1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // main entry for the lossless encoder. |
11 | // |
12 | // Author: Vikas Arora (vikaas.arora@gmail.com) |
13 | // |
14 | |
15 | #include <assert.h> |
16 | #include <stdlib.h> |
17 | |
18 | #include "src/dsp/lossless.h" |
19 | #include "src/dsp/lossless_common.h" |
20 | #include "src/enc/backward_references_enc.h" |
21 | #include "src/enc/histogram_enc.h" |
22 | #include "src/enc/vp8i_enc.h" |
23 | #include "src/enc/vp8li_enc.h" |
24 | #include "src/utils/bit_writer_utils.h" |
25 | #include "src/utils/huffman_encode_utils.h" |
26 | #include "src/utils/utils.h" |
27 | #include "src/webp/encode.h" |
28 | #include "src/webp/format_constants.h" |
29 | |
30 | // Maximum number of histogram images (sub-blocks). |
31 | #define MAX_HUFF_IMAGE_SIZE 2600 |
32 | |
33 | // Palette reordering for smaller sum of deltas (and for smaller storage). |
34 | |
35 | static int PaletteCompareColorsForQsort(const void* p1, const void* p2) { |
36 | const uint32_t a = WebPMemToUint32((uint8_t*)p1); |
37 | const uint32_t b = WebPMemToUint32((uint8_t*)p2); |
38 | assert(a != b); |
39 | return (a < b) ? -1 : 1; |
40 | } |
41 | |
42 | static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) { |
43 | return (v <= 128) ? v : (256 - v); |
44 | } |
45 | |
46 | // Computes a value that is related to the entropy created by the |
47 | // palette entry diff. |
48 | // |
49 | // Note that the last & 0xff is a no-operation in the next statement, but |
50 | // removed by most compilers and is here only for regularity of the code. |
51 | static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) { |
52 | const uint32_t diff = VP8LSubPixels(col1, col2); |
53 | const int kMoreWeightForRGBThanForAlpha = 9; |
54 | uint32_t score; |
55 | score = PaletteComponentDistance((diff >> 0) & 0xff); |
56 | score += PaletteComponentDistance((diff >> 8) & 0xff); |
57 | score += PaletteComponentDistance((diff >> 16) & 0xff); |
58 | score *= kMoreWeightForRGBThanForAlpha; |
59 | score += PaletteComponentDistance((diff >> 24) & 0xff); |
60 | return score; |
61 | } |
62 | |
63 | static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) { |
64 | const uint32_t tmp = *col1; |
65 | *col1 = *col2; |
66 | *col2 = tmp; |
67 | } |
68 | |
69 | static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, |
70 | int num_colors) { |
71 | int low = 0, hi = num_colors; |
72 | if (sorted[low] == color) return low; // loop invariant: sorted[low] != color |
73 | while (1) { |
74 | const int mid = (low + hi) >> 1; |
75 | if (sorted[mid] == color) { |
76 | return mid; |
77 | } else if (sorted[mid] < color) { |
78 | low = mid; |
79 | } else { |
80 | hi = mid; |
81 | } |
82 | } |
83 | assert(0); |
84 | return 0; |
85 | } |
86 | |
87 | // The palette has been sorted by alpha. This function checks if the other |
88 | // components of the palette have a monotonic development with regards to |
89 | // position in the palette. If all have monotonic development, there is |
90 | // no benefit to re-organize them greedily. A monotonic development |
91 | // would be spotted in green-only situations (like lossy alpha) or gray-scale |
92 | // images. |
93 | static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette, |
94 | int num_colors) { |
95 | uint32_t predict = 0x000000; |
96 | int i; |
97 | uint8_t sign_found = 0x00; |
98 | for (i = 0; i < num_colors; ++i) { |
99 | const uint32_t diff = VP8LSubPixels(palette[i], predict); |
100 | const uint8_t rd = (diff >> 16) & 0xff; |
101 | const uint8_t gd = (diff >> 8) & 0xff; |
102 | const uint8_t bd = (diff >> 0) & 0xff; |
103 | if (rd != 0x00) { |
104 | sign_found |= (rd < 0x80) ? 1 : 2; |
105 | } |
106 | if (gd != 0x00) { |
107 | sign_found |= (gd < 0x80) ? 8 : 16; |
108 | } |
109 | if (bd != 0x00) { |
110 | sign_found |= (bd < 0x80) ? 64 : 128; |
111 | } |
112 | predict = palette[i]; |
113 | } |
114 | return (sign_found & (sign_found << 1)) != 0; // two consequent signs. |
115 | } |
116 | |
117 | static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted, |
118 | int num_colors, uint32_t* const palette) { |
119 | uint32_t predict = 0x00000000; |
120 | int i, k; |
121 | memcpy(palette, palette_sorted, num_colors * sizeof(*palette)); |
122 | if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return; |
123 | // Find greedily always the closest color of the predicted color to minimize |
124 | // deltas in the palette. This reduces storage needs since the |
125 | // palette is stored with delta encoding. |
126 | for (i = 0; i < num_colors; ++i) { |
127 | int best_ix = i; |
128 | uint32_t best_score = ~0U; |
129 | for (k = i; k < num_colors; ++k) { |
130 | const uint32_t cur_score = PaletteColorDistance(palette[k], predict); |
131 | if (best_score > cur_score) { |
132 | best_score = cur_score; |
133 | best_ix = k; |
134 | } |
135 | } |
136 | SwapColor(&palette[best_ix], &palette[i]); |
137 | predict = palette[i]; |
138 | } |
139 | } |
140 | |
141 | // Sort palette in increasing order and prepare an inverse mapping array. |
142 | static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors, |
143 | uint32_t sorted[], uint32_t idx_map[]) { |
144 | uint32_t i; |
145 | memcpy(sorted, palette, num_colors * sizeof(*sorted)); |
146 | qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort); |
147 | for (i = 0; i < num_colors; ++i) { |
148 | idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i; |
149 | } |
150 | } |
151 | |
152 | // ----------------------------------------------------------------------------- |
153 | // Modified Zeng method from "A Survey on Palette Reordering |
154 | // Methods for Improving the Compression of Color-Indexed Images" by Armando J. |
155 | // Pinho and Antonio J. R. Neves. |
156 | |
157 | // Finds the biggest cooccurrence in the matrix. |
158 | static void CoOccurrenceFindMax(const uint32_t* const cooccurrence, |
159 | uint32_t num_colors, uint8_t* const c1, |
160 | uint8_t* const c2) { |
161 | // Find the index that is most frequently located adjacent to other |
162 | // (different) indexes. |
163 | uint32_t best_sum = 0u; |
164 | uint32_t i, j, best_cooccurrence; |
165 | *c1 = 0u; |
166 | for (i = 0; i < num_colors; ++i) { |
167 | uint32_t sum = 0; |
168 | for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j]; |
169 | if (sum > best_sum) { |
170 | best_sum = sum; |
171 | *c1 = i; |
172 | } |
173 | } |
174 | // Find the index that is most frequently found adjacent to *c1. |
175 | *c2 = 0u; |
176 | best_cooccurrence = 0u; |
177 | for (i = 0; i < num_colors; ++i) { |
178 | if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) { |
179 | best_cooccurrence = cooccurrence[*c1 * num_colors + i]; |
180 | *c2 = i; |
181 | } |
182 | } |
183 | assert(*c1 != *c2); |
184 | } |
185 | |
186 | // Builds the cooccurrence matrix |
187 | static int CoOccurrenceBuild(const WebPPicture* const pic, |
188 | const uint32_t* const palette, uint32_t num_colors, |
189 | uint32_t* cooccurrence) { |
190 | uint32_t *lines, *line_top, *line_current, *line_tmp; |
191 | int x, y; |
192 | const uint32_t* src = pic->argb; |
193 | uint32_t prev_pix = ~src[0]; |
194 | uint32_t prev_idx = 0u; |
195 | uint32_t idx_map[MAX_PALETTE_SIZE] = {0}; |
196 | uint32_t palette_sorted[MAX_PALETTE_SIZE]; |
197 | lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines)); |
198 | if (lines == NULL) { |
199 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
200 | } |
201 | line_top = &lines[0]; |
202 | line_current = &lines[pic->width]; |
203 | PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map); |
204 | for (y = 0; y < pic->height; ++y) { |
205 | for (x = 0; x < pic->width; ++x) { |
206 | const uint32_t pix = src[x]; |
207 | if (pix != prev_pix) { |
208 | prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)]; |
209 | prev_pix = pix; |
210 | } |
211 | line_current[x] = prev_idx; |
212 | // 4-connectivity is what works best as mentioned in "On the relation |
213 | // between Memon's and the modified Zeng's palette reordering methods". |
214 | if (x > 0 && prev_idx != line_current[x - 1]) { |
215 | const uint32_t left_idx = line_current[x - 1]; |
216 | ++cooccurrence[prev_idx * num_colors + left_idx]; |
217 | ++cooccurrence[left_idx * num_colors + prev_idx]; |
218 | } |
219 | if (y > 0 && prev_idx != line_top[x]) { |
220 | const uint32_t top_idx = line_top[x]; |
221 | ++cooccurrence[prev_idx * num_colors + top_idx]; |
222 | ++cooccurrence[top_idx * num_colors + prev_idx]; |
223 | } |
224 | } |
225 | line_tmp = line_top; |
226 | line_top = line_current; |
227 | line_current = line_tmp; |
228 | src += pic->argb_stride; |
229 | } |
230 | WebPSafeFree(lines); |
231 | return 1; |
232 | } |
233 | |
234 | struct Sum { |
235 | uint8_t index; |
236 | uint32_t sum; |
237 | }; |
238 | |
239 | // Implements the modified Zeng method from "A Survey on Palette Reordering |
240 | // Methods for Improving the Compression of Color-Indexed Images" by Armando J. |
241 | // Pinho and Antonio J. R. Neves. |
242 | static int PaletteSortModifiedZeng( |
243 | const WebPPicture* const pic, const uint32_t* const palette_sorted, |
244 | uint32_t num_colors, uint32_t* const palette) { |
245 | uint32_t i, j, ind; |
246 | uint8_t remapping[MAX_PALETTE_SIZE]; |
247 | uint32_t* cooccurrence; |
248 | struct Sum sums[MAX_PALETTE_SIZE]; |
249 | uint32_t first, last; |
250 | uint32_t num_sums; |
251 | // TODO(vrabaud) check whether one color images should use palette or not. |
252 | if (num_colors <= 1) return 1; |
253 | // Build the co-occurrence matrix. |
254 | cooccurrence = |
255 | (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence)); |
256 | if (cooccurrence == NULL) { |
257 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
258 | } |
259 | if (!CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence)) { |
260 | WebPSafeFree(cooccurrence); |
261 | return 0; |
262 | } |
263 | |
264 | // Initialize the mapping list with the two best indices. |
265 | CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]); |
266 | |
267 | // We need to append and prepend to the list of remapping. To this end, we |
268 | // actually define the next start/end of the list as indices in a vector (with |
269 | // a wrap around when the end is reached). |
270 | first = 0; |
271 | last = 1; |
272 | num_sums = num_colors - 2; // -2 because we know the first two values |
273 | if (num_sums > 0) { |
274 | // Initialize the sums with the first two remappings and find the best one |
275 | struct Sum* best_sum = &sums[0]; |
276 | best_sum->index = 0u; |
277 | best_sum->sum = 0u; |
278 | for (i = 0, j = 0; i < num_colors; ++i) { |
279 | if (i == remapping[0] || i == remapping[1]) continue; |
280 | sums[j].index = i; |
281 | sums[j].sum = cooccurrence[i * num_colors + remapping[0]] + |
282 | cooccurrence[i * num_colors + remapping[1]]; |
283 | if (sums[j].sum > best_sum->sum) best_sum = &sums[j]; |
284 | ++j; |
285 | } |
286 | |
287 | while (num_sums > 0) { |
288 | const uint8_t best_index = best_sum->index; |
289 | // Compute delta to know if we need to prepend or append the best index. |
290 | int32_t delta = 0; |
291 | const int32_t n = num_colors - num_sums; |
292 | for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) { |
293 | const uint16_t l_j = remapping[(ind + j) % num_colors]; |
294 | delta += (n - 1 - 2 * (int32_t)j) * |
295 | (int32_t)cooccurrence[best_index * num_colors + l_j]; |
296 | } |
297 | if (delta > 0) { |
298 | first = (first == 0) ? num_colors - 1 : first - 1; |
299 | remapping[first] = best_index; |
300 | } else { |
301 | ++last; |
302 | remapping[last] = best_index; |
303 | } |
304 | // Remove best_sum from sums. |
305 | *best_sum = sums[num_sums - 1]; |
306 | --num_sums; |
307 | // Update all the sums and find the best one. |
308 | best_sum = &sums[0]; |
309 | for (i = 0; i < num_sums; ++i) { |
310 | sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index]; |
311 | if (sums[i].sum > best_sum->sum) best_sum = &sums[i]; |
312 | } |
313 | } |
314 | } |
315 | assert((last + 1) % num_colors == first); |
316 | WebPSafeFree(cooccurrence); |
317 | |
318 | // Re-map the palette. |
319 | for (i = 0; i < num_colors; ++i) { |
320 | palette[i] = palette_sorted[remapping[(first + i) % num_colors]]; |
321 | } |
322 | return 1; |
323 | } |
324 | |
325 | // ----------------------------------------------------------------------------- |
326 | // Palette |
327 | |
328 | // These five modes are evaluated and their respective entropy is computed. |
329 | typedef enum { |
330 | kDirect = 0, |
331 | kSpatial = 1, |
332 | kSubGreen = 2, |
333 | kSpatialSubGreen = 3, |
334 | kPalette = 4, |
335 | kPaletteAndSpatial = 5, |
336 | kNumEntropyIx = 6 |
337 | } EntropyIx; |
338 | |
339 | typedef enum { |
340 | kSortedDefault = 0, |
341 | kMinimizeDelta = 1, |
342 | kModifiedZeng = 2, |
343 | kUnusedPalette = 3, |
344 | } PaletteSorting; |
345 | |
346 | typedef enum { |
347 | kHistoAlpha = 0, |
348 | kHistoAlphaPred, |
349 | kHistoGreen, |
350 | kHistoGreenPred, |
351 | kHistoRed, |
352 | kHistoRedPred, |
353 | kHistoBlue, |
354 | kHistoBluePred, |
355 | kHistoRedSubGreen, |
356 | kHistoRedPredSubGreen, |
357 | kHistoBlueSubGreen, |
358 | kHistoBluePredSubGreen, |
359 | kHistoPalette, |
360 | kHistoTotal // Must be last. |
361 | } HistoIx; |
362 | |
363 | static void AddSingleSubGreen(uint32_t p, |
364 | uint32_t* const r, uint32_t* const b) { |
365 | const int green = (int)p >> 8; // The upper bits are masked away later. |
366 | ++r[(((int)p >> 16) - green) & 0xff]; |
367 | ++b[(((int)p >> 0) - green) & 0xff]; |
368 | } |
369 | |
370 | static void AddSingle(uint32_t p, |
371 | uint32_t* const a, uint32_t* const r, |
372 | uint32_t* const g, uint32_t* const b) { |
373 | ++a[(p >> 24) & 0xff]; |
374 | ++r[(p >> 16) & 0xff]; |
375 | ++g[(p >> 8) & 0xff]; |
376 | ++b[(p >> 0) & 0xff]; |
377 | } |
378 | |
379 | static WEBP_INLINE uint32_t HashPix(uint32_t pix) { |
380 | // Note that masking with 0xffffffffu is for preventing an |
381 | // 'unsigned int overflow' warning. Doesn't impact the compiled code. |
382 | return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24; |
383 | } |
384 | |
385 | static int AnalyzeEntropy(const uint32_t* argb, |
386 | int width, int height, int argb_stride, |
387 | int use_palette, |
388 | int palette_size, int transform_bits, |
389 | EntropyIx* const min_entropy_ix, |
390 | int* const red_and_blue_always_zero) { |
391 | // Allocate histogram set with cache_bits = 0. |
392 | uint32_t* histo; |
393 | |
394 | if (use_palette && palette_size <= 16) { |
395 | // In the case of small palettes, we pack 2, 4 or 8 pixels together. In |
396 | // practice, small palettes are better than any other transform. |
397 | *min_entropy_ix = kPalette; |
398 | *red_and_blue_always_zero = 1; |
399 | return 1; |
400 | } |
401 | histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256); |
402 | if (histo != NULL) { |
403 | int i, x, y; |
404 | const uint32_t* prev_row = NULL; |
405 | const uint32_t* curr_row = argb; |
406 | uint32_t pix_prev = argb[0]; // Skip the first pixel. |
407 | for (y = 0; y < height; ++y) { |
408 | for (x = 0; x < width; ++x) { |
409 | const uint32_t pix = curr_row[x]; |
410 | const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev); |
411 | pix_prev = pix; |
412 | if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) { |
413 | continue; |
414 | } |
415 | AddSingle(pix, |
416 | &histo[kHistoAlpha * 256], |
417 | &histo[kHistoRed * 256], |
418 | &histo[kHistoGreen * 256], |
419 | &histo[kHistoBlue * 256]); |
420 | AddSingle(pix_diff, |
421 | &histo[kHistoAlphaPred * 256], |
422 | &histo[kHistoRedPred * 256], |
423 | &histo[kHistoGreenPred * 256], |
424 | &histo[kHistoBluePred * 256]); |
425 | AddSingleSubGreen(pix, |
426 | &histo[kHistoRedSubGreen * 256], |
427 | &histo[kHistoBlueSubGreen * 256]); |
428 | AddSingleSubGreen(pix_diff, |
429 | &histo[kHistoRedPredSubGreen * 256], |
430 | &histo[kHistoBluePredSubGreen * 256]); |
431 | { |
432 | // Approximate the palette by the entropy of the multiplicative hash. |
433 | const uint32_t hash = HashPix(pix); |
434 | ++histo[kHistoPalette * 256 + hash]; |
435 | } |
436 | } |
437 | prev_row = curr_row; |
438 | curr_row += argb_stride; |
439 | } |
440 | { |
441 | float entropy_comp[kHistoTotal]; |
442 | float entropy[kNumEntropyIx]; |
443 | int k; |
444 | int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen; |
445 | int j; |
446 | // Let's add one zero to the predicted histograms. The zeros are removed |
447 | // too efficiently by the pix_diff == 0 comparison, at least one of the |
448 | // zeros is likely to exist. |
449 | ++histo[kHistoRedPredSubGreen * 256]; |
450 | ++histo[kHistoBluePredSubGreen * 256]; |
451 | ++histo[kHistoRedPred * 256]; |
452 | ++histo[kHistoGreenPred * 256]; |
453 | ++histo[kHistoBluePred * 256]; |
454 | ++histo[kHistoAlphaPred * 256]; |
455 | |
456 | for (j = 0; j < kHistoTotal; ++j) { |
457 | entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256); |
458 | } |
459 | entropy[kDirect] = entropy_comp[kHistoAlpha] + |
460 | entropy_comp[kHistoRed] + |
461 | entropy_comp[kHistoGreen] + |
462 | entropy_comp[kHistoBlue]; |
463 | entropy[kSpatial] = entropy_comp[kHistoAlphaPred] + |
464 | entropy_comp[kHistoRedPred] + |
465 | entropy_comp[kHistoGreenPred] + |
466 | entropy_comp[kHistoBluePred]; |
467 | entropy[kSubGreen] = entropy_comp[kHistoAlpha] + |
468 | entropy_comp[kHistoRedSubGreen] + |
469 | entropy_comp[kHistoGreen] + |
470 | entropy_comp[kHistoBlueSubGreen]; |
471 | entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] + |
472 | entropy_comp[kHistoRedPredSubGreen] + |
473 | entropy_comp[kHistoGreenPred] + |
474 | entropy_comp[kHistoBluePredSubGreen]; |
475 | entropy[kPalette] = entropy_comp[kHistoPalette]; |
476 | |
477 | // When including transforms, there is an overhead in bits from |
478 | // storing them. This overhead is small but matters for small images. |
479 | // For spatial, there are 14 transformations. |
480 | entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) * |
481 | VP8LSubSampleSize(height, transform_bits) * |
482 | VP8LFastLog2(14); |
483 | // For color transforms: 24 as only 3 channels are considered in a |
484 | // ColorTransformElement. |
485 | entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) * |
486 | VP8LSubSampleSize(height, transform_bits) * |
487 | VP8LFastLog2(24); |
488 | // For palettes, add the cost of storing the palette. |
489 | // We empirically estimate the cost of a compressed entry as 8 bits. |
490 | // The palette is differential-coded when compressed hence a much |
491 | // lower cost than sizeof(uint32_t)*8. |
492 | entropy[kPalette] += palette_size * 8; |
493 | |
494 | *min_entropy_ix = kDirect; |
495 | for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) { |
496 | if (entropy[*min_entropy_ix] > entropy[k]) { |
497 | *min_entropy_ix = (EntropyIx)k; |
498 | } |
499 | } |
500 | assert((int)*min_entropy_ix <= last_mode_to_analyze); |
501 | *red_and_blue_always_zero = 1; |
502 | // Let's check if the histogram of the chosen entropy mode has |
503 | // non-zero red and blue values. If all are zero, we can later skip |
504 | // the cross color optimization. |
505 | { |
506 | static const uint8_t kHistoPairs[5][2] = { |
507 | { kHistoRed, kHistoBlue }, |
508 | { kHistoRedPred, kHistoBluePred }, |
509 | { kHistoRedSubGreen, kHistoBlueSubGreen }, |
510 | { kHistoRedPredSubGreen, kHistoBluePredSubGreen }, |
511 | { kHistoRed, kHistoBlue } |
512 | }; |
513 | const uint32_t* const red_histo = |
514 | &histo[256 * kHistoPairs[*min_entropy_ix][0]]; |
515 | const uint32_t* const blue_histo = |
516 | &histo[256 * kHistoPairs[*min_entropy_ix][1]]; |
517 | for (i = 1; i < 256; ++i) { |
518 | if ((red_histo[i] | blue_histo[i]) != 0) { |
519 | *red_and_blue_always_zero = 0; |
520 | break; |
521 | } |
522 | } |
523 | } |
524 | } |
525 | WebPSafeFree(histo); |
526 | return 1; |
527 | } else { |
528 | return 0; |
529 | } |
530 | } |
531 | |
532 | static int GetHistoBits(int method, int use_palette, int width, int height) { |
533 | // Make tile size a function of encoding method (Range: 0 to 6). |
534 | int histo_bits = (use_palette ? 9 : 7) - method; |
535 | while (1) { |
536 | const int huff_image_size = VP8LSubSampleSize(width, histo_bits) * |
537 | VP8LSubSampleSize(height, histo_bits); |
538 | if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break; |
539 | ++histo_bits; |
540 | } |
541 | return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : |
542 | (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; |
543 | } |
544 | |
545 | static int GetTransformBits(int method, int histo_bits) { |
546 | const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5; |
547 | const int res = |
548 | (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits; |
549 | assert(res <= MAX_TRANSFORM_BITS); |
550 | return res; |
551 | } |
552 | |
553 | // Set of parameters to be used in each iteration of the cruncher. |
554 | #define CRUNCH_SUBCONFIGS_MAX 2 |
555 | typedef struct { |
556 | int lz77_; |
557 | int do_no_cache_; |
558 | } CrunchSubConfig; |
559 | typedef struct { |
560 | int entropy_idx_; |
561 | PaletteSorting palette_sorting_type_; |
562 | CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX]; |
563 | int sub_configs_size_; |
564 | } CrunchConfig; |
565 | |
566 | // +2 because we add a palette sorting configuration for kPalette and |
567 | // kPaletteAndSpatial. |
568 | #define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2) |
569 | |
570 | static int EncoderAnalyze(VP8LEncoder* const enc, |
571 | CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX], |
572 | int* const crunch_configs_size, |
573 | int* const red_and_blue_always_zero) { |
574 | const WebPPicture* const pic = enc->pic_; |
575 | const int width = pic->width; |
576 | const int height = pic->height; |
577 | const WebPConfig* const config = enc->config_; |
578 | const int method = config->method; |
579 | const int low_effort = (config->method == 0); |
580 | int i; |
581 | int use_palette; |
582 | int n_lz77s; |
583 | // If set to 0, analyze the cache with the computed cache value. If 1, also |
584 | // analyze with no-cache. |
585 | int do_no_cache = 0; |
586 | assert(pic != NULL && pic->argb != NULL); |
587 | |
588 | // Check whether a palette is possible. |
589 | enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_); |
590 | use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE); |
591 | if (!use_palette) { |
592 | enc->palette_size_ = 0; |
593 | } else { |
594 | qsort(enc->palette_sorted_, enc->palette_size_, |
595 | sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort); |
596 | } |
597 | |
598 | // Empirical bit sizes. |
599 | enc->histo_bits_ = GetHistoBits(method, use_palette, |
600 | pic->width, pic->height); |
601 | enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_); |
602 | |
603 | if (low_effort) { |
604 | // AnalyzeEntropy is somewhat slow. |
605 | crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen; |
606 | crunch_configs[0].palette_sorting_type_ = |
607 | use_palette ? kSortedDefault : kUnusedPalette; |
608 | n_lz77s = 1; |
609 | *crunch_configs_size = 1; |
610 | } else { |
611 | EntropyIx min_entropy_ix; |
612 | // Try out multiple LZ77 on images with few colors. |
613 | n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1; |
614 | if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette, |
615 | enc->palette_size_, enc->transform_bits_, |
616 | &min_entropy_ix, red_and_blue_always_zero)) { |
617 | return 0; |
618 | } |
619 | if (method == 6 && config->quality == 100) { |
620 | do_no_cache = 1; |
621 | // Go brute force on all transforms. |
622 | *crunch_configs_size = 0; |
623 | for (i = 0; i < kNumEntropyIx; ++i) { |
624 | // We can only apply kPalette or kPaletteAndSpatial if we can indeed use |
625 | // a palette. |
626 | if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) { |
627 | assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX); |
628 | crunch_configs[(*crunch_configs_size)].entropy_idx_ = i; |
629 | if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) { |
630 | crunch_configs[(*crunch_configs_size)].palette_sorting_type_ = |
631 | kMinimizeDelta; |
632 | ++*crunch_configs_size; |
633 | // Also add modified Zeng's method. |
634 | crunch_configs[(*crunch_configs_size)].entropy_idx_ = i; |
635 | crunch_configs[(*crunch_configs_size)].palette_sorting_type_ = |
636 | kModifiedZeng; |
637 | } else { |
638 | crunch_configs[(*crunch_configs_size)].palette_sorting_type_ = |
639 | kUnusedPalette; |
640 | } |
641 | ++*crunch_configs_size; |
642 | } |
643 | } |
644 | } else { |
645 | // Only choose the guessed best transform. |
646 | *crunch_configs_size = 1; |
647 | crunch_configs[0].entropy_idx_ = min_entropy_ix; |
648 | crunch_configs[0].palette_sorting_type_ = |
649 | use_palette ? kMinimizeDelta : kUnusedPalette; |
650 | if (config->quality >= 75 && method == 5) { |
651 | // Test with and without color cache. |
652 | do_no_cache = 1; |
653 | // If we have a palette, also check in combination with spatial. |
654 | if (min_entropy_ix == kPalette) { |
655 | *crunch_configs_size = 2; |
656 | crunch_configs[1].entropy_idx_ = kPaletteAndSpatial; |
657 | crunch_configs[1].palette_sorting_type_ = kMinimizeDelta; |
658 | } |
659 | } |
660 | } |
661 | } |
662 | // Fill in the different LZ77s. |
663 | assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX); |
664 | for (i = 0; i < *crunch_configs_size; ++i) { |
665 | int j; |
666 | for (j = 0; j < n_lz77s; ++j) { |
667 | assert(j < CRUNCH_SUBCONFIGS_MAX); |
668 | crunch_configs[i].sub_configs_[j].lz77_ = |
669 | (j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box; |
670 | crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache; |
671 | } |
672 | crunch_configs[i].sub_configs_size_ = n_lz77s; |
673 | } |
674 | return 1; |
675 | } |
676 | |
677 | static int EncoderInit(VP8LEncoder* const enc) { |
678 | const WebPPicture* const pic = enc->pic_; |
679 | const int width = pic->width; |
680 | const int height = pic->height; |
681 | const int pix_cnt = width * height; |
682 | // we round the block size up, so we're guaranteed to have |
683 | // at most MAX_REFS_BLOCK_PER_IMAGE blocks used: |
684 | const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1; |
685 | int i; |
686 | if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0; |
687 | |
688 | for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size); |
689 | |
690 | return 1; |
691 | } |
692 | |
693 | // Returns false in case of memory error. |
694 | static int GetHuffBitLengthsAndCodes( |
695 | const VP8LHistogramSet* const histogram_image, |
696 | HuffmanTreeCode* const huffman_codes) { |
697 | int i, k; |
698 | int ok = 0; |
699 | uint64_t total_length_size = 0; |
700 | uint8_t* mem_buf = NULL; |
701 | const int histogram_image_size = histogram_image->size; |
702 | int max_num_symbols = 0; |
703 | uint8_t* buf_rle = NULL; |
704 | HuffmanTree* huff_tree = NULL; |
705 | |
706 | // Iterate over all histograms and get the aggregate number of codes used. |
707 | for (i = 0; i < histogram_image_size; ++i) { |
708 | const VP8LHistogram* const histo = histogram_image->histograms[i]; |
709 | HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
710 | assert(histo != NULL); |
711 | for (k = 0; k < 5; ++k) { |
712 | const int num_symbols = |
713 | (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) : |
714 | (k == 4) ? NUM_DISTANCE_CODES : 256; |
715 | codes[k].num_symbols = num_symbols; |
716 | total_length_size += num_symbols; |
717 | } |
718 | } |
719 | |
720 | // Allocate and Set Huffman codes. |
721 | { |
722 | uint16_t* codes; |
723 | uint8_t* lengths; |
724 | mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, |
725 | sizeof(*lengths) + sizeof(*codes)); |
726 | if (mem_buf == NULL) goto End; |
727 | |
728 | codes = (uint16_t*)mem_buf; |
729 | lengths = (uint8_t*)&codes[total_length_size]; |
730 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
731 | const int bit_length = huffman_codes[i].num_symbols; |
732 | huffman_codes[i].codes = codes; |
733 | huffman_codes[i].code_lengths = lengths; |
734 | codes += bit_length; |
735 | lengths += bit_length; |
736 | if (max_num_symbols < bit_length) { |
737 | max_num_symbols = bit_length; |
738 | } |
739 | } |
740 | } |
741 | |
742 | buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols); |
743 | huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols, |
744 | sizeof(*huff_tree)); |
745 | if (buf_rle == NULL || huff_tree == NULL) goto End; |
746 | |
747 | // Create Huffman trees. |
748 | for (i = 0; i < histogram_image_size; ++i) { |
749 | HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
750 | VP8LHistogram* const histo = histogram_image->histograms[i]; |
751 | VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0); |
752 | VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1); |
753 | VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2); |
754 | VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3); |
755 | VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4); |
756 | } |
757 | ok = 1; |
758 | End: |
759 | WebPSafeFree(huff_tree); |
760 | WebPSafeFree(buf_rle); |
761 | if (!ok) { |
762 | WebPSafeFree(mem_buf); |
763 | memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); |
764 | } |
765 | return ok; |
766 | } |
767 | |
768 | static void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
769 | VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { |
770 | // RFC 1951 will calm you down if you are worried about this funny sequence. |
771 | // This sequence is tuned from that, but more weighted for lower symbol count, |
772 | // and more spiking histograms. |
773 | static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { |
774 | 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
775 | }; |
776 | int i; |
777 | // Throw away trailing zeros: |
778 | int codes_to_store = CODE_LENGTH_CODES; |
779 | for (; codes_to_store > 4; --codes_to_store) { |
780 | if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
781 | break; |
782 | } |
783 | } |
784 | VP8LPutBits(bw, codes_to_store - 4, 4); |
785 | for (i = 0; i < codes_to_store; ++i) { |
786 | VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3); |
787 | } |
788 | } |
789 | |
790 | static void ClearHuffmanTreeIfOnlyOneSymbol( |
791 | HuffmanTreeCode* const huffman_code) { |
792 | int k; |
793 | int count = 0; |
794 | for (k = 0; k < huffman_code->num_symbols; ++k) { |
795 | if (huffman_code->code_lengths[k] != 0) { |
796 | ++count; |
797 | if (count > 1) return; |
798 | } |
799 | } |
800 | for (k = 0; k < huffman_code->num_symbols; ++k) { |
801 | huffman_code->code_lengths[k] = 0; |
802 | huffman_code->codes[k] = 0; |
803 | } |
804 | } |
805 | |
806 | static void StoreHuffmanTreeToBitMask( |
807 | VP8LBitWriter* const bw, |
808 | const HuffmanTreeToken* const tokens, const int num_tokens, |
809 | const HuffmanTreeCode* const huffman_code) { |
810 | int i; |
811 | for (i = 0; i < num_tokens; ++i) { |
812 | const int ix = tokens[i].code; |
813 | const int = tokens[i].extra_bits; |
814 | VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]); |
815 | switch (ix) { |
816 | case 16: |
817 | VP8LPutBits(bw, extra_bits, 2); |
818 | break; |
819 | case 17: |
820 | VP8LPutBits(bw, extra_bits, 3); |
821 | break; |
822 | case 18: |
823 | VP8LPutBits(bw, extra_bits, 7); |
824 | break; |
825 | } |
826 | } |
827 | } |
828 | |
829 | // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
830 | static void StoreFullHuffmanCode(VP8LBitWriter* const bw, |
831 | HuffmanTree* const huff_tree, |
832 | HuffmanTreeToken* const tokens, |
833 | const HuffmanTreeCode* const tree) { |
834 | uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; |
835 | uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; |
836 | const int max_tokens = tree->num_symbols; |
837 | int num_tokens; |
838 | HuffmanTreeCode huffman_code; |
839 | huffman_code.num_symbols = CODE_LENGTH_CODES; |
840 | huffman_code.code_lengths = code_length_bitdepth; |
841 | huffman_code.codes = code_length_bitdepth_symbols; |
842 | |
843 | VP8LPutBits(bw, 0, 1); |
844 | num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); |
845 | { |
846 | uint32_t histogram[CODE_LENGTH_CODES] = { 0 }; |
847 | uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 }; |
848 | int i; |
849 | for (i = 0; i < num_tokens; ++i) { |
850 | ++histogram[tokens[i].code]; |
851 | } |
852 | |
853 | VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code); |
854 | } |
855 | |
856 | StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); |
857 | ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); |
858 | { |
859 | int trailing_zero_bits = 0; |
860 | int trimmed_length = num_tokens; |
861 | int write_trimmed_length; |
862 | int length; |
863 | int i = num_tokens; |
864 | while (i-- > 0) { |
865 | const int ix = tokens[i].code; |
866 | if (ix == 0 || ix == 17 || ix == 18) { |
867 | --trimmed_length; // discount trailing zeros |
868 | trailing_zero_bits += code_length_bitdepth[ix]; |
869 | if (ix == 17) { |
870 | trailing_zero_bits += 3; |
871 | } else if (ix == 18) { |
872 | trailing_zero_bits += 7; |
873 | } |
874 | } else { |
875 | break; |
876 | } |
877 | } |
878 | write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); |
879 | length = write_trimmed_length ? trimmed_length : num_tokens; |
880 | VP8LPutBits(bw, write_trimmed_length, 1); |
881 | if (write_trimmed_length) { |
882 | if (trimmed_length == 2) { |
883 | VP8LPutBits(bw, 0, 3 + 2); // nbitpairs=1, trimmed_length=2 |
884 | } else { |
885 | const int nbits = BitsLog2Floor(trimmed_length - 2); |
886 | const int nbitpairs = nbits / 2 + 1; |
887 | assert(trimmed_length > 2); |
888 | assert(nbitpairs - 1 < 8); |
889 | VP8LPutBits(bw, nbitpairs - 1, 3); |
890 | VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2); |
891 | } |
892 | } |
893 | StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); |
894 | } |
895 | } |
896 | |
897 | // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
898 | static void StoreHuffmanCode(VP8LBitWriter* const bw, |
899 | HuffmanTree* const huff_tree, |
900 | HuffmanTreeToken* const tokens, |
901 | const HuffmanTreeCode* const huffman_code) { |
902 | int i; |
903 | int count = 0; |
904 | int symbols[2] = { 0, 0 }; |
905 | const int kMaxBits = 8; |
906 | const int kMaxSymbol = 1 << kMaxBits; |
907 | |
908 | // Check whether it's a small tree. |
909 | for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { |
910 | if (huffman_code->code_lengths[i] != 0) { |
911 | if (count < 2) symbols[count] = i; |
912 | ++count; |
913 | } |
914 | } |
915 | |
916 | if (count == 0) { // emit minimal tree for empty cases |
917 | // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 |
918 | VP8LPutBits(bw, 0x01, 4); |
919 | } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { |
920 | VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. |
921 | VP8LPutBits(bw, count - 1, 1); |
922 | if (symbols[0] <= 1) { |
923 | VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value. |
924 | VP8LPutBits(bw, symbols[0], 1); |
925 | } else { |
926 | VP8LPutBits(bw, 1, 1); |
927 | VP8LPutBits(bw, symbols[0], 8); |
928 | } |
929 | if (count == 2) { |
930 | VP8LPutBits(bw, symbols[1], 8); |
931 | } |
932 | } else { |
933 | StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code); |
934 | } |
935 | } |
936 | |
937 | static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw, |
938 | const HuffmanTreeCode* const code, |
939 | int code_index) { |
940 | const int depth = code->code_lengths[code_index]; |
941 | const int symbol = code->codes[code_index]; |
942 | VP8LPutBits(bw, symbol, depth); |
943 | } |
944 | |
945 | static WEBP_INLINE void ( |
946 | VP8LBitWriter* const bw, |
947 | const HuffmanTreeCode* const code, |
948 | int code_index, |
949 | int bits, |
950 | int n_bits) { |
951 | const int depth = code->code_lengths[code_index]; |
952 | const int symbol = code->codes[code_index]; |
953 | VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits); |
954 | } |
955 | |
956 | static int StoreImageToBitMask( |
957 | VP8LBitWriter* const bw, int width, int histo_bits, |
958 | const VP8LBackwardRefs* const refs, |
959 | const uint16_t* histogram_symbols, |
960 | const HuffmanTreeCode* const huffman_codes, const WebPPicture* const pic) { |
961 | const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; |
962 | const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits); |
963 | // x and y trace the position in the image. |
964 | int x = 0; |
965 | int y = 0; |
966 | int tile_x = x & tile_mask; |
967 | int tile_y = y & tile_mask; |
968 | int histogram_ix = histogram_symbols[0]; |
969 | const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix; |
970 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
971 | while (VP8LRefsCursorOk(&c)) { |
972 | const PixOrCopy* const v = c.cur_pos; |
973 | if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) { |
974 | tile_x = x & tile_mask; |
975 | tile_y = y & tile_mask; |
976 | histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize + |
977 | (x >> histo_bits)]; |
978 | codes = huffman_codes + 5 * histogram_ix; |
979 | } |
980 | if (PixOrCopyIsLiteral(v)) { |
981 | static const uint8_t order[] = { 1, 2, 0, 3 }; |
982 | int k; |
983 | for (k = 0; k < 4; ++k) { |
984 | const int code = PixOrCopyLiteral(v, order[k]); |
985 | WriteHuffmanCode(bw, codes + k, code); |
986 | } |
987 | } else if (PixOrCopyIsCacheIdx(v)) { |
988 | const int code = PixOrCopyCacheIdx(v); |
989 | const int literal_ix = 256 + NUM_LENGTH_CODES + code; |
990 | WriteHuffmanCode(bw, codes, literal_ix); |
991 | } else { |
992 | int bits, n_bits; |
993 | int code; |
994 | |
995 | const int distance = PixOrCopyDistance(v); |
996 | VP8LPrefixEncode(v->len, &code, &n_bits, &bits); |
997 | WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits); |
998 | |
999 | // Don't write the distance with the extra bits code since |
1000 | // the distance can be up to 18 bits of extra bits, and the prefix |
1001 | // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits. |
1002 | VP8LPrefixEncode(distance, &code, &n_bits, &bits); |
1003 | WriteHuffmanCode(bw, codes + 4, code); |
1004 | VP8LPutBits(bw, bits, n_bits); |
1005 | } |
1006 | x += PixOrCopyLength(v); |
1007 | while (x >= width) { |
1008 | x -= width; |
1009 | ++y; |
1010 | } |
1011 | VP8LRefsCursorNext(&c); |
1012 | } |
1013 | if (bw->error_) { |
1014 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1015 | } |
1016 | return 1; |
1017 | } |
1018 | |
1019 | // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31. |
1020 | // pic and percent are for progress. |
1021 | static int EncodeImageNoHuffman(VP8LBitWriter* const bw, |
1022 | const uint32_t* const argb, |
1023 | VP8LHashChain* const hash_chain, |
1024 | VP8LBackwardRefs* const refs_array, int width, |
1025 | int height, int quality, int low_effort, |
1026 | const WebPPicture* const pic, int percent_range, |
1027 | int* const percent) { |
1028 | int i; |
1029 | int max_tokens = 0; |
1030 | VP8LBackwardRefs* refs; |
1031 | HuffmanTreeToken* tokens = NULL; |
1032 | HuffmanTreeCode huffman_codes[5] = {{0, NULL, NULL}}; |
1033 | const uint16_t histogram_symbols[1] = {0}; // only one tree, one symbol |
1034 | int cache_bits = 0; |
1035 | VP8LHistogramSet* histogram_image = NULL; |
1036 | HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
1037 | 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
1038 | if (huff_tree == NULL) { |
1039 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1040 | goto Error; |
1041 | } |
1042 | |
1043 | // Calculate backward references from ARGB image. |
1044 | if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, low_effort, |
1045 | pic, percent_range / 2, percent)) { |
1046 | goto Error; |
1047 | } |
1048 | if (!VP8LGetBackwardReferences(width, height, argb, quality, /*low_effort=*/0, |
1049 | kLZ77Standard | kLZ77RLE, cache_bits, |
1050 | /*do_no_cache=*/0, hash_chain, refs_array, |
1051 | &cache_bits, pic, |
1052 | percent_range - percent_range / 2, percent)) { |
1053 | goto Error; |
1054 | } |
1055 | refs = &refs_array[0]; |
1056 | histogram_image = VP8LAllocateHistogramSet(1, cache_bits); |
1057 | if (histogram_image == NULL) { |
1058 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1059 | goto Error; |
1060 | } |
1061 | VP8LHistogramSetClear(histogram_image); |
1062 | |
1063 | // Build histogram image and symbols from backward references. |
1064 | VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]); |
1065 | |
1066 | // Create Huffman bit lengths and codes for each histogram image. |
1067 | assert(histogram_image->size == 1); |
1068 | if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
1069 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1070 | goto Error; |
1071 | } |
1072 | |
1073 | // No color cache, no Huffman image. |
1074 | VP8LPutBits(bw, 0, 1); |
1075 | |
1076 | // Find maximum number of symbols for the huffman tree-set. |
1077 | for (i = 0; i < 5; ++i) { |
1078 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
1079 | if (max_tokens < codes->num_symbols) { |
1080 | max_tokens = codes->num_symbols; |
1081 | } |
1082 | } |
1083 | |
1084 | tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
1085 | if (tokens == NULL) { |
1086 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1087 | goto Error; |
1088 | } |
1089 | |
1090 | // Store Huffman codes. |
1091 | for (i = 0; i < 5; ++i) { |
1092 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
1093 | StoreHuffmanCode(bw, huff_tree, tokens, codes); |
1094 | ClearHuffmanTreeIfOnlyOneSymbol(codes); |
1095 | } |
1096 | |
1097 | // Store actual literals. |
1098 | if (!StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, huffman_codes, |
1099 | pic)) { |
1100 | goto Error; |
1101 | } |
1102 | |
1103 | Error: |
1104 | WebPSafeFree(tokens); |
1105 | WebPSafeFree(huff_tree); |
1106 | VP8LFreeHistogramSet(histogram_image); |
1107 | WebPSafeFree(huffman_codes[0].codes); |
1108 | return (pic->error_code == VP8_ENC_OK); |
1109 | } |
1110 | |
1111 | // pic and percent are for progress. |
1112 | static int EncodeImageInternal( |
1113 | VP8LBitWriter* const bw, const uint32_t* const argb, |
1114 | VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width, |
1115 | int height, int quality, int low_effort, int use_cache, |
1116 | const CrunchConfig* const config, int* cache_bits, int histogram_bits, |
1117 | size_t init_byte_position, int* const hdr_size, int* const data_size, |
1118 | const WebPPicture* const pic, int percent_range, int* const percent) { |
1119 | const uint32_t histogram_image_xysize = |
1120 | VP8LSubSampleSize(width, histogram_bits) * |
1121 | VP8LSubSampleSize(height, histogram_bits); |
1122 | int remaining_percent = percent_range; |
1123 | int percent_start = *percent; |
1124 | VP8LHistogramSet* histogram_image = NULL; |
1125 | VP8LHistogram* tmp_histo = NULL; |
1126 | int histogram_image_size = 0; |
1127 | size_t bit_array_size = 0; |
1128 | HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
1129 | 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
1130 | HuffmanTreeToken* tokens = NULL; |
1131 | HuffmanTreeCode* huffman_codes = NULL; |
1132 | uint16_t* const histogram_symbols = (uint16_t*)WebPSafeMalloc( |
1133 | histogram_image_xysize, sizeof(*histogram_symbols)); |
1134 | int sub_configs_idx; |
1135 | int cache_bits_init, write_histogram_image; |
1136 | VP8LBitWriter bw_init = *bw, bw_best; |
1137 | int hdr_size_tmp; |
1138 | VP8LHashChain hash_chain_histogram; // histogram image hash chain |
1139 | size_t bw_size_best = ~(size_t)0; |
1140 | assert(histogram_bits >= MIN_HUFFMAN_BITS); |
1141 | assert(histogram_bits <= MAX_HUFFMAN_BITS); |
1142 | assert(hdr_size != NULL); |
1143 | assert(data_size != NULL); |
1144 | |
1145 | memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram)); |
1146 | if (!VP8LBitWriterInit(&bw_best, 0)) { |
1147 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1148 | goto Error; |
1149 | } |
1150 | |
1151 | // Make sure we can allocate the different objects. |
1152 | if (huff_tree == NULL || histogram_symbols == NULL || |
1153 | !VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize)) { |
1154 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1155 | goto Error; |
1156 | } |
1157 | |
1158 | percent_range = remaining_percent / 5; |
1159 | if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, |
1160 | low_effort, pic, percent_range, percent)) { |
1161 | goto Error; |
1162 | } |
1163 | percent_start += percent_range; |
1164 | remaining_percent -= percent_range; |
1165 | |
1166 | if (use_cache) { |
1167 | // If the value is different from zero, it has been set during the |
1168 | // palette analysis. |
1169 | cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits; |
1170 | } else { |
1171 | cache_bits_init = 0; |
1172 | } |
1173 | // If several iterations will happen, clone into bw_best. |
1174 | if ((config->sub_configs_size_ > 1 || config->sub_configs_[0].do_no_cache_) && |
1175 | !VP8LBitWriterClone(bw, &bw_best)) { |
1176 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1177 | goto Error; |
1178 | } |
1179 | |
1180 | for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_; |
1181 | ++sub_configs_idx) { |
1182 | const CrunchSubConfig* const sub_config = |
1183 | &config->sub_configs_[sub_configs_idx]; |
1184 | int cache_bits_best, i_cache; |
1185 | int i_remaining_percent = remaining_percent / config->sub_configs_size_; |
1186 | int i_percent_range = i_remaining_percent / 4; |
1187 | i_remaining_percent -= i_percent_range; |
1188 | |
1189 | if (!VP8LGetBackwardReferences( |
1190 | width, height, argb, quality, low_effort, sub_config->lz77_, |
1191 | cache_bits_init, sub_config->do_no_cache_, hash_chain, |
1192 | &refs_array[0], &cache_bits_best, pic, i_percent_range, percent)) { |
1193 | goto Error; |
1194 | } |
1195 | |
1196 | for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) { |
1197 | const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0; |
1198 | // Speed-up: no need to study the no-cache case if it was already studied |
1199 | // in i_cache == 0. |
1200 | if (i_cache == 1 && cache_bits_best == 0) break; |
1201 | |
1202 | // Reset the bit writer for this iteration. |
1203 | VP8LBitWriterReset(&bw_init, bw); |
1204 | |
1205 | // Build histogram image and symbols from backward references. |
1206 | histogram_image = |
1207 | VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp); |
1208 | tmp_histo = VP8LAllocateHistogram(cache_bits_tmp); |
1209 | if (histogram_image == NULL || tmp_histo == NULL) { |
1210 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1211 | goto Error; |
1212 | } |
1213 | |
1214 | i_percent_range = i_remaining_percent / 3; |
1215 | i_remaining_percent -= i_percent_range; |
1216 | if (!VP8LGetHistoImageSymbols( |
1217 | width, height, &refs_array[i_cache], quality, low_effort, |
1218 | histogram_bits, cache_bits_tmp, histogram_image, tmp_histo, |
1219 | histogram_symbols, pic, i_percent_range, percent)) { |
1220 | goto Error; |
1221 | } |
1222 | // Create Huffman bit lengths and codes for each histogram image. |
1223 | histogram_image_size = histogram_image->size; |
1224 | bit_array_size = 5 * histogram_image_size; |
1225 | huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, |
1226 | sizeof(*huffman_codes)); |
1227 | // Note: some histogram_image entries may point to tmp_histos[], so the |
1228 | // latter need to outlive the following call to |
1229 | // GetHuffBitLengthsAndCodes(). |
1230 | if (huffman_codes == NULL || |
1231 | !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
1232 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1233 | goto Error; |
1234 | } |
1235 | // Free combined histograms. |
1236 | VP8LFreeHistogramSet(histogram_image); |
1237 | histogram_image = NULL; |
1238 | |
1239 | // Free scratch histograms. |
1240 | VP8LFreeHistogram(tmp_histo); |
1241 | tmp_histo = NULL; |
1242 | |
1243 | // Color Cache parameters. |
1244 | if (cache_bits_tmp > 0) { |
1245 | VP8LPutBits(bw, 1, 1); |
1246 | VP8LPutBits(bw, cache_bits_tmp, 4); |
1247 | } else { |
1248 | VP8LPutBits(bw, 0, 1); |
1249 | } |
1250 | |
1251 | // Huffman image + meta huffman. |
1252 | write_histogram_image = (histogram_image_size > 1); |
1253 | VP8LPutBits(bw, write_histogram_image, 1); |
1254 | if (write_histogram_image) { |
1255 | uint32_t* const histogram_argb = (uint32_t*)WebPSafeMalloc( |
1256 | histogram_image_xysize, sizeof(*histogram_argb)); |
1257 | int max_index = 0; |
1258 | uint32_t i; |
1259 | if (histogram_argb == NULL) { |
1260 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1261 | goto Error; |
1262 | } |
1263 | for (i = 0; i < histogram_image_xysize; ++i) { |
1264 | const int symbol_index = histogram_symbols[i] & 0xffff; |
1265 | histogram_argb[i] = (symbol_index << 8); |
1266 | if (symbol_index >= max_index) { |
1267 | max_index = symbol_index + 1; |
1268 | } |
1269 | } |
1270 | histogram_image_size = max_index; |
1271 | |
1272 | VP8LPutBits(bw, histogram_bits - 2, 3); |
1273 | i_percent_range = i_remaining_percent / 2; |
1274 | i_remaining_percent -= i_percent_range; |
1275 | if (!EncodeImageNoHuffman( |
1276 | bw, histogram_argb, &hash_chain_histogram, &refs_array[2], |
1277 | VP8LSubSampleSize(width, histogram_bits), |
1278 | VP8LSubSampleSize(height, histogram_bits), quality, low_effort, |
1279 | pic, i_percent_range, percent)) { |
1280 | WebPSafeFree(histogram_argb); |
1281 | goto Error; |
1282 | } |
1283 | WebPSafeFree(histogram_argb); |
1284 | } |
1285 | |
1286 | // Store Huffman codes. |
1287 | { |
1288 | int i; |
1289 | int max_tokens = 0; |
1290 | // Find maximum number of symbols for the huffman tree-set. |
1291 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
1292 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
1293 | if (max_tokens < codes->num_symbols) { |
1294 | max_tokens = codes->num_symbols; |
1295 | } |
1296 | } |
1297 | tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
1298 | if (tokens == NULL) { |
1299 | WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1300 | goto Error; |
1301 | } |
1302 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
1303 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
1304 | StoreHuffmanCode(bw, huff_tree, tokens, codes); |
1305 | ClearHuffmanTreeIfOnlyOneSymbol(codes); |
1306 | } |
1307 | } |
1308 | // Store actual literals. |
1309 | hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position); |
1310 | if (!StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache], |
1311 | histogram_symbols, huffman_codes, pic)) { |
1312 | goto Error; |
1313 | } |
1314 | // Keep track of the smallest image so far. |
1315 | if (VP8LBitWriterNumBytes(bw) < bw_size_best) { |
1316 | bw_size_best = VP8LBitWriterNumBytes(bw); |
1317 | *cache_bits = cache_bits_tmp; |
1318 | *hdr_size = hdr_size_tmp; |
1319 | *data_size = |
1320 | (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size); |
1321 | VP8LBitWriterSwap(bw, &bw_best); |
1322 | } |
1323 | WebPSafeFree(tokens); |
1324 | tokens = NULL; |
1325 | if (huffman_codes != NULL) { |
1326 | WebPSafeFree(huffman_codes->codes); |
1327 | WebPSafeFree(huffman_codes); |
1328 | huffman_codes = NULL; |
1329 | } |
1330 | } |
1331 | } |
1332 | VP8LBitWriterSwap(bw, &bw_best); |
1333 | |
1334 | if (!WebPReportProgress(pic, percent_start + remaining_percent, percent)) { |
1335 | goto Error; |
1336 | } |
1337 | |
1338 | Error: |
1339 | WebPSafeFree(tokens); |
1340 | WebPSafeFree(huff_tree); |
1341 | VP8LFreeHistogramSet(histogram_image); |
1342 | VP8LFreeHistogram(tmp_histo); |
1343 | VP8LHashChainClear(&hash_chain_histogram); |
1344 | if (huffman_codes != NULL) { |
1345 | WebPSafeFree(huffman_codes->codes); |
1346 | WebPSafeFree(huffman_codes); |
1347 | } |
1348 | WebPSafeFree(histogram_symbols); |
1349 | VP8LBitWriterWipeOut(&bw_best); |
1350 | return (pic->error_code == VP8_ENC_OK); |
1351 | } |
1352 | |
1353 | // ----------------------------------------------------------------------------- |
1354 | // Transforms |
1355 | |
1356 | static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height, |
1357 | VP8LBitWriter* const bw) { |
1358 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1359 | VP8LPutBits(bw, SUBTRACT_GREEN_TRANSFORM, 2); |
1360 | VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); |
1361 | } |
1362 | |
1363 | static int ApplyPredictFilter(const VP8LEncoder* const enc, int width, |
1364 | int height, int quality, int low_effort, |
1365 | int used_subtract_green, VP8LBitWriter* const bw, |
1366 | int percent_range, int* const percent) { |
1367 | const int pred_bits = enc->transform_bits_; |
1368 | const int transform_width = VP8LSubSampleSize(width, pred_bits); |
1369 | const int transform_height = VP8LSubSampleSize(height, pred_bits); |
1370 | // we disable near-lossless quantization if palette is used. |
1371 | const int near_lossless_strength = |
1372 | enc->use_palette_ ? 100 : enc->config_->near_lossless; |
1373 | |
1374 | if (!VP8LResidualImage( |
1375 | width, height, pred_bits, low_effort, enc->argb_, enc->argb_scratch_, |
1376 | enc->transform_data_, near_lossless_strength, enc->config_->exact, |
1377 | used_subtract_green, enc->pic_, percent_range / 2, percent)) { |
1378 | return 0; |
1379 | } |
1380 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1381 | VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); |
1382 | assert(pred_bits >= 2); |
1383 | VP8LPutBits(bw, pred_bits - 2, 3); |
1384 | return EncodeImageNoHuffman( |
1385 | bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_, |
1386 | (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height, |
1387 | quality, low_effort, enc->pic_, percent_range - percent_range / 2, |
1388 | percent); |
1389 | } |
1390 | |
1391 | static int ApplyCrossColorFilter(const VP8LEncoder* const enc, int width, |
1392 | int height, int quality, int low_effort, |
1393 | VP8LBitWriter* const bw, int percent_range, |
1394 | int* const percent) { |
1395 | const int ccolor_transform_bits = enc->transform_bits_; |
1396 | const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); |
1397 | const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); |
1398 | |
1399 | if (!VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality, |
1400 | enc->argb_, enc->transform_data_, enc->pic_, |
1401 | percent_range / 2, percent)) { |
1402 | return 0; |
1403 | } |
1404 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1405 | VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2); |
1406 | assert(ccolor_transform_bits >= 2); |
1407 | VP8LPutBits(bw, ccolor_transform_bits - 2, 3); |
1408 | return EncodeImageNoHuffman( |
1409 | bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_, |
1410 | (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height, |
1411 | quality, low_effort, enc->pic_, percent_range - percent_range / 2, |
1412 | percent); |
1413 | } |
1414 | |
1415 | // ----------------------------------------------------------------------------- |
1416 | |
1417 | static int (const WebPPicture* const pic, size_t riff_size, |
1418 | size_t vp8l_size) { |
1419 | uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { |
1420 | 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', |
1421 | 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, |
1422 | }; |
1423 | PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); |
1424 | PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); |
1425 | return pic->writer(riff, sizeof(riff), pic); |
1426 | } |
1427 | |
1428 | static int WriteImageSize(const WebPPicture* const pic, |
1429 | VP8LBitWriter* const bw) { |
1430 | const int width = pic->width - 1; |
1431 | const int height = pic->height - 1; |
1432 | assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); |
1433 | |
1434 | VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS); |
1435 | VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS); |
1436 | return !bw->error_; |
1437 | } |
1438 | |
1439 | static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { |
1440 | VP8LPutBits(bw, has_alpha, 1); |
1441 | VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS); |
1442 | return !bw->error_; |
1443 | } |
1444 | |
1445 | static int WriteImage(const WebPPicture* const pic, VP8LBitWriter* const bw, |
1446 | size_t* const coded_size) { |
1447 | const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); |
1448 | const size_t webpll_size = VP8LBitWriterNumBytes(bw); |
1449 | const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; |
1450 | const size_t pad = vp8l_size & 1; |
1451 | const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; |
1452 | *coded_size = 0; |
1453 | |
1454 | if (bw->error_) { |
1455 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1456 | } |
1457 | |
1458 | if (!WriteRiffHeader(pic, riff_size, vp8l_size) || |
1459 | !pic->writer(webpll_data, webpll_size, pic)) { |
1460 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE); |
1461 | } |
1462 | |
1463 | if (pad) { |
1464 | const uint8_t pad_byte[1] = { 0 }; |
1465 | if (!pic->writer(pad_byte, 1, pic)) { |
1466 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE); |
1467 | } |
1468 | } |
1469 | *coded_size = CHUNK_HEADER_SIZE + riff_size; |
1470 | return 1; |
1471 | } |
1472 | |
1473 | // ----------------------------------------------------------------------------- |
1474 | |
1475 | static void ClearTransformBuffer(VP8LEncoder* const enc) { |
1476 | WebPSafeFree(enc->transform_mem_); |
1477 | enc->transform_mem_ = NULL; |
1478 | enc->transform_mem_size_ = 0; |
1479 | } |
1480 | |
1481 | // Allocates the memory for argb (W x H) buffer, 2 rows of context for |
1482 | // prediction and transform data. |
1483 | // Flags influencing the memory allocated: |
1484 | // enc->transform_bits_ |
1485 | // enc->use_predict_, enc->use_cross_color_ |
1486 | static int AllocateTransformBuffer(VP8LEncoder* const enc, int width, |
1487 | int height) { |
1488 | const uint64_t image_size = width * height; |
1489 | // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra |
1490 | // pixel in each, plus 2 regular scanlines of bytes. |
1491 | // TODO(skal): Clean up by using arithmetic in bytes instead of words. |
1492 | const uint64_t argb_scratch_size = |
1493 | enc->use_predict_ ? (width + 1) * 2 + (width * 2 + sizeof(uint32_t) - 1) / |
1494 | sizeof(uint32_t) |
1495 | : 0; |
1496 | const uint64_t transform_data_size = |
1497 | (enc->use_predict_ || enc->use_cross_color_) |
1498 | ? VP8LSubSampleSize(width, enc->transform_bits_) * |
1499 | VP8LSubSampleSize(height, enc->transform_bits_) |
1500 | : 0; |
1501 | const uint64_t max_alignment_in_words = |
1502 | (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t); |
1503 | const uint64_t mem_size = image_size + max_alignment_in_words + |
1504 | argb_scratch_size + max_alignment_in_words + |
1505 | transform_data_size; |
1506 | uint32_t* mem = enc->transform_mem_; |
1507 | if (mem == NULL || mem_size > enc->transform_mem_size_) { |
1508 | ClearTransformBuffer(enc); |
1509 | mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem)); |
1510 | if (mem == NULL) { |
1511 | return WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1512 | } |
1513 | enc->transform_mem_ = mem; |
1514 | enc->transform_mem_size_ = (size_t)mem_size; |
1515 | enc->argb_content_ = kEncoderNone; |
1516 | } |
1517 | enc->argb_ = mem; |
1518 | mem = (uint32_t*)WEBP_ALIGN(mem + image_size); |
1519 | enc->argb_scratch_ = mem; |
1520 | mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size); |
1521 | enc->transform_data_ = mem; |
1522 | |
1523 | enc->current_width_ = width; |
1524 | return 1; |
1525 | } |
1526 | |
1527 | static int MakeInputImageCopy(VP8LEncoder* const enc) { |
1528 | const WebPPicture* const picture = enc->pic_; |
1529 | const int width = picture->width; |
1530 | const int height = picture->height; |
1531 | |
1532 | if (!AllocateTransformBuffer(enc, width, height)) return 0; |
1533 | if (enc->argb_content_ == kEncoderARGB) return 1; |
1534 | |
1535 | { |
1536 | uint32_t* dst = enc->argb_; |
1537 | const uint32_t* src = picture->argb; |
1538 | int y; |
1539 | for (y = 0; y < height; ++y) { |
1540 | memcpy(dst, src, width * sizeof(*dst)); |
1541 | dst += width; |
1542 | src += picture->argb_stride; |
1543 | } |
1544 | } |
1545 | enc->argb_content_ = kEncoderARGB; |
1546 | assert(enc->current_width_ == width); |
1547 | return 1; |
1548 | } |
1549 | |
1550 | // ----------------------------------------------------------------------------- |
1551 | |
1552 | #define APPLY_PALETTE_GREEDY_MAX 4 |
1553 | |
1554 | static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[], |
1555 | int palette_size, |
1556 | uint32_t color) { |
1557 | (void)palette_size; |
1558 | assert(palette_size < APPLY_PALETTE_GREEDY_MAX); |
1559 | assert(3 == APPLY_PALETTE_GREEDY_MAX - 1); |
1560 | if (color == palette[0]) return 0; |
1561 | if (color == palette[1]) return 1; |
1562 | if (color == palette[2]) return 2; |
1563 | return 3; |
1564 | } |
1565 | |
1566 | static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) { |
1567 | // Focus on the green color. |
1568 | return (color >> 8) & 0xff; |
1569 | } |
1570 | |
1571 | #define PALETTE_INV_SIZE_BITS 11 |
1572 | #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS) |
1573 | |
1574 | static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) { |
1575 | // Forget about alpha. |
1576 | return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >> |
1577 | (32 - PALETTE_INV_SIZE_BITS); |
1578 | } |
1579 | |
1580 | static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) { |
1581 | // Forget about alpha. |
1582 | return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >> |
1583 | (32 - PALETTE_INV_SIZE_BITS); |
1584 | } |
1585 | |
1586 | // Use 1 pixel cache for ARGB pixels. |
1587 | #define APPLY_PALETTE_FOR(COLOR_INDEX) do { \ |
1588 | uint32_t prev_pix = palette[0]; \ |
1589 | uint32_t prev_idx = 0; \ |
1590 | for (y = 0; y < height; ++y) { \ |
1591 | for (x = 0; x < width; ++x) { \ |
1592 | const uint32_t pix = src[x]; \ |
1593 | if (pix != prev_pix) { \ |
1594 | prev_idx = COLOR_INDEX; \ |
1595 | prev_pix = pix; \ |
1596 | } \ |
1597 | tmp_row[x] = prev_idx; \ |
1598 | } \ |
1599 | VP8LBundleColorMap(tmp_row, width, xbits, dst); \ |
1600 | src += src_stride; \ |
1601 | dst += dst_stride; \ |
1602 | } \ |
1603 | } while (0) |
1604 | |
1605 | // Remap argb values in src[] to packed palettes entries in dst[] |
1606 | // using 'row' as a temporary buffer of size 'width'. |
1607 | // We assume that all src[] values have a corresponding entry in the palette. |
1608 | // Note: src[] can be the same as dst[] |
1609 | static int ApplyPalette(const uint32_t* src, uint32_t src_stride, uint32_t* dst, |
1610 | uint32_t dst_stride, const uint32_t* palette, |
1611 | int palette_size, int width, int height, int xbits, |
1612 | const WebPPicture* const pic) { |
1613 | // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be |
1614 | // made to work in-place. |
1615 | uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row)); |
1616 | int x, y; |
1617 | |
1618 | if (tmp_row == NULL) { |
1619 | return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1620 | } |
1621 | |
1622 | if (palette_size < APPLY_PALETTE_GREEDY_MAX) { |
1623 | APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix)); |
1624 | } else { |
1625 | int i, j; |
1626 | uint16_t buffer[PALETTE_INV_SIZE]; |
1627 | uint32_t (*const hash_functions[])(uint32_t) = { |
1628 | ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2 |
1629 | }; |
1630 | |
1631 | // Try to find a perfect hash function able to go from a color to an index |
1632 | // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go |
1633 | // from color to index in palette. |
1634 | for (i = 0; i < 3; ++i) { |
1635 | int use_LUT = 1; |
1636 | // Set each element in buffer to max uint16_t. |
1637 | memset(buffer, 0xff, sizeof(buffer)); |
1638 | for (j = 0; j < palette_size; ++j) { |
1639 | const uint32_t ind = hash_functions[i](palette[j]); |
1640 | if (buffer[ind] != 0xffffu) { |
1641 | use_LUT = 0; |
1642 | break; |
1643 | } else { |
1644 | buffer[ind] = j; |
1645 | } |
1646 | } |
1647 | if (use_LUT) break; |
1648 | } |
1649 | |
1650 | if (i == 0) { |
1651 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]); |
1652 | } else if (i == 1) { |
1653 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]); |
1654 | } else if (i == 2) { |
1655 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]); |
1656 | } else { |
1657 | uint32_t idx_map[MAX_PALETTE_SIZE]; |
1658 | uint32_t palette_sorted[MAX_PALETTE_SIZE]; |
1659 | PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map); |
1660 | APPLY_PALETTE_FOR( |
1661 | idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]); |
1662 | } |
1663 | } |
1664 | WebPSafeFree(tmp_row); |
1665 | return 1; |
1666 | } |
1667 | #undef APPLY_PALETTE_FOR |
1668 | #undef PALETTE_INV_SIZE_BITS |
1669 | #undef PALETTE_INV_SIZE |
1670 | #undef APPLY_PALETTE_GREEDY_MAX |
1671 | |
1672 | // Note: Expects "enc->palette_" to be set properly. |
1673 | static int MapImageFromPalette(VP8LEncoder* const enc, int in_place) { |
1674 | const WebPPicture* const pic = enc->pic_; |
1675 | const int width = pic->width; |
1676 | const int height = pic->height; |
1677 | const uint32_t* const palette = enc->palette_; |
1678 | const uint32_t* src = in_place ? enc->argb_ : pic->argb; |
1679 | const int src_stride = in_place ? enc->current_width_ : pic->argb_stride; |
1680 | const int palette_size = enc->palette_size_; |
1681 | int xbits; |
1682 | |
1683 | // Replace each input pixel by corresponding palette index. |
1684 | // This is done line by line. |
1685 | if (palette_size <= 4) { |
1686 | xbits = (palette_size <= 2) ? 3 : 2; |
1687 | } else { |
1688 | xbits = (palette_size <= 16) ? 1 : 0; |
1689 | } |
1690 | |
1691 | if (!AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height)) { |
1692 | return 0; |
1693 | } |
1694 | if (!ApplyPalette(src, src_stride, |
1695 | enc->argb_, enc->current_width_, |
1696 | palette, palette_size, width, height, xbits, pic)) { |
1697 | return 0; |
1698 | } |
1699 | enc->argb_content_ = kEncoderPalette; |
1700 | return 1; |
1701 | } |
1702 | |
1703 | // Save palette_[] to bitstream. |
1704 | static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort, |
1705 | VP8LEncoder* const enc, |
1706 | int percent_range, int* const percent) { |
1707 | int i; |
1708 | uint32_t tmp_palette[MAX_PALETTE_SIZE]; |
1709 | const int palette_size = enc->palette_size_; |
1710 | const uint32_t* const palette = enc->palette_; |
1711 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1712 | VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2); |
1713 | assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE); |
1714 | VP8LPutBits(bw, palette_size - 1, 8); |
1715 | for (i = palette_size - 1; i >= 1; --i) { |
1716 | tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); |
1717 | } |
1718 | tmp_palette[0] = palette[0]; |
1719 | return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_, |
1720 | &enc->refs_[0], palette_size, 1, /*quality=*/20, |
1721 | low_effort, enc->pic_, percent_range, percent); |
1722 | } |
1723 | |
1724 | // ----------------------------------------------------------------------------- |
1725 | // VP8LEncoder |
1726 | |
1727 | static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, |
1728 | const WebPPicture* const picture) { |
1729 | VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc)); |
1730 | if (enc == NULL) { |
1731 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1732 | return NULL; |
1733 | } |
1734 | enc->config_ = config; |
1735 | enc->pic_ = picture; |
1736 | enc->argb_content_ = kEncoderNone; |
1737 | |
1738 | VP8LEncDspInit(); |
1739 | |
1740 | return enc; |
1741 | } |
1742 | |
1743 | static void VP8LEncoderDelete(VP8LEncoder* enc) { |
1744 | if (enc != NULL) { |
1745 | int i; |
1746 | VP8LHashChainClear(&enc->hash_chain_); |
1747 | for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]); |
1748 | ClearTransformBuffer(enc); |
1749 | WebPSafeFree(enc); |
1750 | } |
1751 | } |
1752 | |
1753 | // ----------------------------------------------------------------------------- |
1754 | // Main call |
1755 | |
1756 | typedef struct { |
1757 | const WebPConfig* config_; |
1758 | const WebPPicture* picture_; |
1759 | VP8LBitWriter* bw_; |
1760 | VP8LEncoder* enc_; |
1761 | int use_cache_; |
1762 | CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX]; |
1763 | int num_crunch_configs_; |
1764 | int red_and_blue_always_zero_; |
1765 | WebPAuxStats* stats_; |
1766 | } StreamEncodeContext; |
1767 | |
1768 | static int EncodeStreamHook(void* input, void* data2) { |
1769 | StreamEncodeContext* const params = (StreamEncodeContext*)input; |
1770 | const WebPConfig* const config = params->config_; |
1771 | const WebPPicture* const picture = params->picture_; |
1772 | VP8LBitWriter* const bw = params->bw_; |
1773 | VP8LEncoder* const enc = params->enc_; |
1774 | const int use_cache = params->use_cache_; |
1775 | const CrunchConfig* const crunch_configs = params->crunch_configs_; |
1776 | const int num_crunch_configs = params->num_crunch_configs_; |
1777 | const int red_and_blue_always_zero = params->red_and_blue_always_zero_; |
1778 | #if !defined(WEBP_DISABLE_STATS) |
1779 | WebPAuxStats* const stats = params->stats_; |
1780 | #endif |
1781 | const int quality = (int)config->quality; |
1782 | const int low_effort = (config->method == 0); |
1783 | #if (WEBP_NEAR_LOSSLESS == 1) |
1784 | const int width = picture->width; |
1785 | #endif |
1786 | const int height = picture->height; |
1787 | const size_t byte_position = VP8LBitWriterNumBytes(bw); |
1788 | int percent = 2; // for WebPProgressHook |
1789 | #if (WEBP_NEAR_LOSSLESS == 1) |
1790 | int use_near_lossless = 0; |
1791 | #endif |
1792 | int hdr_size = 0; |
1793 | int data_size = 0; |
1794 | int use_delta_palette = 0; |
1795 | int idx; |
1796 | size_t best_size = ~(size_t)0; |
1797 | VP8LBitWriter bw_init = *bw, bw_best; |
1798 | (void)data2; |
1799 | |
1800 | if (!VP8LBitWriterInit(&bw_best, 0) || |
1801 | (num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) { |
1802 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1803 | goto Error; |
1804 | } |
1805 | |
1806 | for (idx = 0; idx < num_crunch_configs; ++idx) { |
1807 | const int entropy_idx = crunch_configs[idx].entropy_idx_; |
1808 | int remaining_percent = 97 / num_crunch_configs, percent_range; |
1809 | enc->use_palette_ = |
1810 | (entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial); |
1811 | enc->use_subtract_green_ = |
1812 | (entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen); |
1813 | enc->use_predict_ = (entropy_idx == kSpatial) || |
1814 | (entropy_idx == kSpatialSubGreen) || |
1815 | (entropy_idx == kPaletteAndSpatial); |
1816 | // When using a palette, R/B==0, hence no need to test for cross-color. |
1817 | if (low_effort || enc->use_palette_) { |
1818 | enc->use_cross_color_ = 0; |
1819 | } else { |
1820 | enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_; |
1821 | } |
1822 | // Reset any parameter in the encoder that is set in the previous iteration. |
1823 | enc->cache_bits_ = 0; |
1824 | VP8LBackwardRefsClear(&enc->refs_[0]); |
1825 | VP8LBackwardRefsClear(&enc->refs_[1]); |
1826 | |
1827 | #if (WEBP_NEAR_LOSSLESS == 1) |
1828 | // Apply near-lossless preprocessing. |
1829 | use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ && |
1830 | !enc->use_predict_; |
1831 | if (use_near_lossless) { |
1832 | if (!AllocateTransformBuffer(enc, width, height)) goto Error; |
1833 | if ((enc->argb_content_ != kEncoderNearLossless) && |
1834 | !VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) { |
1835 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1836 | goto Error; |
1837 | } |
1838 | enc->argb_content_ = kEncoderNearLossless; |
1839 | } else { |
1840 | enc->argb_content_ = kEncoderNone; |
1841 | } |
1842 | #else |
1843 | enc->argb_content_ = kEncoderNone; |
1844 | #endif |
1845 | |
1846 | // Encode palette |
1847 | if (enc->use_palette_) { |
1848 | if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) { |
1849 | // Nothing to do, we have already sorted the palette. |
1850 | memcpy(enc->palette_, enc->palette_sorted_, |
1851 | enc->palette_size_ * sizeof(*enc->palette_)); |
1852 | } else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) { |
1853 | PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_, |
1854 | enc->palette_); |
1855 | } else { |
1856 | assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng); |
1857 | if (!PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_, |
1858 | enc->palette_size_, enc->palette_)) { |
1859 | goto Error; |
1860 | } |
1861 | } |
1862 | percent_range = remaining_percent / 4; |
1863 | if (!EncodePalette(bw, low_effort, enc, percent_range, &percent)) { |
1864 | goto Error; |
1865 | } |
1866 | remaining_percent -= percent_range; |
1867 | if (!MapImageFromPalette(enc, use_delta_palette)) goto Error; |
1868 | // If using a color cache, do not have it bigger than the number of |
1869 | // colors. |
1870 | if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) { |
1871 | enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1; |
1872 | } |
1873 | } |
1874 | if (!use_delta_palette) { |
1875 | // In case image is not packed. |
1876 | if (enc->argb_content_ != kEncoderNearLossless && |
1877 | enc->argb_content_ != kEncoderPalette) { |
1878 | if (!MakeInputImageCopy(enc)) goto Error; |
1879 | } |
1880 | |
1881 | // ----------------------------------------------------------------------- |
1882 | // Apply transforms and write transform data. |
1883 | |
1884 | if (enc->use_subtract_green_) { |
1885 | ApplySubtractGreen(enc, enc->current_width_, height, bw); |
1886 | } |
1887 | |
1888 | if (enc->use_predict_) { |
1889 | percent_range = remaining_percent / 3; |
1890 | if (!ApplyPredictFilter(enc, enc->current_width_, height, quality, |
1891 | low_effort, enc->use_subtract_green_, bw, |
1892 | percent_range, &percent)) { |
1893 | goto Error; |
1894 | } |
1895 | remaining_percent -= percent_range; |
1896 | } |
1897 | |
1898 | if (enc->use_cross_color_) { |
1899 | percent_range = remaining_percent / 2; |
1900 | if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality, |
1901 | low_effort, bw, percent_range, &percent)) { |
1902 | goto Error; |
1903 | } |
1904 | remaining_percent -= percent_range; |
1905 | } |
1906 | } |
1907 | |
1908 | VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms. |
1909 | |
1910 | // ------------------------------------------------------------------------- |
1911 | // Encode and write the transformed image. |
1912 | if (!EncodeImageInternal( |
1913 | bw, enc->argb_, &enc->hash_chain_, enc->refs_, enc->current_width_, |
1914 | height, quality, low_effort, use_cache, &crunch_configs[idx], |
1915 | &enc->cache_bits_, enc->histo_bits_, byte_position, &hdr_size, |
1916 | &data_size, picture, remaining_percent, &percent)) { |
1917 | goto Error; |
1918 | } |
1919 | |
1920 | // If we are better than what we already have. |
1921 | if (VP8LBitWriterNumBytes(bw) < best_size) { |
1922 | best_size = VP8LBitWriterNumBytes(bw); |
1923 | // Store the BitWriter. |
1924 | VP8LBitWriterSwap(bw, &bw_best); |
1925 | #if !defined(WEBP_DISABLE_STATS) |
1926 | // Update the stats. |
1927 | if (stats != NULL) { |
1928 | stats->lossless_features = 0; |
1929 | if (enc->use_predict_) stats->lossless_features |= 1; |
1930 | if (enc->use_cross_color_) stats->lossless_features |= 2; |
1931 | if (enc->use_subtract_green_) stats->lossless_features |= 4; |
1932 | if (enc->use_palette_) stats->lossless_features |= 8; |
1933 | stats->histogram_bits = enc->histo_bits_; |
1934 | stats->transform_bits = enc->transform_bits_; |
1935 | stats->cache_bits = enc->cache_bits_; |
1936 | stats->palette_size = enc->palette_size_; |
1937 | stats->lossless_size = (int)(best_size - byte_position); |
1938 | stats->lossless_hdr_size = hdr_size; |
1939 | stats->lossless_data_size = data_size; |
1940 | } |
1941 | #endif |
1942 | } |
1943 | // Reset the bit writer for the following iteration if any. |
1944 | if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw); |
1945 | } |
1946 | VP8LBitWriterSwap(&bw_best, bw); |
1947 | |
1948 | Error: |
1949 | VP8LBitWriterWipeOut(&bw_best); |
1950 | // The hook should return false in case of error. |
1951 | return (params->picture_->error_code == VP8_ENC_OK); |
1952 | } |
1953 | |
1954 | int VP8LEncodeStream(const WebPConfig* const config, |
1955 | const WebPPicture* const picture, |
1956 | VP8LBitWriter* const bw_main, int use_cache) { |
1957 | VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture); |
1958 | VP8LEncoder* enc_side = NULL; |
1959 | CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX]; |
1960 | int num_crunch_configs_main, num_crunch_configs_side = 0; |
1961 | int idx; |
1962 | int red_and_blue_always_zero = 0; |
1963 | WebPWorker worker_main, worker_side; |
1964 | StreamEncodeContext params_main, params_side; |
1965 | // The main thread uses picture->stats, the side thread uses stats_side. |
1966 | WebPAuxStats stats_side; |
1967 | VP8LBitWriter bw_side; |
1968 | WebPPicture picture_side; |
1969 | const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface(); |
1970 | int ok_main; |
1971 | |
1972 | if (enc_main == NULL || !VP8LBitWriterInit(&bw_side, 0)) { |
1973 | VP8LEncoderDelete(enc_main); |
1974 | return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1975 | } |
1976 | |
1977 | // Avoid "garbage value" error from Clang's static analysis tool. |
1978 | WebPPictureInit(&picture_side); |
1979 | |
1980 | // Analyze image (entropy, num_palettes etc) |
1981 | if (!EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main, |
1982 | &red_and_blue_always_zero) || |
1983 | !EncoderInit(enc_main)) { |
1984 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1985 | goto Error; |
1986 | } |
1987 | |
1988 | // Split the configs between the main and side threads (if any). |
1989 | if (config->thread_level > 0) { |
1990 | num_crunch_configs_side = num_crunch_configs_main / 2; |
1991 | for (idx = 0; idx < num_crunch_configs_side; ++idx) { |
1992 | params_side.crunch_configs_[idx] = |
1993 | crunch_configs[num_crunch_configs_main - num_crunch_configs_side + |
1994 | idx]; |
1995 | } |
1996 | params_side.num_crunch_configs_ = num_crunch_configs_side; |
1997 | } |
1998 | num_crunch_configs_main -= num_crunch_configs_side; |
1999 | for (idx = 0; idx < num_crunch_configs_main; ++idx) { |
2000 | params_main.crunch_configs_[idx] = crunch_configs[idx]; |
2001 | } |
2002 | params_main.num_crunch_configs_ = num_crunch_configs_main; |
2003 | |
2004 | // Fill in the parameters for the thread workers. |
2005 | { |
2006 | const int params_size = (num_crunch_configs_side > 0) ? 2 : 1; |
2007 | for (idx = 0; idx < params_size; ++idx) { |
2008 | // Create the parameters for each worker. |
2009 | WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side; |
2010 | StreamEncodeContext* const param = |
2011 | (idx == 0) ? ¶ms_main : ¶ms_side; |
2012 | param->config_ = config; |
2013 | param->use_cache_ = use_cache; |
2014 | param->red_and_blue_always_zero_ = red_and_blue_always_zero; |
2015 | if (idx == 0) { |
2016 | param->picture_ = picture; |
2017 | param->stats_ = picture->stats; |
2018 | param->bw_ = bw_main; |
2019 | param->enc_ = enc_main; |
2020 | } else { |
2021 | // Create a side picture (error_code is not thread-safe). |
2022 | if (!WebPPictureView(picture, /*left=*/0, /*top=*/0, picture->width, |
2023 | picture->height, &picture_side)) { |
2024 | assert(0); |
2025 | } |
2026 | picture_side.progress_hook = NULL; // Progress hook is not thread-safe. |
2027 | param->picture_ = &picture_side; // No need to free a view afterwards. |
2028 | param->stats_ = (picture->stats == NULL) ? NULL : &stats_side; |
2029 | // Create a side bit writer. |
2030 | if (!VP8LBitWriterClone(bw_main, &bw_side)) { |
2031 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2032 | goto Error; |
2033 | } |
2034 | param->bw_ = &bw_side; |
2035 | // Create a side encoder. |
2036 | enc_side = VP8LEncoderNew(config, &picture_side); |
2037 | if (enc_side == NULL || !EncoderInit(enc_side)) { |
2038 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2039 | goto Error; |
2040 | } |
2041 | // Copy the values that were computed for the main encoder. |
2042 | enc_side->histo_bits_ = enc_main->histo_bits_; |
2043 | enc_side->transform_bits_ = enc_main->transform_bits_; |
2044 | enc_side->palette_size_ = enc_main->palette_size_; |
2045 | memcpy(enc_side->palette_, enc_main->palette_, |
2046 | sizeof(enc_main->palette_)); |
2047 | memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_, |
2048 | sizeof(enc_main->palette_sorted_)); |
2049 | param->enc_ = enc_side; |
2050 | } |
2051 | // Create the workers. |
2052 | worker_interface->Init(worker); |
2053 | worker->data1 = param; |
2054 | worker->data2 = NULL; |
2055 | worker->hook = EncodeStreamHook; |
2056 | } |
2057 | } |
2058 | |
2059 | // Start the second thread if needed. |
2060 | if (num_crunch_configs_side != 0) { |
2061 | if (!worker_interface->Reset(&worker_side)) { |
2062 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2063 | goto Error; |
2064 | } |
2065 | #if !defined(WEBP_DISABLE_STATS) |
2066 | // This line is here and not in the param initialization above to remove a |
2067 | // Clang static analyzer warning. |
2068 | if (picture->stats != NULL) { |
2069 | memcpy(&stats_side, picture->stats, sizeof(stats_side)); |
2070 | } |
2071 | #endif |
2072 | worker_interface->Launch(&worker_side); |
2073 | } |
2074 | // Execute the main thread. |
2075 | worker_interface->Execute(&worker_main); |
2076 | ok_main = worker_interface->Sync(&worker_main); |
2077 | worker_interface->End(&worker_main); |
2078 | if (num_crunch_configs_side != 0) { |
2079 | // Wait for the second thread. |
2080 | const int ok_side = worker_interface->Sync(&worker_side); |
2081 | worker_interface->End(&worker_side); |
2082 | if (!ok_main || !ok_side) { |
2083 | if (picture->error_code == VP8_ENC_OK) { |
2084 | assert(picture_side.error_code != VP8_ENC_OK); |
2085 | WebPEncodingSetError(picture, picture_side.error_code); |
2086 | } |
2087 | goto Error; |
2088 | } |
2089 | if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) { |
2090 | VP8LBitWriterSwap(bw_main, &bw_side); |
2091 | #if !defined(WEBP_DISABLE_STATS) |
2092 | if (picture->stats != NULL) { |
2093 | memcpy(picture->stats, &stats_side, sizeof(*picture->stats)); |
2094 | } |
2095 | #endif |
2096 | } |
2097 | } |
2098 | |
2099 | Error: |
2100 | VP8LBitWriterWipeOut(&bw_side); |
2101 | VP8LEncoderDelete(enc_main); |
2102 | VP8LEncoderDelete(enc_side); |
2103 | return (picture->error_code == VP8_ENC_OK); |
2104 | } |
2105 | |
2106 | #undef CRUNCH_CONFIGS_MAX |
2107 | #undef CRUNCH_SUBCONFIGS_MAX |
2108 | |
2109 | int VP8LEncodeImage(const WebPConfig* const config, |
2110 | const WebPPicture* const picture) { |
2111 | int width, height; |
2112 | int has_alpha; |
2113 | size_t coded_size; |
2114 | int percent = 0; |
2115 | int initial_size; |
2116 | VP8LBitWriter bw; |
2117 | |
2118 | if (picture == NULL) return 0; |
2119 | |
2120 | if (config == NULL || picture->argb == NULL) { |
2121 | return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
2122 | } |
2123 | |
2124 | width = picture->width; |
2125 | height = picture->height; |
2126 | // Initialize BitWriter with size corresponding to 16 bpp to photo images and |
2127 | // 8 bpp for graphical images. |
2128 | initial_size = (config->image_hint == WEBP_HINT_GRAPH) ? |
2129 | width * height : width * height * 2; |
2130 | if (!VP8LBitWriterInit(&bw, initial_size)) { |
2131 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2132 | goto Error; |
2133 | } |
2134 | |
2135 | if (!WebPReportProgress(picture, 1, &percent)) { |
2136 | UserAbort: |
2137 | WebPEncodingSetError(picture, VP8_ENC_ERROR_USER_ABORT); |
2138 | goto Error; |
2139 | } |
2140 | // Reset stats (for pure lossless coding) |
2141 | if (picture->stats != NULL) { |
2142 | WebPAuxStats* const stats = picture->stats; |
2143 | memset(stats, 0, sizeof(*stats)); |
2144 | stats->PSNR[0] = 99.f; |
2145 | stats->PSNR[1] = 99.f; |
2146 | stats->PSNR[2] = 99.f; |
2147 | stats->PSNR[3] = 99.f; |
2148 | stats->PSNR[4] = 99.f; |
2149 | } |
2150 | |
2151 | // Write image size. |
2152 | if (!WriteImageSize(picture, &bw)) { |
2153 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2154 | goto Error; |
2155 | } |
2156 | |
2157 | has_alpha = WebPPictureHasTransparency(picture); |
2158 | // Write the non-trivial Alpha flag and lossless version. |
2159 | if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { |
2160 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2161 | goto Error; |
2162 | } |
2163 | |
2164 | if (!WebPReportProgress(picture, 2, &percent)) goto UserAbort; |
2165 | |
2166 | // Encode main image stream. |
2167 | if (!VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/)) goto Error; |
2168 | |
2169 | if (!WebPReportProgress(picture, 99, &percent)) goto UserAbort; |
2170 | |
2171 | // Finish the RIFF chunk. |
2172 | if (!WriteImage(picture, &bw, &coded_size)) goto Error; |
2173 | |
2174 | if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; |
2175 | |
2176 | #if !defined(WEBP_DISABLE_STATS) |
2177 | // Save size. |
2178 | if (picture->stats != NULL) { |
2179 | picture->stats->coded_size += (int)coded_size; |
2180 | picture->stats->lossless_size = (int)coded_size; |
2181 | } |
2182 | #endif |
2183 | |
2184 | if (picture->extra_info != NULL) { |
2185 | const int mb_w = (width + 15) >> 4; |
2186 | const int mb_h = (height + 15) >> 4; |
2187 | memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); |
2188 | } |
2189 | |
2190 | Error: |
2191 | if (bw.error_) { |
2192 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
2193 | } |
2194 | VP8LBitWriterWipeOut(&bw); |
2195 | return (picture->error_code == VP8_ENC_OK); |
2196 | } |
2197 | |
2198 | //------------------------------------------------------------------------------ |
2199 | |