| 1 | // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Author: Jyrki Alakuijala (jyrki@google.com) |
| 11 | // |
| 12 | |
| 13 | #include "src/enc/backward_references_enc.h" |
| 14 | |
| 15 | #include <assert.h> |
| 16 | #include <float.h> |
| 17 | #include <math.h> |
| 18 | |
| 19 | #include "src/dsp/dsp.h" |
| 20 | #include "src/dsp/lossless.h" |
| 21 | #include "src/dsp/lossless_common.h" |
| 22 | #include "src/enc/histogram_enc.h" |
| 23 | #include "src/enc/vp8i_enc.h" |
| 24 | #include "src/utils/color_cache_utils.h" |
| 25 | #include "src/utils/utils.h" |
| 26 | #include "src/webp/encode.h" |
| 27 | |
| 28 | #define MIN_BLOCK_SIZE 256 // minimum block size for backward references |
| 29 | |
| 30 | #define MAX_ENTROPY (1e30f) |
| 31 | |
| 32 | // 1M window (4M bytes) minus 120 special codes for short distances. |
| 33 | #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120) |
| 34 | |
| 35 | // Minimum number of pixels for which it is cheaper to encode a |
| 36 | // distance + length instead of each pixel as a literal. |
| 37 | #define MIN_LENGTH 4 |
| 38 | |
| 39 | // ----------------------------------------------------------------------------- |
| 40 | |
| 41 | static const uint8_t plane_to_code_lut[128] = { |
| 42 | 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, |
| 43 | 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, |
| 44 | 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, |
| 45 | 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, |
| 46 | 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, |
| 47 | 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, |
| 48 | 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, |
| 49 | 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 |
| 50 | }; |
| 51 | |
| 52 | extern int VP8LDistanceToPlaneCode(int xsize, int dist); |
| 53 | int VP8LDistanceToPlaneCode(int xsize, int dist) { |
| 54 | const int yoffset = dist / xsize; |
| 55 | const int xoffset = dist - yoffset * xsize; |
| 56 | if (xoffset <= 8 && yoffset < 8) { |
| 57 | return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; |
| 58 | } else if (xoffset > xsize - 8 && yoffset < 7) { |
| 59 | return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; |
| 60 | } |
| 61 | return dist + 120; |
| 62 | } |
| 63 | |
| 64 | // Returns the exact index where array1 and array2 are different. For an index |
| 65 | // inferior or equal to best_len_match, the return value just has to be strictly |
| 66 | // inferior to best_len_match. The current behavior is to return 0 if this index |
| 67 | // is best_len_match, and the index itself otherwise. |
| 68 | // If no two elements are the same, it returns max_limit. |
| 69 | static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, |
| 70 | const uint32_t* const array2, |
| 71 | int best_len_match, int max_limit) { |
| 72 | // Before 'expensive' linear match, check if the two arrays match at the |
| 73 | // current best length index. |
| 74 | if (array1[best_len_match] != array2[best_len_match]) return 0; |
| 75 | |
| 76 | return VP8LVectorMismatch(array1, array2, max_limit); |
| 77 | } |
| 78 | |
| 79 | // ----------------------------------------------------------------------------- |
| 80 | // VP8LBackwardRefs |
| 81 | |
| 82 | struct PixOrCopyBlock { |
| 83 | PixOrCopyBlock* next_; // next block (or NULL) |
| 84 | PixOrCopy* start_; // data start |
| 85 | int size_; // currently used size |
| 86 | }; |
| 87 | |
| 88 | extern void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs); |
| 89 | void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) { |
| 90 | assert(refs != NULL); |
| 91 | if (refs->tail_ != NULL) { |
| 92 | *refs->tail_ = refs->free_blocks_; // recycle all blocks at once |
| 93 | } |
| 94 | refs->free_blocks_ = refs->refs_; |
| 95 | refs->tail_ = &refs->refs_; |
| 96 | refs->last_block_ = NULL; |
| 97 | refs->refs_ = NULL; |
| 98 | } |
| 99 | |
| 100 | void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) { |
| 101 | assert(refs != NULL); |
| 102 | VP8LClearBackwardRefs(refs); |
| 103 | while (refs->free_blocks_ != NULL) { |
| 104 | PixOrCopyBlock* const next = refs->free_blocks_->next_; |
| 105 | WebPSafeFree(refs->free_blocks_); |
| 106 | refs->free_blocks_ = next; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | // Swaps the content of two VP8LBackwardRefs. |
| 111 | static void BackwardRefsSwap(VP8LBackwardRefs* const refs1, |
| 112 | VP8LBackwardRefs* const refs2) { |
| 113 | const int point_to_refs1 = |
| 114 | (refs1->tail_ != NULL && refs1->tail_ == &refs1->refs_); |
| 115 | const int point_to_refs2 = |
| 116 | (refs2->tail_ != NULL && refs2->tail_ == &refs2->refs_); |
| 117 | const VP8LBackwardRefs tmp = *refs1; |
| 118 | *refs1 = *refs2; |
| 119 | *refs2 = tmp; |
| 120 | if (point_to_refs2) refs1->tail_ = &refs1->refs_; |
| 121 | if (point_to_refs1) refs2->tail_ = &refs2->refs_; |
| 122 | } |
| 123 | |
| 124 | void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) { |
| 125 | assert(refs != NULL); |
| 126 | memset(refs, 0, sizeof(*refs)); |
| 127 | refs->tail_ = &refs->refs_; |
| 128 | refs->block_size_ = |
| 129 | (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size; |
| 130 | } |
| 131 | |
| 132 | VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) { |
| 133 | VP8LRefsCursor c; |
| 134 | c.cur_block_ = refs->refs_; |
| 135 | if (refs->refs_ != NULL) { |
| 136 | c.cur_pos = c.cur_block_->start_; |
| 137 | c.last_pos_ = c.cur_pos + c.cur_block_->size_; |
| 138 | } else { |
| 139 | c.cur_pos = NULL; |
| 140 | c.last_pos_ = NULL; |
| 141 | } |
| 142 | return c; |
| 143 | } |
| 144 | |
| 145 | void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) { |
| 146 | PixOrCopyBlock* const b = c->cur_block_->next_; |
| 147 | c->cur_pos = (b == NULL) ? NULL : b->start_; |
| 148 | c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_; |
| 149 | c->cur_block_ = b; |
| 150 | } |
| 151 | |
| 152 | // Create a new block, either from the free list or allocated |
| 153 | static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) { |
| 154 | PixOrCopyBlock* b = refs->free_blocks_; |
| 155 | if (b == NULL) { // allocate new memory chunk |
| 156 | const size_t total_size = |
| 157 | sizeof(*b) + refs->block_size_ * sizeof(*b->start_); |
| 158 | b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size); |
| 159 | if (b == NULL) { |
| 160 | refs->error_ |= 1; |
| 161 | return NULL; |
| 162 | } |
| 163 | b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned |
| 164 | } else { // recycle from free-list |
| 165 | refs->free_blocks_ = b->next_; |
| 166 | } |
| 167 | *refs->tail_ = b; |
| 168 | refs->tail_ = &b->next_; |
| 169 | refs->last_block_ = b; |
| 170 | b->next_ = NULL; |
| 171 | b->size_ = 0; |
| 172 | return b; |
| 173 | } |
| 174 | |
| 175 | // Return 1 on success, 0 on error. |
| 176 | static int BackwardRefsClone(const VP8LBackwardRefs* const from, |
| 177 | VP8LBackwardRefs* const to) { |
| 178 | const PixOrCopyBlock* block_from = from->refs_; |
| 179 | VP8LClearBackwardRefs(to); |
| 180 | while (block_from != NULL) { |
| 181 | PixOrCopyBlock* const block_to = BackwardRefsNewBlock(to); |
| 182 | if (block_to == NULL) return 0; |
| 183 | memcpy(block_to->start_, block_from->start_, |
| 184 | block_from->size_ * sizeof(PixOrCopy)); |
| 185 | block_to->size_ = block_from->size_; |
| 186 | block_from = block_from->next_; |
| 187 | } |
| 188 | return 1; |
| 189 | } |
| 190 | |
| 191 | extern void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs, |
| 192 | const PixOrCopy v); |
| 193 | void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs, |
| 194 | const PixOrCopy v) { |
| 195 | PixOrCopyBlock* b = refs->last_block_; |
| 196 | if (b == NULL || b->size_ == refs->block_size_) { |
| 197 | b = BackwardRefsNewBlock(refs); |
| 198 | if (b == NULL) return; // refs->error_ is set |
| 199 | } |
| 200 | b->start_[b->size_++] = v; |
| 201 | } |
| 202 | |
| 203 | // ----------------------------------------------------------------------------- |
| 204 | // Hash chains |
| 205 | |
| 206 | int VP8LHashChainInit(VP8LHashChain* const p, int size) { |
| 207 | assert(p->size_ == 0); |
| 208 | assert(p->offset_length_ == NULL); |
| 209 | assert(size > 0); |
| 210 | p->offset_length_ = |
| 211 | (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_)); |
| 212 | if (p->offset_length_ == NULL) return 0; |
| 213 | p->size_ = size; |
| 214 | |
| 215 | return 1; |
| 216 | } |
| 217 | |
| 218 | void VP8LHashChainClear(VP8LHashChain* const p) { |
| 219 | assert(p != NULL); |
| 220 | WebPSafeFree(p->offset_length_); |
| 221 | |
| 222 | p->size_ = 0; |
| 223 | p->offset_length_ = NULL; |
| 224 | } |
| 225 | |
| 226 | // ----------------------------------------------------------------------------- |
| 227 | |
| 228 | static const uint32_t kHashMultiplierHi = 0xc6a4a793u; |
| 229 | static const uint32_t kHashMultiplierLo = 0x5bd1e996u; |
| 230 | |
| 231 | static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE |
| 232 | uint32_t GetPixPairHash64(const uint32_t* const argb) { |
| 233 | uint32_t key; |
| 234 | key = argb[1] * kHashMultiplierHi; |
| 235 | key += argb[0] * kHashMultiplierLo; |
| 236 | key = key >> (32 - HASH_BITS); |
| 237 | return key; |
| 238 | } |
| 239 | |
| 240 | // Returns the maximum number of hash chain lookups to do for a |
| 241 | // given compression quality. Return value in range [8, 86]. |
| 242 | static int GetMaxItersForQuality(int quality) { |
| 243 | return 8 + (quality * quality) / 128; |
| 244 | } |
| 245 | |
| 246 | static int GetWindowSizeForHashChain(int quality, int xsize) { |
| 247 | const int max_window_size = (quality > 75) ? WINDOW_SIZE |
| 248 | : (quality > 50) ? (xsize << 8) |
| 249 | : (quality > 25) ? (xsize << 6) |
| 250 | : (xsize << 4); |
| 251 | assert(xsize > 0); |
| 252 | return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; |
| 253 | } |
| 254 | |
| 255 | static WEBP_INLINE int MaxFindCopyLength(int len) { |
| 256 | return (len < MAX_LENGTH) ? len : MAX_LENGTH; |
| 257 | } |
| 258 | |
| 259 | int VP8LHashChainFill(VP8LHashChain* const p, int quality, |
| 260 | const uint32_t* const argb, int xsize, int ysize, |
| 261 | int low_effort, const WebPPicture* const pic, |
| 262 | int percent_range, int* const percent) { |
| 263 | const int size = xsize * ysize; |
| 264 | const int iter_max = GetMaxItersForQuality(quality); |
| 265 | const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize); |
| 266 | int remaining_percent = percent_range; |
| 267 | int percent_start = *percent; |
| 268 | int pos; |
| 269 | int argb_comp; |
| 270 | uint32_t base_position; |
| 271 | int32_t* hash_to_first_index; |
| 272 | // Temporarily use the p->offset_length_ as a hash chain. |
| 273 | int32_t* chain = (int32_t*)p->offset_length_; |
| 274 | assert(size > 0); |
| 275 | assert(p->size_ != 0); |
| 276 | assert(p->offset_length_ != NULL); |
| 277 | |
| 278 | if (size <= 2) { |
| 279 | p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
| 280 | return 1; |
| 281 | } |
| 282 | |
| 283 | hash_to_first_index = |
| 284 | (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index)); |
| 285 | if (hash_to_first_index == NULL) { |
| 286 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| 287 | } |
| 288 | |
| 289 | percent_range = remaining_percent / 2; |
| 290 | remaining_percent -= percent_range; |
| 291 | |
| 292 | // Set the int32_t array to -1. |
| 293 | memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index)); |
| 294 | // Fill the chain linking pixels with the same hash. |
| 295 | argb_comp = (argb[0] == argb[1]); |
| 296 | for (pos = 0; pos < size - 2;) { |
| 297 | uint32_t hash_code; |
| 298 | const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]); |
| 299 | if (argb_comp && argb_comp_next) { |
| 300 | // Consecutive pixels with the same color will share the same hash. |
| 301 | // We therefore use a different hash: the color and its repetition |
| 302 | // length. |
| 303 | uint32_t tmp[2]; |
| 304 | uint32_t len = 1; |
| 305 | tmp[0] = argb[pos]; |
| 306 | // Figure out how far the pixels are the same. |
| 307 | // The last pixel has a different 64 bit hash, as its next pixel does |
| 308 | // not have the same color, so we just need to get to the last pixel equal |
| 309 | // to its follower. |
| 310 | while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) { |
| 311 | ++len; |
| 312 | } |
| 313 | if (len > MAX_LENGTH) { |
| 314 | // Skip the pixels that match for distance=1 and length>MAX_LENGTH |
| 315 | // because they are linked to their predecessor and we automatically |
| 316 | // check that in the main for loop below. Skipping means setting no |
| 317 | // predecessor in the chain, hence -1. |
| 318 | memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain)); |
| 319 | pos += len - MAX_LENGTH; |
| 320 | len = MAX_LENGTH; |
| 321 | } |
| 322 | // Process the rest of the hash chain. |
| 323 | while (len) { |
| 324 | tmp[1] = len--; |
| 325 | hash_code = GetPixPairHash64(tmp); |
| 326 | chain[pos] = hash_to_first_index[hash_code]; |
| 327 | hash_to_first_index[hash_code] = pos++; |
| 328 | } |
| 329 | argb_comp = 0; |
| 330 | } else { |
| 331 | // Just move one pixel forward. |
| 332 | hash_code = GetPixPairHash64(argb + pos); |
| 333 | chain[pos] = hash_to_first_index[hash_code]; |
| 334 | hash_to_first_index[hash_code] = pos++; |
| 335 | argb_comp = argb_comp_next; |
| 336 | } |
| 337 | |
| 338 | if (!WebPReportProgress( |
| 339 | pic, percent_start + percent_range * pos / (size - 2), percent)) { |
| 340 | WebPSafeFree(hash_to_first_index); |
| 341 | return 0; |
| 342 | } |
| 343 | } |
| 344 | // Process the penultimate pixel. |
| 345 | chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)]; |
| 346 | |
| 347 | WebPSafeFree(hash_to_first_index); |
| 348 | |
| 349 | percent_start += percent_range; |
| 350 | if (!WebPReportProgress(pic, percent_start, percent)) return 0; |
| 351 | percent_range = remaining_percent; |
| 352 | |
| 353 | // Find the best match interval at each pixel, defined by an offset to the |
| 354 | // pixel and a length. The right-most pixel cannot match anything to the right |
| 355 | // (hence a best length of 0) and the left-most pixel nothing to the left |
| 356 | // (hence an offset of 0). |
| 357 | assert(size > 2); |
| 358 | p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
| 359 | for (base_position = size - 2; base_position > 0;) { |
| 360 | const int max_len = MaxFindCopyLength(size - 1 - base_position); |
| 361 | const uint32_t* const argb_start = argb + base_position; |
| 362 | int iter = iter_max; |
| 363 | int best_length = 0; |
| 364 | uint32_t best_distance = 0; |
| 365 | uint32_t best_argb; |
| 366 | const int min_pos = |
| 367 | (base_position > window_size) ? base_position - window_size : 0; |
| 368 | const int length_max = (max_len < 256) ? max_len : 256; |
| 369 | uint32_t max_base_position; |
| 370 | |
| 371 | pos = chain[base_position]; |
| 372 | if (!low_effort) { |
| 373 | int curr_length; |
| 374 | // Heuristic: use the comparison with the above line as an initialization. |
| 375 | if (base_position >= (uint32_t)xsize) { |
| 376 | curr_length = FindMatchLength(argb_start - xsize, argb_start, |
| 377 | best_length, max_len); |
| 378 | if (curr_length > best_length) { |
| 379 | best_length = curr_length; |
| 380 | best_distance = xsize; |
| 381 | } |
| 382 | --iter; |
| 383 | } |
| 384 | // Heuristic: compare to the previous pixel. |
| 385 | curr_length = |
| 386 | FindMatchLength(argb_start - 1, argb_start, best_length, max_len); |
| 387 | if (curr_length > best_length) { |
| 388 | best_length = curr_length; |
| 389 | best_distance = 1; |
| 390 | } |
| 391 | --iter; |
| 392 | // Skip the for loop if we already have the maximum. |
| 393 | if (best_length == MAX_LENGTH) pos = min_pos - 1; |
| 394 | } |
| 395 | best_argb = argb_start[best_length]; |
| 396 | |
| 397 | for (; pos >= min_pos && --iter; pos = chain[pos]) { |
| 398 | int curr_length; |
| 399 | assert(base_position > (uint32_t)pos); |
| 400 | |
| 401 | if (argb[pos + best_length] != best_argb) continue; |
| 402 | |
| 403 | curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len); |
| 404 | if (best_length < curr_length) { |
| 405 | best_length = curr_length; |
| 406 | best_distance = base_position - pos; |
| 407 | best_argb = argb_start[best_length]; |
| 408 | // Stop if we have reached a good enough length. |
| 409 | if (best_length >= length_max) break; |
| 410 | } |
| 411 | } |
| 412 | // We have the best match but in case the two intervals continue matching |
| 413 | // to the left, we have the best matches for the left-extended pixels. |
| 414 | max_base_position = base_position; |
| 415 | while (1) { |
| 416 | assert(best_length <= MAX_LENGTH); |
| 417 | assert(best_distance <= WINDOW_SIZE); |
| 418 | p->offset_length_[base_position] = |
| 419 | (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length; |
| 420 | --base_position; |
| 421 | // Stop if we don't have a match or if we are out of bounds. |
| 422 | if (best_distance == 0 || base_position == 0) break; |
| 423 | // Stop if we cannot extend the matching intervals to the left. |
| 424 | if (base_position < best_distance || |
| 425 | argb[base_position - best_distance] != argb[base_position]) { |
| 426 | break; |
| 427 | } |
| 428 | // Stop if we are matching at its limit because there could be a closer |
| 429 | // matching interval with the same maximum length. Then again, if the |
| 430 | // matching interval is as close as possible (best_distance == 1), we will |
| 431 | // never find anything better so let's continue. |
| 432 | if (best_length == MAX_LENGTH && best_distance != 1 && |
| 433 | base_position + MAX_LENGTH < max_base_position) { |
| 434 | break; |
| 435 | } |
| 436 | if (best_length < MAX_LENGTH) { |
| 437 | ++best_length; |
| 438 | max_base_position = base_position; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | if (!WebPReportProgress(pic, |
| 443 | percent_start + percent_range * |
| 444 | (size - 2 - base_position) / |
| 445 | (size - 2), |
| 446 | percent)) { |
| 447 | return 0; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | return WebPReportProgress(pic, percent_start + percent_range, percent); |
| 452 | } |
| 453 | |
| 454 | static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, |
| 455 | VP8LColorCache* const hashers, |
| 456 | VP8LBackwardRefs* const refs) { |
| 457 | PixOrCopy v; |
| 458 | if (use_color_cache) { |
| 459 | const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); |
| 460 | if (VP8LColorCacheLookup(hashers, key) == pixel) { |
| 461 | v = PixOrCopyCreateCacheIdx(key); |
| 462 | } else { |
| 463 | v = PixOrCopyCreateLiteral(pixel); |
| 464 | VP8LColorCacheSet(hashers, key, pixel); |
| 465 | } |
| 466 | } else { |
| 467 | v = PixOrCopyCreateLiteral(pixel); |
| 468 | } |
| 469 | VP8LBackwardRefsCursorAdd(refs, v); |
| 470 | } |
| 471 | |
| 472 | static int BackwardReferencesRle(int xsize, int ysize, |
| 473 | const uint32_t* const argb, |
| 474 | int cache_bits, VP8LBackwardRefs* const refs) { |
| 475 | const int pix_count = xsize * ysize; |
| 476 | int i, k; |
| 477 | const int use_color_cache = (cache_bits > 0); |
| 478 | VP8LColorCache hashers; |
| 479 | |
| 480 | if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) { |
| 481 | return 0; |
| 482 | } |
| 483 | VP8LClearBackwardRefs(refs); |
| 484 | // Add first pixel as literal. |
| 485 | AddSingleLiteral(argb[0], use_color_cache, &hashers, refs); |
| 486 | i = 1; |
| 487 | while (i < pix_count) { |
| 488 | const int max_len = MaxFindCopyLength(pix_count - i); |
| 489 | const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len); |
| 490 | const int prev_row_len = (i < xsize) ? 0 : |
| 491 | FindMatchLength(argb + i, argb + i - xsize, 0, max_len); |
| 492 | if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) { |
| 493 | VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len)); |
| 494 | // We don't need to update the color cache here since it is always the |
| 495 | // same pixel being copied, and that does not change the color cache |
| 496 | // state. |
| 497 | i += rle_len; |
| 498 | } else if (prev_row_len >= MIN_LENGTH) { |
| 499 | VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len)); |
| 500 | if (use_color_cache) { |
| 501 | for (k = 0; k < prev_row_len; ++k) { |
| 502 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
| 503 | } |
| 504 | } |
| 505 | i += prev_row_len; |
| 506 | } else { |
| 507 | AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
| 508 | i++; |
| 509 | } |
| 510 | } |
| 511 | if (use_color_cache) VP8LColorCacheClear(&hashers); |
| 512 | return !refs->error_; |
| 513 | } |
| 514 | |
| 515 | static int BackwardReferencesLz77(int xsize, int ysize, |
| 516 | const uint32_t* const argb, int cache_bits, |
| 517 | const VP8LHashChain* const hash_chain, |
| 518 | VP8LBackwardRefs* const refs) { |
| 519 | int i; |
| 520 | int i_last_check = -1; |
| 521 | int ok = 0; |
| 522 | int cc_init = 0; |
| 523 | const int use_color_cache = (cache_bits > 0); |
| 524 | const int pix_count = xsize * ysize; |
| 525 | VP8LColorCache hashers; |
| 526 | |
| 527 | if (use_color_cache) { |
| 528 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
| 529 | if (!cc_init) goto Error; |
| 530 | } |
| 531 | VP8LClearBackwardRefs(refs); |
| 532 | for (i = 0; i < pix_count;) { |
| 533 | // Alternative#1: Code the pixels starting at 'i' using backward reference. |
| 534 | int offset = 0; |
| 535 | int len = 0; |
| 536 | int j; |
| 537 | VP8LHashChainFindCopy(hash_chain, i, &offset, &len); |
| 538 | if (len >= MIN_LENGTH) { |
| 539 | const int len_ini = len; |
| 540 | int max_reach = 0; |
| 541 | const int j_max = |
| 542 | (i + len_ini >= pix_count) ? pix_count - 1 : i + len_ini; |
| 543 | // Only start from what we have not checked already. |
| 544 | i_last_check = (i > i_last_check) ? i : i_last_check; |
| 545 | // We know the best match for the current pixel but we try to find the |
| 546 | // best matches for the current pixel AND the next one combined. |
| 547 | // The naive method would use the intervals: |
| 548 | // [i,i+len) + [i+len, length of best match at i+len) |
| 549 | // while we check if we can use: |
| 550 | // [i,j) (where j<=i+len) + [j, length of best match at j) |
| 551 | for (j = i_last_check + 1; j <= j_max; ++j) { |
| 552 | const int len_j = VP8LHashChainFindLength(hash_chain, j); |
| 553 | const int reach = |
| 554 | j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal. |
| 555 | if (reach > max_reach) { |
| 556 | len = j - i; |
| 557 | max_reach = reach; |
| 558 | if (max_reach >= pix_count) break; |
| 559 | } |
| 560 | } |
| 561 | } else { |
| 562 | len = 1; |
| 563 | } |
| 564 | // Go with literal or backward reference. |
| 565 | assert(len > 0); |
| 566 | if (len == 1) { |
| 567 | AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
| 568 | } else { |
| 569 | VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
| 570 | if (use_color_cache) { |
| 571 | for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]); |
| 572 | } |
| 573 | } |
| 574 | i += len; |
| 575 | } |
| 576 | |
| 577 | ok = !refs->error_; |
| 578 | Error: |
| 579 | if (cc_init) VP8LColorCacheClear(&hashers); |
| 580 | return ok; |
| 581 | } |
| 582 | |
| 583 | // Compute an LZ77 by forcing matches to happen within a given distance cost. |
| 584 | // We therefore limit the algorithm to the lowest 32 values in the PlaneCode |
| 585 | // definition. |
| 586 | #define WINDOW_OFFSETS_SIZE_MAX 32 |
| 587 | static int BackwardReferencesLz77Box(int xsize, int ysize, |
| 588 | const uint32_t* const argb, int cache_bits, |
| 589 | const VP8LHashChain* const hash_chain_best, |
| 590 | VP8LHashChain* hash_chain, |
| 591 | VP8LBackwardRefs* const refs) { |
| 592 | int i; |
| 593 | const int pix_count = xsize * ysize; |
| 594 | uint16_t* counts; |
| 595 | int window_offsets[WINDOW_OFFSETS_SIZE_MAX] = {0}; |
| 596 | int window_offsets_new[WINDOW_OFFSETS_SIZE_MAX] = {0}; |
| 597 | int window_offsets_size = 0; |
| 598 | int window_offsets_new_size = 0; |
| 599 | uint16_t* const counts_ini = |
| 600 | (uint16_t*)WebPSafeMalloc(xsize * ysize, sizeof(*counts_ini)); |
| 601 | int best_offset_prev = -1, best_length_prev = -1; |
| 602 | if (counts_ini == NULL) return 0; |
| 603 | |
| 604 | // counts[i] counts how many times a pixel is repeated starting at position i. |
| 605 | i = pix_count - 2; |
| 606 | counts = counts_ini + i; |
| 607 | counts[1] = 1; |
| 608 | for (; i >= 0; --i, --counts) { |
| 609 | if (argb[i] == argb[i + 1]) { |
| 610 | // Max out the counts to MAX_LENGTH. |
| 611 | counts[0] = counts[1] + (counts[1] != MAX_LENGTH); |
| 612 | } else { |
| 613 | counts[0] = 1; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | // Figure out the window offsets around a pixel. They are stored in a |
| 618 | // spiraling order around the pixel as defined by VP8LDistanceToPlaneCode. |
| 619 | { |
| 620 | int x, y; |
| 621 | for (y = 0; y <= 6; ++y) { |
| 622 | for (x = -6; x <= 6; ++x) { |
| 623 | const int offset = y * xsize + x; |
| 624 | int plane_code; |
| 625 | // Ignore offsets that bring us after the pixel. |
| 626 | if (offset <= 0) continue; |
| 627 | plane_code = VP8LDistanceToPlaneCode(xsize, offset) - 1; |
| 628 | if (plane_code >= WINDOW_OFFSETS_SIZE_MAX) continue; |
| 629 | window_offsets[plane_code] = offset; |
| 630 | } |
| 631 | } |
| 632 | // For narrow images, not all plane codes are reached, so remove those. |
| 633 | for (i = 0; i < WINDOW_OFFSETS_SIZE_MAX; ++i) { |
| 634 | if (window_offsets[i] == 0) continue; |
| 635 | window_offsets[window_offsets_size++] = window_offsets[i]; |
| 636 | } |
| 637 | // Given a pixel P, find the offsets that reach pixels unreachable from P-1 |
| 638 | // with any of the offsets in window_offsets[]. |
| 639 | for (i = 0; i < window_offsets_size; ++i) { |
| 640 | int j; |
| 641 | int is_reachable = 0; |
| 642 | for (j = 0; j < window_offsets_size && !is_reachable; ++j) { |
| 643 | is_reachable |= (window_offsets[i] == window_offsets[j] + 1); |
| 644 | } |
| 645 | if (!is_reachable) { |
| 646 | window_offsets_new[window_offsets_new_size] = window_offsets[i]; |
| 647 | ++window_offsets_new_size; |
| 648 | } |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | hash_chain->offset_length_[0] = 0; |
| 653 | for (i = 1; i < pix_count; ++i) { |
| 654 | int ind; |
| 655 | int best_length = VP8LHashChainFindLength(hash_chain_best, i); |
| 656 | int best_offset; |
| 657 | int do_compute = 1; |
| 658 | |
| 659 | if (best_length >= MAX_LENGTH) { |
| 660 | // Do not recompute the best match if we already have a maximal one in the |
| 661 | // window. |
| 662 | best_offset = VP8LHashChainFindOffset(hash_chain_best, i); |
| 663 | for (ind = 0; ind < window_offsets_size; ++ind) { |
| 664 | if (best_offset == window_offsets[ind]) { |
| 665 | do_compute = 0; |
| 666 | break; |
| 667 | } |
| 668 | } |
| 669 | } |
| 670 | if (do_compute) { |
| 671 | // Figure out if we should use the offset/length from the previous pixel |
| 672 | // as an initial guess and therefore only inspect the offsets in |
| 673 | // window_offsets_new[]. |
| 674 | const int use_prev = |
| 675 | (best_length_prev > 1) && (best_length_prev < MAX_LENGTH); |
| 676 | const int num_ind = |
| 677 | use_prev ? window_offsets_new_size : window_offsets_size; |
| 678 | best_length = use_prev ? best_length_prev - 1 : 0; |
| 679 | best_offset = use_prev ? best_offset_prev : 0; |
| 680 | // Find the longest match in a window around the pixel. |
| 681 | for (ind = 0; ind < num_ind; ++ind) { |
| 682 | int curr_length = 0; |
| 683 | int j = i; |
| 684 | int j_offset = |
| 685 | use_prev ? i - window_offsets_new[ind] : i - window_offsets[ind]; |
| 686 | if (j_offset < 0 || argb[j_offset] != argb[i]) continue; |
| 687 | // The longest match is the sum of how many times each pixel is |
| 688 | // repeated. |
| 689 | do { |
| 690 | const int counts_j_offset = counts_ini[j_offset]; |
| 691 | const int counts_j = counts_ini[j]; |
| 692 | if (counts_j_offset != counts_j) { |
| 693 | curr_length += |
| 694 | (counts_j_offset < counts_j) ? counts_j_offset : counts_j; |
| 695 | break; |
| 696 | } |
| 697 | // The same color is repeated counts_pos times at j_offset and j. |
| 698 | curr_length += counts_j_offset; |
| 699 | j_offset += counts_j_offset; |
| 700 | j += counts_j_offset; |
| 701 | } while (curr_length <= MAX_LENGTH && j < pix_count && |
| 702 | argb[j_offset] == argb[j]); |
| 703 | if (best_length < curr_length) { |
| 704 | best_offset = |
| 705 | use_prev ? window_offsets_new[ind] : window_offsets[ind]; |
| 706 | if (curr_length >= MAX_LENGTH) { |
| 707 | best_length = MAX_LENGTH; |
| 708 | break; |
| 709 | } else { |
| 710 | best_length = curr_length; |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | assert(i + best_length <= pix_count); |
| 717 | assert(best_length <= MAX_LENGTH); |
| 718 | if (best_length <= MIN_LENGTH) { |
| 719 | hash_chain->offset_length_[i] = 0; |
| 720 | best_offset_prev = 0; |
| 721 | best_length_prev = 0; |
| 722 | } else { |
| 723 | hash_chain->offset_length_[i] = |
| 724 | (best_offset << MAX_LENGTH_BITS) | (uint32_t)best_length; |
| 725 | best_offset_prev = best_offset; |
| 726 | best_length_prev = best_length; |
| 727 | } |
| 728 | } |
| 729 | hash_chain->offset_length_[0] = 0; |
| 730 | WebPSafeFree(counts_ini); |
| 731 | |
| 732 | return BackwardReferencesLz77(xsize, ysize, argb, cache_bits, hash_chain, |
| 733 | refs); |
| 734 | } |
| 735 | |
| 736 | // ----------------------------------------------------------------------------- |
| 737 | |
| 738 | static void BackwardReferences2DLocality(int xsize, |
| 739 | const VP8LBackwardRefs* const refs) { |
| 740 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 741 | while (VP8LRefsCursorOk(&c)) { |
| 742 | if (PixOrCopyIsCopy(c.cur_pos)) { |
| 743 | const int dist = c.cur_pos->argb_or_distance; |
| 744 | const int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist); |
| 745 | c.cur_pos->argb_or_distance = transformed_dist; |
| 746 | } |
| 747 | VP8LRefsCursorNext(&c); |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | // Evaluate optimal cache bits for the local color cache. |
| 752 | // The input *best_cache_bits sets the maximum cache bits to use (passing 0 |
| 753 | // implies disabling the local color cache). The local color cache is also |
| 754 | // disabled for the lower (<= 25) quality. |
| 755 | // Returns 0 in case of memory error. |
| 756 | static int CalculateBestCacheSize(const uint32_t* argb, int quality, |
| 757 | const VP8LBackwardRefs* const refs, |
| 758 | int* const best_cache_bits) { |
| 759 | int i; |
| 760 | const int cache_bits_max = (quality <= 25) ? 0 : *best_cache_bits; |
| 761 | float entropy_min = MAX_ENTROPY; |
| 762 | int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 }; |
| 763 | VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1]; |
| 764 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 765 | VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL }; |
| 766 | int ok = 0; |
| 767 | |
| 768 | assert(cache_bits_max >= 0 && cache_bits_max <= MAX_COLOR_CACHE_BITS); |
| 769 | |
| 770 | if (cache_bits_max == 0) { |
| 771 | *best_cache_bits = 0; |
| 772 | // Local color cache is disabled. |
| 773 | return 1; |
| 774 | } |
| 775 | |
| 776 | // Allocate data. |
| 777 | for (i = 0; i <= cache_bits_max; ++i) { |
| 778 | histos[i] = VP8LAllocateHistogram(i); |
| 779 | if (histos[i] == NULL) goto Error; |
| 780 | VP8LHistogramInit(histos[i], i, /*init_arrays=*/ 1); |
| 781 | if (i == 0) continue; |
| 782 | cc_init[i] = VP8LColorCacheInit(&hashers[i], i); |
| 783 | if (!cc_init[i]) goto Error; |
| 784 | } |
| 785 | |
| 786 | // Find the cache_bits giving the lowest entropy. The search is done in a |
| 787 | // brute-force way as the function (entropy w.r.t cache_bits) can be |
| 788 | // anything in practice. |
| 789 | while (VP8LRefsCursorOk(&c)) { |
| 790 | const PixOrCopy* const v = c.cur_pos; |
| 791 | if (PixOrCopyIsLiteral(v)) { |
| 792 | const uint32_t pix = *argb++; |
| 793 | const uint32_t a = (pix >> 24) & 0xff; |
| 794 | const uint32_t r = (pix >> 16) & 0xff; |
| 795 | const uint32_t g = (pix >> 8) & 0xff; |
| 796 | const uint32_t b = (pix >> 0) & 0xff; |
| 797 | // The keys of the caches can be derived from the longest one. |
| 798 | int key = VP8LHashPix(pix, 32 - cache_bits_max); |
| 799 | // Do not use the color cache for cache_bits = 0. |
| 800 | ++histos[0]->blue_[b]; |
| 801 | ++histos[0]->literal_[g]; |
| 802 | ++histos[0]->red_[r]; |
| 803 | ++histos[0]->alpha_[a]; |
| 804 | // Deal with cache_bits > 0. |
| 805 | for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
| 806 | if (VP8LColorCacheLookup(&hashers[i], key) == pix) { |
| 807 | ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key]; |
| 808 | } else { |
| 809 | VP8LColorCacheSet(&hashers[i], key, pix); |
| 810 | ++histos[i]->blue_[b]; |
| 811 | ++histos[i]->literal_[g]; |
| 812 | ++histos[i]->red_[r]; |
| 813 | ++histos[i]->alpha_[a]; |
| 814 | } |
| 815 | } |
| 816 | } else { |
| 817 | int code, , ; |
| 818 | // We should compute the contribution of the (distance,length) |
| 819 | // histograms but those are the same independently from the cache size. |
| 820 | // As those constant contributions are in the end added to the other |
| 821 | // histogram contributions, we can ignore them, except for the length |
| 822 | // prefix that is part of the literal_ histogram. |
| 823 | int len = PixOrCopyLength(v); |
| 824 | uint32_t argb_prev = *argb ^ 0xffffffffu; |
| 825 | VP8LPrefixEncode(len, &code, &extra_bits, &extra_bits_value); |
| 826 | for (i = 0; i <= cache_bits_max; ++i) { |
| 827 | ++histos[i]->literal_[NUM_LITERAL_CODES + code]; |
| 828 | } |
| 829 | // Update the color caches. |
| 830 | do { |
| 831 | if (*argb != argb_prev) { |
| 832 | // Efficiency: insert only if the color changes. |
| 833 | int key = VP8LHashPix(*argb, 32 - cache_bits_max); |
| 834 | for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
| 835 | hashers[i].colors_[key] = *argb; |
| 836 | } |
| 837 | argb_prev = *argb; |
| 838 | } |
| 839 | argb++; |
| 840 | } while (--len != 0); |
| 841 | } |
| 842 | VP8LRefsCursorNext(&c); |
| 843 | } |
| 844 | |
| 845 | for (i = 0; i <= cache_bits_max; ++i) { |
| 846 | const float entropy = VP8LHistogramEstimateBits(histos[i]); |
| 847 | if (i == 0 || entropy < entropy_min) { |
| 848 | entropy_min = entropy; |
| 849 | *best_cache_bits = i; |
| 850 | } |
| 851 | } |
| 852 | ok = 1; |
| 853 | Error: |
| 854 | for (i = 0; i <= cache_bits_max; ++i) { |
| 855 | if (cc_init[i]) VP8LColorCacheClear(&hashers[i]); |
| 856 | VP8LFreeHistogram(histos[i]); |
| 857 | } |
| 858 | return ok; |
| 859 | } |
| 860 | |
| 861 | // Update (in-place) backward references for specified cache_bits. |
| 862 | static int BackwardRefsWithLocalCache(const uint32_t* const argb, |
| 863 | int cache_bits, |
| 864 | VP8LBackwardRefs* const refs) { |
| 865 | int pixel_index = 0; |
| 866 | VP8LColorCache hashers; |
| 867 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 868 | if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0; |
| 869 | |
| 870 | while (VP8LRefsCursorOk(&c)) { |
| 871 | PixOrCopy* const v = c.cur_pos; |
| 872 | if (PixOrCopyIsLiteral(v)) { |
| 873 | const uint32_t argb_literal = v->argb_or_distance; |
| 874 | const int ix = VP8LColorCacheContains(&hashers, argb_literal); |
| 875 | if (ix >= 0) { |
| 876 | // hashers contains argb_literal |
| 877 | *v = PixOrCopyCreateCacheIdx(ix); |
| 878 | } else { |
| 879 | VP8LColorCacheInsert(&hashers, argb_literal); |
| 880 | } |
| 881 | ++pixel_index; |
| 882 | } else { |
| 883 | // refs was created without local cache, so it can not have cache indexes. |
| 884 | int k; |
| 885 | assert(PixOrCopyIsCopy(v)); |
| 886 | for (k = 0; k < v->len; ++k) { |
| 887 | VP8LColorCacheInsert(&hashers, argb[pixel_index++]); |
| 888 | } |
| 889 | } |
| 890 | VP8LRefsCursorNext(&c); |
| 891 | } |
| 892 | VP8LColorCacheClear(&hashers); |
| 893 | return 1; |
| 894 | } |
| 895 | |
| 896 | static VP8LBackwardRefs* GetBackwardReferencesLowEffort( |
| 897 | int width, int height, const uint32_t* const argb, |
| 898 | int* const cache_bits, const VP8LHashChain* const hash_chain, |
| 899 | VP8LBackwardRefs* const refs_lz77) { |
| 900 | *cache_bits = 0; |
| 901 | if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) { |
| 902 | return NULL; |
| 903 | } |
| 904 | BackwardReferences2DLocality(width, refs_lz77); |
| 905 | return refs_lz77; |
| 906 | } |
| 907 | |
| 908 | extern int VP8LBackwardReferencesTraceBackwards( |
| 909 | int xsize, int ysize, const uint32_t* const argb, int cache_bits, |
| 910 | const VP8LHashChain* const hash_chain, |
| 911 | const VP8LBackwardRefs* const refs_src, VP8LBackwardRefs* const refs_dst); |
| 912 | static int GetBackwardReferences(int width, int height, |
| 913 | const uint32_t* const argb, int quality, |
| 914 | int lz77_types_to_try, int cache_bits_max, |
| 915 | int do_no_cache, |
| 916 | const VP8LHashChain* const hash_chain, |
| 917 | VP8LBackwardRefs* const refs, |
| 918 | int* const cache_bits_best) { |
| 919 | VP8LHistogram* histo = NULL; |
| 920 | int i, lz77_type; |
| 921 | // Index 0 is for a color cache, index 1 for no cache (if needed). |
| 922 | int lz77_types_best[2] = {0, 0}; |
| 923 | float bit_costs_best[2] = {FLT_MAX, FLT_MAX}; |
| 924 | VP8LHashChain hash_chain_box; |
| 925 | VP8LBackwardRefs* const refs_tmp = &refs[do_no_cache ? 2 : 1]; |
| 926 | int status = 0; |
| 927 | memset(&hash_chain_box, 0, sizeof(hash_chain_box)); |
| 928 | |
| 929 | histo = VP8LAllocateHistogram(MAX_COLOR_CACHE_BITS); |
| 930 | if (histo == NULL) goto Error; |
| 931 | |
| 932 | for (lz77_type = 1; lz77_types_to_try; |
| 933 | lz77_types_to_try &= ~lz77_type, lz77_type <<= 1) { |
| 934 | int res = 0; |
| 935 | float bit_cost = 0.f; |
| 936 | if ((lz77_types_to_try & lz77_type) == 0) continue; |
| 937 | switch (lz77_type) { |
| 938 | case kLZ77RLE: |
| 939 | res = BackwardReferencesRle(width, height, argb, 0, refs_tmp); |
| 940 | break; |
| 941 | case kLZ77Standard: |
| 942 | // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color |
| 943 | // cache is not that different in practice. |
| 944 | res = BackwardReferencesLz77(width, height, argb, 0, hash_chain, |
| 945 | refs_tmp); |
| 946 | break; |
| 947 | case kLZ77Box: |
| 948 | if (!VP8LHashChainInit(&hash_chain_box, width * height)) goto Error; |
| 949 | res = BackwardReferencesLz77Box(width, height, argb, 0, hash_chain, |
| 950 | &hash_chain_box, refs_tmp); |
| 951 | break; |
| 952 | default: |
| 953 | assert(0); |
| 954 | } |
| 955 | if (!res) goto Error; |
| 956 | |
| 957 | // Start with the no color cache case. |
| 958 | for (i = 1; i >= 0; --i) { |
| 959 | int cache_bits = (i == 1) ? 0 : cache_bits_max; |
| 960 | |
| 961 | if (i == 1 && !do_no_cache) continue; |
| 962 | |
| 963 | if (i == 0) { |
| 964 | // Try with a color cache. |
| 965 | if (!CalculateBestCacheSize(argb, quality, refs_tmp, &cache_bits)) { |
| 966 | goto Error; |
| 967 | } |
| 968 | if (cache_bits > 0) { |
| 969 | if (!BackwardRefsWithLocalCache(argb, cache_bits, refs_tmp)) { |
| 970 | goto Error; |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | if (i == 0 && do_no_cache && cache_bits == 0) { |
| 976 | // No need to re-compute bit_cost as it was computed at i == 1. |
| 977 | } else { |
| 978 | VP8LHistogramCreate(histo, refs_tmp, cache_bits); |
| 979 | bit_cost = VP8LHistogramEstimateBits(histo); |
| 980 | } |
| 981 | |
| 982 | if (bit_cost < bit_costs_best[i]) { |
| 983 | if (i == 1) { |
| 984 | // Do not swap as the full cache analysis would have the wrong |
| 985 | // VP8LBackwardRefs to start with. |
| 986 | if (!BackwardRefsClone(refs_tmp, &refs[1])) goto Error; |
| 987 | } else { |
| 988 | BackwardRefsSwap(refs_tmp, &refs[0]); |
| 989 | } |
| 990 | bit_costs_best[i] = bit_cost; |
| 991 | lz77_types_best[i] = lz77_type; |
| 992 | if (i == 0) *cache_bits_best = cache_bits; |
| 993 | } |
| 994 | } |
| 995 | } |
| 996 | assert(lz77_types_best[0] > 0); |
| 997 | assert(!do_no_cache || lz77_types_best[1] > 0); |
| 998 | |
| 999 | // Improve on simple LZ77 but only for high quality (TraceBackwards is |
| 1000 | // costly). |
| 1001 | for (i = 1; i >= 0; --i) { |
| 1002 | if (i == 1 && !do_no_cache) continue; |
| 1003 | if ((lz77_types_best[i] == kLZ77Standard || |
| 1004 | lz77_types_best[i] == kLZ77Box) && |
| 1005 | quality >= 25) { |
| 1006 | const VP8LHashChain* const hash_chain_tmp = |
| 1007 | (lz77_types_best[i] == kLZ77Standard) ? hash_chain : &hash_chain_box; |
| 1008 | const int cache_bits = (i == 1) ? 0 : *cache_bits_best; |
| 1009 | float bit_cost_trace; |
| 1010 | if (!VP8LBackwardReferencesTraceBackwards(width, height, argb, cache_bits, |
| 1011 | hash_chain_tmp, &refs[i], |
| 1012 | refs_tmp)) { |
| 1013 | goto Error; |
| 1014 | } |
| 1015 | VP8LHistogramCreate(histo, refs_tmp, cache_bits); |
| 1016 | bit_cost_trace = VP8LHistogramEstimateBits(histo); |
| 1017 | if (bit_cost_trace < bit_costs_best[i]) { |
| 1018 | BackwardRefsSwap(refs_tmp, &refs[i]); |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | BackwardReferences2DLocality(width, &refs[i]); |
| 1023 | |
| 1024 | if (i == 1 && lz77_types_best[0] == lz77_types_best[1] && |
| 1025 | *cache_bits_best == 0) { |
| 1026 | // If the best cache size is 0 and we have the same best LZ77, just copy |
| 1027 | // the data over and stop here. |
| 1028 | if (!BackwardRefsClone(&refs[1], &refs[0])) goto Error; |
| 1029 | break; |
| 1030 | } |
| 1031 | } |
| 1032 | status = 1; |
| 1033 | |
| 1034 | Error: |
| 1035 | VP8LHashChainClear(&hash_chain_box); |
| 1036 | VP8LFreeHistogram(histo); |
| 1037 | return status; |
| 1038 | } |
| 1039 | |
| 1040 | int VP8LGetBackwardReferences( |
| 1041 | int width, int height, const uint32_t* const argb, int quality, |
| 1042 | int low_effort, int lz77_types_to_try, int cache_bits_max, int do_no_cache, |
| 1043 | const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs, |
| 1044 | int* const cache_bits_best, const WebPPicture* const pic, int percent_range, |
| 1045 | int* const percent) { |
| 1046 | if (low_effort) { |
| 1047 | VP8LBackwardRefs* refs_best; |
| 1048 | *cache_bits_best = cache_bits_max; |
| 1049 | refs_best = GetBackwardReferencesLowEffort( |
| 1050 | width, height, argb, cache_bits_best, hash_chain, refs); |
| 1051 | if (refs_best == NULL) { |
| 1052 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| 1053 | } |
| 1054 | // Set it in first position. |
| 1055 | BackwardRefsSwap(refs_best, &refs[0]); |
| 1056 | } else { |
| 1057 | if (!GetBackwardReferences(width, height, argb, quality, lz77_types_to_try, |
| 1058 | cache_bits_max, do_no_cache, hash_chain, refs, |
| 1059 | cache_bits_best)) { |
| 1060 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | return WebPReportProgress(pic, *percent + percent_range, percent); |
| 1065 | } |
| 1066 | |