| 207 | |
| 208 | // Batch versions of those functions. |
| 209 | |
| 210 | // Predictor0: ARGB_BLACK. |
| 211 | static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper, |
| 212 | int num_pixels, uint32_t* out) { |
| 213 | int i; |
| 214 | const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK)); |
| 215 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 216 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 217 | const uint8x16_t res = vaddq_u8(src, black); |
| 218 | STOREQ_U8_AS_U32P(&out[i], res); |
| 219 | } |
| 220 | VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); |
| 221 | } |
| 222 | |
| 223 | // Predictor1: left. |
| 224 | static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper, |
| 225 | int num_pixels, uint32_t* out) { |
| 226 | int i; |
| 227 | const uint8x16_t zero = LOADQ_U32_AS_U8(0); |
| 228 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 229 | // a | b | c | d |
| 230 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 231 | // 0 | a | b | c |
| 232 | const uint8x16_t shift0 = vextq_u8(zero, src, 12); |
| 233 | // a | a + b | b + c | c + d |
| 234 | const uint8x16_t sum0 = vaddq_u8(src, shift0); |
| 235 | // 0 | 0 | a | a + b |
| 236 | const uint8x16_t shift1 = vextq_u8(zero, sum0, 8); |
| 237 | // a | a + b | a + b + c | a + b + c + d |
| 238 | const uint8x16_t sum1 = vaddq_u8(sum0, shift1); |
| 239 | const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]); |
| 240 | const uint8x16_t res = vaddq_u8(sum1, prev); |
| 241 | STOREQ_U8_AS_U32P(&out[i], res); |
| 242 | } |
| 243 | VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
| 244 | } |
| 245 | |
| 246 | // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
| 247 | // per 8 bit channel. |
| 248 | #define GENERATE_PREDICTOR_1(X, IN) \ |
| 249 | static void PredictorAdd##X##_NEON(const uint32_t* in, \ |
| 250 | const uint32_t* upper, int num_pixels, \ |
| 251 | uint32_t* out) { \ |
| 252 | int i; \ |
| 253 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| 254 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ |
| 255 | const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \ |
| 256 | const uint8x16_t res = vaddq_u8(src, other); \ |
| 257 | STOREQ_U8_AS_U32P(&out[i], res); \ |
| 258 | } \ |
| 259 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| 260 | } |
| 261 | // Predictor2: Top. |
| 262 | GENERATE_PREDICTOR_1(2, upper[i]) |
| 263 | // Predictor3: Top-right. |
| 264 | GENERATE_PREDICTOR_1(3, upper[i + 1]) |
| 265 | // Predictor4: Top-left. |
| 266 | GENERATE_PREDICTOR_1(4, upper[i - 1]) |
| 267 | #undef GENERATE_PREDICTOR_1 |
| 268 | |
| 269 | // Predictor5: average(average(left, TR), T) |
| 270 | #define DO_PRED5(LANE) do { \ |
| 271 | const uint8x16_t avgLTR = vhaddq_u8(L, TR); \ |
| 272 | const uint8x16_t avg = vhaddq_u8(avgLTR, T); \ |
| 273 | const uint8x16_t res = vaddq_u8(avg, src); \ |
| 274 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
| 275 | L = ROTATE32_LEFT(res); \ |
| 276 | } while (0) |
| 277 | |
| 278 | static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper, |
| 279 | int num_pixels, uint32_t* out) { |
| 280 | int i; |
| 281 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
| 282 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 283 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 284 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]); |
| 285 | const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); |
| 286 | DO_PRED5(0); |
| 287 | DO_PRED5(1); |
| 288 | DO_PRED5(2); |
| 289 | DO_PRED5(3); |
| 290 | } |
| 291 | VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i); |
| 292 | } |
| 293 | #undef DO_PRED5 |
| 294 | |
| 295 | #define DO_PRED67(LANE) do { \ |
| 296 | const uint8x16_t avg = vhaddq_u8(L, top); \ |
| 297 | const uint8x16_t res = vaddq_u8(avg, src); \ |
| 298 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
| 299 | L = ROTATE32_LEFT(res); \ |
| 300 | } while (0) |
| 301 | |
| 302 | // Predictor6: average(left, TL) |
| 303 | static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper, |
| 304 | int num_pixels, uint32_t* out) { |
| 305 | int i; |
| 306 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
| 307 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 308 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 309 | const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]); |
| 310 | DO_PRED67(0); |
| 311 | DO_PRED67(1); |
| 312 | DO_PRED67(2); |
| 313 | DO_PRED67(3); |
| 314 | } |
| 315 | VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i); |
| 316 | } |
| 317 | |
| 318 | // Predictor7: average(left, T) |
| 319 | static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper, |
| 320 | int num_pixels, uint32_t* out) { |
| 321 | int i; |
| 322 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
| 323 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 324 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 325 | const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]); |
| 326 | DO_PRED67(0); |
| 327 | DO_PRED67(1); |
| 328 | DO_PRED67(2); |
| 329 | DO_PRED67(3); |
| 330 | } |
| 331 | VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i); |
| 332 | } |
| 333 | #undef DO_PRED67 |
| 334 | |
| 335 | #define GENERATE_PREDICTOR_2(X, IN) \ |
| 336 | static void PredictorAdd##X##_NEON(const uint32_t* in, \ |
| 337 | const uint32_t* upper, int num_pixels, \ |
| 338 | uint32_t* out) { \ |
| 339 | int i; \ |
| 340 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| 341 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ |
| 342 | const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \ |
| 343 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \ |
| 344 | const uint8x16_t avg = vhaddq_u8(T, Tother); \ |
| 345 | const uint8x16_t res = vaddq_u8(avg, src); \ |
| 346 | STOREQ_U8_AS_U32P(&out[i], res); \ |
| 347 | } \ |
| 348 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| 349 | } |
| 350 | // Predictor8: average TL T. |
| 351 | GENERATE_PREDICTOR_2(8, upper[i - 1]) |
| 352 | // Predictor9: average T TR. |
| 353 | GENERATE_PREDICTOR_2(9, upper[i + 1]) |
| 354 | #undef GENERATE_PREDICTOR_2 |
| 355 | |
| 356 | // Predictor10: average of (average of (L,TL), average of (T, TR)). |
| 357 | #define DO_PRED10(LANE) do { \ |
| 358 | const uint8x16_t avgLTL = vhaddq_u8(L, TL); \ |
| 359 | const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \ |
| 360 | const uint8x16_t res = vaddq_u8(avg, src); \ |
| 361 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
| 362 | L = ROTATE32_LEFT(res); \ |
| 363 | } while (0) |
| 364 | |
| 365 | static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper, |
| 366 | int num_pixels, uint32_t* out) { |
| 367 | int i; |
| 368 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
| 369 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 370 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 371 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
| 372 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
| 373 | const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); |
| 374 | const uint8x16_t avgTTR = vhaddq_u8(T, TR); |
| 375 | DO_PRED10(0); |
| 376 | DO_PRED10(1); |
| 377 | DO_PRED10(2); |
| 378 | DO_PRED10(3); |
| 379 | } |
| 380 | VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
| 381 | } |
| 382 | #undef DO_PRED10 |
| 383 | |
| 384 | // Predictor11: select. |
| 385 | #define DO_PRED11(LANE) do { \ |
| 386 | const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \ |
| 387 | const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \ |
| 388 | const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \ |
| 389 | const uint32x4_t pa = vpaddlq_u16(sum_LTL); \ |
| 390 | const uint32x4_t mask = vcleq_u32(pa, pb); \ |
| 391 | const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \ |
| 392 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
| 393 | L = ROTATE32_LEFT(res); \ |
| 394 | } while (0) |
| 395 | |
| 396 | static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper, |
| 397 | int num_pixels, uint32_t* out) { |
| 398 | int i; |
| 399 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
| 400 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 401 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
| 402 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
| 403 | const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL| |
| 404 | const uint16x8_t sum_TTL = vpaddlq_u8(pTTL); |
| 405 | const uint32x4_t pb = vpaddlq_u16(sum_TTL); |
| 406 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 407 | const uint8x16_t sumTin = vaddq_u8(T, src); // in + T |
| 408 | DO_PRED11(0); |
| 409 | DO_PRED11(1); |
| 410 | DO_PRED11(2); |
| 411 | DO_PRED11(3); |
| 412 | } |
| 413 | VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
| 414 | } |
| 415 | #undef DO_PRED11 |
| 416 | |
| 417 | // Predictor12: ClampedAddSubtractFull. |
| 418 | #define DO_PRED12(DIFF, LANE) do { \ |
| 419 | const uint8x8_t pred = \ |
| 420 | vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \ |
| 421 | const uint8x8_t res = \ |
| 422 | vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \ |
| 423 | const uint16x8_t res16 = vmovl_u8(res); \ |
| 424 | vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ |
| 425 | /* rotate in the left predictor for next iteration */ \ |
| 426 | L = vextq_u16(res16, res16, 4); \ |
| 427 | } while (0) |
| 428 | |
| 429 | static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper, |
| 430 | int num_pixels, uint32_t* out) { |
| 431 | int i; |
| 432 | uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1])); |
| 433 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 434 | // load four pixels of source |
| 435 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 436 | // precompute the difference T - TL once for all, stored as s16 |
| 437 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
| 438 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
| 439 | const int16x8_t diff_lo = |
| 440 | vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL))); |
| 441 | const int16x8_t diff_hi = |
| 442 | vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL))); |
| 443 | // loop over the four reconstructed pixels |
| 444 | DO_PRED12(diff_lo, 0); |
| 445 | DO_PRED12(diff_lo, 1); |
| 446 | DO_PRED12(diff_hi, 2); |
| 447 | DO_PRED12(diff_hi, 3); |
| 448 | } |
| 449 | VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
| 450 | } |
| 451 | #undef DO_PRED12 |
| 452 | |
| 453 | // Predictor13: ClampedAddSubtractHalf |
| 454 | #define DO_PRED13(LANE, LOW_OR_HI) do { \ |
| 455 | const uint8x16_t avg = vhaddq_u8(L, T); \ |
| 456 | const uint8x16_t cmp = vcgtq_u8(TL, avg); \ |
| 457 | const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \ |
| 458 | /* Compute half of the difference between avg and TL'. */ \ |
| 459 | const int8x8_t diff_avg = \ |
| 460 | vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \ |
| 461 | /* Compute the sum with avg and saturate. */ \ |
| 462 | const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \ |
| 463 | const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \ |
| 464 | const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \ |
| 465 | const uint8x16_t res2 = vcombine_u8(res, res); \ |
| 466 | vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ |
| 467 | L = ROTATE32_LEFT(res2); \ |
| 468 | } while (0) |
| 469 | |
| 470 | static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper, |
| 471 | int num_pixels, uint32_t* out) { |
| 472 | int i; |
| 473 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
| 474 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 475 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
| 476 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
| 477 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
| 478 | DO_PRED13(0, vget_low_u8); |
| 479 | DO_PRED13(1, vget_low_u8); |
| 480 | DO_PRED13(2, vget_high_u8); |
| 481 | DO_PRED13(3, vget_high_u8); |
| 482 | } |
| 483 | VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i); |
| 484 | } |
| 485 | #undef DO_PRED13 |
| 486 | |
| 487 | #undef LOAD_U32_AS_U8 |
| 488 | #undef LOAD_U32P_AS_U8 |
| 489 | #undef LOADQ_U32_AS_U8 |
| 490 | #undef LOADQ_U32P_AS_U8 |
| 491 | #undef GET_U8_AS_U32 |
| 492 | #undef GETQ_U8_AS_U32 |
| 493 | #undef STOREQ_U8_AS_U32P |
| 494 | #undef ROTATE32_LEFT |
| 495 | |
| 496 | //------------------------------------------------------------------------------ |
| 497 | // Subtract-Green Transform |
| 498 | |
| 499 | // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use |
| 500 | // non-standard versions there. |
| 501 | #if defined(__APPLE__) && WEBP_AARCH64 && \ |
| 502 | defined(__apple_build_version__) && (__apple_build_version__< 6020037) |
| 503 | #define USE_VTBLQ |
| 504 | #endif |
| 505 | |
| 506 | #ifdef USE_VTBLQ |
| 507 | // 255 = byte will be zeroed |
| 508 | static const uint8_t kGreenShuffle[16] = { |
| 509 | 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 |
| 510 | }; |
| 511 | |
| 512 | static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, |
| 513 | const uint8x16_t shuffle) { |
| 514 | return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), |
| 515 | vtbl1q_u8(argb, vget_high_u8(shuffle))); |
| 516 | } |
| 517 | #else // !USE_VTBLQ |
| 518 | // 255 = byte will be zeroed |
| 519 | static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; |
| 520 | |
| 521 | static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, |
| 522 | const uint8x8_t shuffle) { |
| 523 | return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), |
| 524 | vtbl1_u8(vget_high_u8(argb), shuffle)); |
| 525 | } |
| 526 | #endif // USE_VTBLQ |
| 527 | |
| 528 | static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels, |
| 529 | uint32_t* dst) { |
| 530 | const uint32_t* const end = src + (num_pixels & ~3); |
| 531 | #ifdef USE_VTBLQ |
| 532 | const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); |
| 533 | #else |
| 534 | const uint8x8_t shuffle = vld1_u8(kGreenShuffle); |
| 535 | #endif |
| 536 | for (; src < end; src += 4, dst += 4) { |
| 537 | const uint8x16_t argb = vld1q_u8((const uint8_t*)src); |
| 538 | const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); |
| 539 | vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens)); |
| 540 | } |
| 541 | // fallthrough and finish off with plain-C |
| 542 | VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst); |
| 543 | } |
| 544 | |
| 545 | //------------------------------------------------------------------------------ |
| 546 | // Color Transform |
| 547 | |
| 548 | static void TransformColorInverse_NEON(const VP8LMultipliers* const m, |
| 549 | const uint32_t* const src, |
| 550 | int num_pixels, uint32_t* dst) { |
| 551 | // sign-extended multiplying constants, pre-shifted by 6. |
| 552 | #define CST(X) (((int16_t)(m->X << 8)) >> 6) |
| 553 | const int16_t rb[8] = { |
| 554 | CST(green_to_blue_), CST(green_to_red_), |
| 555 | CST(green_to_blue_), CST(green_to_red_), |
| 556 | CST(green_to_blue_), CST(green_to_red_), |
| 557 | CST(green_to_blue_), CST(green_to_red_) |
| 558 | }; |
| 559 | const int16x8_t mults_rb = vld1q_s16(rb); |
| 560 | const int16_t b2[8] = { |
| 561 | 0, CST(red_to_blue_), 0, CST(red_to_blue_), |
| 562 | 0, CST(red_to_blue_), 0, CST(red_to_blue_), |
| 563 | }; |
| 564 | const int16x8_t mults_b2 = vld1q_s16(b2); |
| 565 | #undef CST |
| 566 | #ifdef USE_VTBLQ |
| 567 | static const uint8_t kg0g0[16] = { |
| 568 | 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 |
| 569 | }; |
| 570 | const uint8x16_t shuffle = vld1q_u8(kg0g0); |
| 571 | #else |
| 572 | static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; |
| 573 | const uint8x8_t shuffle = vld1_u8(k0g0g); |
| 574 | #endif |
| 575 | const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u); |
| 576 | int i; |
| 577 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 578 | const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i)); |
| 579 | const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag); |
| 580 | // 0 g 0 g |
| 581 | const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); |
| 582 | // x dr x db1 |
| 583 | const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); |
| 584 | // x r' x b' |
| 585 | const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in), |
| 586 | vreinterpretq_s8_s16(A)); |
| 587 | // r' 0 b' 0 |
| 588 | const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8); |
| 589 | // x db2 0 0 |
| 590 | const int16x8_t D = vqdmulhq_s16(C, mults_b2); |
| 591 | // 0 x db2 0 |
| 592 | const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8); |
| 593 | // r' x b'' 0 |
| 594 | const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E), |
| 595 | vreinterpretq_s8_s16(C)); |
| 596 | // 0 r' 0 b'' |
| 597 | const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8); |
| 598 | const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0); |
| 599 | vst1q_u32(dst + i, out); |
| 600 | } |
| 601 | // Fall-back to C-version for left-overs. |
| 602 | VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
| 603 | } |
| 604 | |
| 605 | #undef USE_VTBLQ |
| 606 | |
| 607 | //------------------------------------------------------------------------------ |
| 608 | // Entry point |
| 609 | |
| 610 | extern void VP8LDspInitNEON(void); |
| 611 | |
| 612 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) { |
| 613 | VP8LPredictors[5] = Predictor5_NEON; |
| 614 | VP8LPredictors[6] = Predictor6_NEON; |
| 615 | VP8LPredictors[7] = Predictor7_NEON; |
| 616 | VP8LPredictors[13] = Predictor13_NEON; |
| 617 | |
| 618 | VP8LPredictorsAdd[0] = PredictorAdd0_NEON; |
| 619 | VP8LPredictorsAdd[1] = PredictorAdd1_NEON; |
| 620 | VP8LPredictorsAdd[2] = PredictorAdd2_NEON; |
| 621 | VP8LPredictorsAdd[3] = PredictorAdd3_NEON; |
| 622 | VP8LPredictorsAdd[4] = PredictorAdd4_NEON; |
| 623 | VP8LPredictorsAdd[5] = PredictorAdd5_NEON; |
| 624 | VP8LPredictorsAdd[6] = PredictorAdd6_NEON; |
| 625 | VP8LPredictorsAdd[7] = PredictorAdd7_NEON; |
| 626 | VP8LPredictorsAdd[8] = PredictorAdd8_NEON; |
| 627 | VP8LPredictorsAdd[9] = PredictorAdd9_NEON; |
| 628 | VP8LPredictorsAdd[10] = PredictorAdd10_NEON; |
| 629 | VP8LPredictorsAdd[11] = PredictorAdd11_NEON; |
| 630 | VP8LPredictorsAdd[12] = PredictorAdd12_NEON; |
| 631 | VP8LPredictorsAdd[13] = PredictorAdd13_NEON; |
| 632 | |
| 633 | VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON; |
| 634 | VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON; |
| 635 | VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON; |
| 636 | |
| 637 | VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON; |
| 638 | VP8LTransformColorInverse = TransformColorInverse_NEON; |
| 639 | } |
| 640 | |
| 641 | #else // !WEBP_USE_NEON |
| 642 | |
| 643 | WEBP_DSP_INIT_STUB(VP8LDspInitNEON) |
| 644 | |
| 645 | #endif // WEBP_USE_NEON |
| 646 | |