| 1 | // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Quantize levels for specified number of quantization-levels ([2, 256]). |
| 11 | // Min and max values are preserved (usual 0 and 255 for alpha plane). |
| 12 | // |
| 13 | // Author: Skal (pascal.massimino@gmail.com) |
| 14 | |
| 15 | #include <assert.h> |
| 16 | |
| 17 | #include "src/utils/quant_levels_utils.h" |
| 18 | |
| 19 | #define NUM_SYMBOLS 256 |
| 20 | |
| 21 | #define MAX_ITER 6 // Maximum number of convergence steps. |
| 22 | #define ERROR_THRESHOLD 1e-4 // MSE stopping criterion. |
| 23 | |
| 24 | // ----------------------------------------------------------------------------- |
| 25 | // Quantize levels. |
| 26 | |
| 27 | int QuantizeLevels(uint8_t* const data, int width, int height, |
| 28 | int num_levels, uint64_t* const sse) { |
| 29 | int freq[NUM_SYMBOLS] = { 0 }; |
| 30 | int q_level[NUM_SYMBOLS] = { 0 }; |
| 31 | double inv_q_level[NUM_SYMBOLS] = { 0 }; |
| 32 | int min_s = 255, max_s = 0; |
| 33 | const size_t data_size = height * width; |
| 34 | int i, num_levels_in, iter; |
| 35 | double last_err = 1.e38, err = 0.; |
| 36 | const double err_threshold = ERROR_THRESHOLD * data_size; |
| 37 | |
| 38 | if (data == NULL) { |
| 39 | return 0; |
| 40 | } |
| 41 | |
| 42 | if (width <= 0 || height <= 0) { |
| 43 | return 0; |
| 44 | } |
| 45 | |
| 46 | if (num_levels < 2 || num_levels > 256) { |
| 47 | return 0; |
| 48 | } |
| 49 | |
| 50 | { |
| 51 | size_t n; |
| 52 | num_levels_in = 0; |
| 53 | for (n = 0; n < data_size; ++n) { |
| 54 | num_levels_in += (freq[data[n]] == 0); |
| 55 | if (min_s > data[n]) min_s = data[n]; |
| 56 | if (max_s < data[n]) max_s = data[n]; |
| 57 | ++freq[data[n]]; |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | if (num_levels_in <= num_levels) goto End; // nothing to do! |
| 62 | |
| 63 | // Start with uniformly spread centroids. |
| 64 | for (i = 0; i < num_levels; ++i) { |
| 65 | inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1); |
| 66 | } |
| 67 | |
| 68 | // Fixed values. Won't be changed. |
| 69 | q_level[min_s] = 0; |
| 70 | q_level[max_s] = num_levels - 1; |
| 71 | assert(inv_q_level[0] == min_s); |
| 72 | assert(inv_q_level[num_levels - 1] == max_s); |
| 73 | |
| 74 | // k-Means iterations. |
| 75 | for (iter = 0; iter < MAX_ITER; ++iter) { |
| 76 | double q_sum[NUM_SYMBOLS] = { 0 }; |
| 77 | double q_count[NUM_SYMBOLS] = { 0 }; |
| 78 | int s, slot = 0; |
| 79 | |
| 80 | // Assign classes to representatives. |
| 81 | for (s = min_s; s <= max_s; ++s) { |
| 82 | // Keep track of the nearest neighbour 'slot' |
| 83 | while (slot < num_levels - 1 && |
| 84 | 2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) { |
| 85 | ++slot; |
| 86 | } |
| 87 | if (freq[s] > 0) { |
| 88 | q_sum[slot] += s * freq[s]; |
| 89 | q_count[slot] += freq[s]; |
| 90 | } |
| 91 | q_level[s] = slot; |
| 92 | } |
| 93 | |
| 94 | // Assign new representatives to classes. |
| 95 | if (num_levels > 2) { |
| 96 | for (slot = 1; slot < num_levels - 1; ++slot) { |
| 97 | const double count = q_count[slot]; |
| 98 | if (count > 0.) { |
| 99 | inv_q_level[slot] = q_sum[slot] / count; |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | // Compute convergence error. |
| 105 | err = 0.; |
| 106 | for (s = min_s; s <= max_s; ++s) { |
| 107 | const double error = s - inv_q_level[q_level[s]]; |
| 108 | err += freq[s] * error * error; |
| 109 | } |
| 110 | |
| 111 | // Check for convergence: we stop as soon as the error is no |
| 112 | // longer improving. |
| 113 | if (last_err - err < err_threshold) break; |
| 114 | last_err = err; |
| 115 | } |
| 116 | |
| 117 | // Remap the alpha plane to quantized values. |
| 118 | { |
| 119 | // double->int rounding operation can be costly, so we do it |
| 120 | // once for all before remapping. We also perform the data[] -> slot |
| 121 | // mapping, while at it (avoid one indirection in the final loop). |
| 122 | uint8_t map[NUM_SYMBOLS]; |
| 123 | int s; |
| 124 | size_t n; |
| 125 | for (s = min_s; s <= max_s; ++s) { |
| 126 | const int slot = q_level[s]; |
| 127 | map[s] = (uint8_t)(inv_q_level[slot] + .5); |
| 128 | } |
| 129 | // Final pass. |
| 130 | for (n = 0; n < data_size; ++n) { |
| 131 | data[n] = map[data[n]]; |
| 132 | } |
| 133 | } |
| 134 | End: |
| 135 | // Store sum of squared error if needed. |
| 136 | if (sse != NULL) *sse = (uint64_t)err; |
| 137 | |
| 138 | return 1; |
| 139 | } |
| 140 | |
| 141 | |