1 | /* |
2 | * AES-NI support functions |
3 | * |
4 | * Copyright The Mbed TLS Contributors |
5 | * SPDX-License-Identifier: Apache-2.0 |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | * not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | */ |
19 | |
20 | /* |
21 | * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html |
22 | * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html |
23 | */ |
24 | |
25 | #include "common.h" |
26 | |
27 | #if defined(MBEDTLS_AESNI_C) |
28 | |
29 | #include "mbedtls/aesni.h" |
30 | |
31 | #include <string.h> |
32 | |
33 | /* *INDENT-OFF* */ |
34 | #ifndef asm |
35 | #define asm __asm |
36 | #endif |
37 | /* *INDENT-ON* */ |
38 | |
39 | #if defined(MBEDTLS_AESNI_HAVE_CODE) |
40 | |
41 | #if MBEDTLS_AESNI_HAVE_CODE == 2 |
42 | #if !defined(_WIN32) |
43 | #include <cpuid.h> |
44 | #else |
45 | #include <intrin.h> |
46 | #endif |
47 | #include <immintrin.h> |
48 | #endif |
49 | |
50 | /* |
51 | * AES-NI support detection routine |
52 | */ |
53 | int mbedtls_aesni_has_support(unsigned int what) |
54 | { |
55 | static int done = 0; |
56 | static unsigned int c = 0; |
57 | |
58 | if (!done) { |
59 | #if MBEDTLS_AESNI_HAVE_CODE == 2 |
60 | static unsigned info[4] = { 0, 0, 0, 0 }; |
61 | #if defined(_MSC_VER) |
62 | __cpuid(info, 1); |
63 | #else |
64 | __cpuid(1, info[0], info[1], info[2], info[3]); |
65 | #endif |
66 | c = info[2]; |
67 | #else /* AESNI using asm */ |
68 | asm ("movl $1, %%eax \n\t" |
69 | "cpuid \n\t" |
70 | : "=c" (c) |
71 | : |
72 | : "eax" , "ebx" , "edx" ); |
73 | #endif /* MBEDTLS_AESNI_HAVE_CODE */ |
74 | done = 1; |
75 | } |
76 | |
77 | return (c & what) != 0; |
78 | } |
79 | |
80 | #if MBEDTLS_AESNI_HAVE_CODE == 2 |
81 | |
82 | /* |
83 | * AES-NI AES-ECB block en(de)cryption |
84 | */ |
85 | int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, |
86 | int mode, |
87 | const unsigned char input[16], |
88 | unsigned char output[16]) |
89 | { |
90 | const __m128i *rk = (const __m128i *) (ctx->rk); |
91 | unsigned nr = ctx->nr; // Number of remaining rounds |
92 | |
93 | // Load round key 0 |
94 | __m128i state; |
95 | memcpy(&state, input, 16); |
96 | state = _mm_xor_si128(state, rk[0]); // state ^= *rk; |
97 | ++rk; |
98 | --nr; |
99 | |
100 | if (mode == 0) { |
101 | while (nr != 0) { |
102 | state = _mm_aesdec_si128(state, *rk); |
103 | ++rk; |
104 | --nr; |
105 | } |
106 | state = _mm_aesdeclast_si128(state, *rk); |
107 | } else { |
108 | while (nr != 0) { |
109 | state = _mm_aesenc_si128(state, *rk); |
110 | ++rk; |
111 | --nr; |
112 | } |
113 | state = _mm_aesenclast_si128(state, *rk); |
114 | } |
115 | |
116 | memcpy(output, &state, 16); |
117 | return 0; |
118 | } |
119 | |
120 | /* |
121 | * GCM multiplication: c = a times b in GF(2^128) |
122 | * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. |
123 | */ |
124 | |
125 | static void gcm_clmul(const __m128i aa, const __m128i bb, |
126 | __m128i *cc, __m128i *dd) |
127 | { |
128 | /* |
129 | * Caryless multiplication dd:cc = aa * bb |
130 | * using [CLMUL-WP] algorithm 1 (p. 12). |
131 | */ |
132 | *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0 |
133 | *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0 |
134 | __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0 |
135 | __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0 |
136 | ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0 |
137 | ee = ff; // e1+f1:e0+f0 |
138 | ff = _mm_srli_si128(ff, 8); // 0:e1+f1 |
139 | ee = _mm_slli_si128(ee, 8); // e0+f0:0 |
140 | *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1 |
141 | *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0 |
142 | } |
143 | |
144 | static void gcm_shift(__m128i *cc, __m128i *dd) |
145 | { |
146 | /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left, |
147 | * taking advantage of [CLMUL-WP] eq 27 (p. 18). */ |
148 | // // *cc = r1:r0 |
149 | // // *dd = r3:r2 |
150 | __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1 |
151 | __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1 |
152 | __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63 |
153 | __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63 |
154 | __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63 |
155 | cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0 |
156 | dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63 |
157 | |
158 | *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1 |
159 | *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 |
160 | } |
161 | |
162 | static __m128i gcm_reduce(__m128i xx) |
163 | { |
164 | // // xx = x1:x0 |
165 | /* [CLMUL-WP] Algorithm 5 Step 2 */ |
166 | __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a |
167 | __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b |
168 | __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c |
169 | __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0 |
170 | return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0 |
171 | } |
172 | |
173 | static __m128i gcm_mix(__m128i dx) |
174 | { |
175 | /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */ |
176 | __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0' |
177 | __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0' |
178 | __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0' |
179 | |
180 | // e0'+f0'+g0' is almost e0+f0+g0, except for some missing |
181 | // bits carried from d. Now get those bits back in. |
182 | __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff |
183 | __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff |
184 | __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff |
185 | __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d |
186 | |
187 | return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx); |
188 | } |
189 | |
190 | void mbedtls_aesni_gcm_mult(unsigned char c[16], |
191 | const unsigned char a[16], |
192 | const unsigned char b[16]) |
193 | { |
194 | __m128i aa, bb, cc, dd; |
195 | |
196 | /* The inputs are in big-endian order, so byte-reverse them */ |
197 | for (size_t i = 0; i < 16; i++) { |
198 | ((uint8_t *) &aa)[i] = a[15 - i]; |
199 | ((uint8_t *) &bb)[i] = b[15 - i]; |
200 | } |
201 | |
202 | gcm_clmul(aa, bb, &cc, &dd); |
203 | gcm_shift(&cc, &dd); |
204 | /* |
205 | * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 |
206 | * using [CLMUL-WP] algorithm 5 (p. 18). |
207 | * Currently dd:cc holds x3:x2:x1:x0 (already shifted). |
208 | */ |
209 | __m128i dx = gcm_reduce(cc); |
210 | __m128i xh = gcm_mix(dx); |
211 | cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0 |
212 | |
213 | /* Now byte-reverse the outputs */ |
214 | for (size_t i = 0; i < 16; i++) { |
215 | c[i] = ((uint8_t *) &cc)[15 - i]; |
216 | } |
217 | |
218 | return; |
219 | } |
220 | |
221 | /* |
222 | * Compute decryption round keys from encryption round keys |
223 | */ |
224 | void mbedtls_aesni_inverse_key(unsigned char *invkey, |
225 | const unsigned char *fwdkey, int nr) |
226 | { |
227 | __m128i *ik = (__m128i *) invkey; |
228 | const __m128i *fk = (const __m128i *) fwdkey + nr; |
229 | |
230 | *ik = *fk; |
231 | for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) { |
232 | *ik = _mm_aesimc_si128(*fk); |
233 | } |
234 | *ik = *fk; |
235 | } |
236 | |
237 | /* |
238 | * Key expansion, 128-bit case |
239 | */ |
240 | static __m128i aesni_set_rk_128(__m128i state, __m128i xword) |
241 | { |
242 | /* |
243 | * Finish generating the next round key. |
244 | * |
245 | * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff |
246 | * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST). |
247 | * |
248 | * On exit, xword is r7:r6:r5:r4 |
249 | * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 |
250 | * and this is returned, to be written to the round key buffer. |
251 | */ |
252 | xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X |
253 | xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4 |
254 | state = _mm_slli_si128(state, 4); // r2:r1:r0:0 |
255 | xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4 |
256 | state = _mm_slli_si128(state, 4); // r1:r0:0:0 |
257 | xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4 |
258 | state = _mm_slli_si128(state, 4); // r0:0:0:0 |
259 | state = _mm_xor_si128(xword, state); // r7:r6:r5:r4 |
260 | return state; |
261 | } |
262 | |
263 | static void aesni_setkey_enc_128(unsigned char *rk_bytes, |
264 | const unsigned char *key) |
265 | { |
266 | __m128i *rk = (__m128i *) rk_bytes; |
267 | |
268 | memcpy(&rk[0], key, 16); |
269 | rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01)); |
270 | rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02)); |
271 | rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04)); |
272 | rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08)); |
273 | rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10)); |
274 | rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20)); |
275 | rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40)); |
276 | rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80)); |
277 | rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B)); |
278 | rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36)); |
279 | } |
280 | |
281 | /* |
282 | * Key expansion, 192-bit case |
283 | */ |
284 | static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword, |
285 | unsigned char *rk) |
286 | { |
287 | /* |
288 | * Finish generating the next 6 quarter-keys. |
289 | * |
290 | * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4 |
291 | * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON |
292 | * (obtained with AESKEYGENASSIST). |
293 | * |
294 | * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10 |
295 | * and those are written to the round key buffer. |
296 | */ |
297 | xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X |
298 | xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0 |
299 | *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0 |
300 | xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 |
301 | *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0 |
302 | xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 |
303 | *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0 |
304 | xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 |
305 | *state0 = xword; // = r9:r8:r7:r6 |
306 | |
307 | xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9 |
308 | xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4 |
309 | *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0 |
310 | xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4 |
311 | *state1 = xword; // = stuff:stuff:r11:r10 |
312 | |
313 | /* Store state0 and the low half of state1 into rk, which is conceptually |
314 | * an array of 24-byte elements. Since 24 is not a multiple of 16, |
315 | * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */ |
316 | memcpy(rk, state0, 16); |
317 | memcpy(rk + 16, state1, 8); |
318 | } |
319 | |
320 | static void aesni_setkey_enc_192(unsigned char *rk, |
321 | const unsigned char *key) |
322 | { |
323 | /* First round: use original key */ |
324 | memcpy(rk, key, 24); |
325 | /* aes.c guarantees that rk is aligned on a 16-byte boundary. */ |
326 | __m128i state0 = ((__m128i *) rk)[0]; |
327 | __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1); |
328 | |
329 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1); |
330 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2); |
331 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3); |
332 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4); |
333 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5); |
334 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6); |
335 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7); |
336 | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8); |
337 | } |
338 | |
339 | /* |
340 | * Key expansion, 256-bit case |
341 | */ |
342 | static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword, |
343 | __m128i *rk0, __m128i *rk1) |
344 | { |
345 | /* |
346 | * Finish generating the next two round keys. |
347 | * |
348 | * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and |
349 | * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON |
350 | * (obtained with AESKEYGENASSIST). |
351 | * |
352 | * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12 |
353 | */ |
354 | xword = _mm_shuffle_epi32(xword, 0xff); |
355 | xword = _mm_xor_si128(xword, state0); |
356 | state0 = _mm_slli_si128(state0, 4); |
357 | xword = _mm_xor_si128(xword, state0); |
358 | state0 = _mm_slli_si128(state0, 4); |
359 | xword = _mm_xor_si128(xword, state0); |
360 | state0 = _mm_slli_si128(state0, 4); |
361 | state0 = _mm_xor_si128(state0, xword); |
362 | *rk0 = state0; |
363 | |
364 | /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 ) |
365 | * and proceed to generate next round key from there */ |
366 | xword = _mm_aeskeygenassist_si128(state0, 0x00); |
367 | xword = _mm_shuffle_epi32(xword, 0xaa); |
368 | xword = _mm_xor_si128(xword, state1); |
369 | state1 = _mm_slli_si128(state1, 4); |
370 | xword = _mm_xor_si128(xword, state1); |
371 | state1 = _mm_slli_si128(state1, 4); |
372 | xword = _mm_xor_si128(xword, state1); |
373 | state1 = _mm_slli_si128(state1, 4); |
374 | state1 = _mm_xor_si128(state1, xword); |
375 | *rk1 = state1; |
376 | } |
377 | |
378 | static void aesni_setkey_enc_256(unsigned char *rk_bytes, |
379 | const unsigned char *key) |
380 | { |
381 | __m128i *rk = (__m128i *) rk_bytes; |
382 | |
383 | memcpy(&rk[0], key, 16); |
384 | memcpy(&rk[1], key + 16, 16); |
385 | |
386 | /* |
387 | * Main "loop" - Generating one more key than necessary, |
388 | * see definition of mbedtls_aes_context.buf |
389 | */ |
390 | aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]); |
391 | aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]); |
392 | aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]); |
393 | aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]); |
394 | aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]); |
395 | aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]); |
396 | aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]); |
397 | } |
398 | |
399 | #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */ |
400 | |
401 | #if defined(__has_feature) |
402 | #if __has_feature(memory_sanitizer) |
403 | #warning \ |
404 | "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code." |
405 | #endif |
406 | #endif |
407 | |
408 | /* |
409 | * Binutils needs to be at least 2.19 to support AES-NI instructions. |
410 | * Unfortunately, a lot of users have a lower version now (2014-04). |
411 | * Emit bytecode directly in order to support "old" version of gas. |
412 | * |
413 | * Opcodes from the Intel architecture reference manual, vol. 3. |
414 | * We always use registers, so we don't need prefixes for memory operands. |
415 | * Operand macros are in gas order (src, dst) as opposed to Intel order |
416 | * (dst, src) in order to blend better into the surrounding assembly code. |
417 | */ |
418 | #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t" |
419 | #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t" |
420 | #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t" |
421 | #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t" |
422 | #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t" |
423 | #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t" |
424 | #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t" |
425 | |
426 | #define xmm0_xmm0 "0xC0" |
427 | #define xmm0_xmm1 "0xC8" |
428 | #define xmm0_xmm2 "0xD0" |
429 | #define xmm0_xmm3 "0xD8" |
430 | #define xmm0_xmm4 "0xE0" |
431 | #define xmm1_xmm0 "0xC1" |
432 | #define xmm1_xmm2 "0xD1" |
433 | |
434 | /* |
435 | * AES-NI AES-ECB block en(de)cryption |
436 | */ |
437 | int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, |
438 | int mode, |
439 | const unsigned char input[16], |
440 | unsigned char output[16]) |
441 | { |
442 | asm ("movdqu (%3), %%xmm0 \n\t" // load input |
443 | "movdqu (%1), %%xmm1 \n\t" // load round key 0 |
444 | "pxor %%xmm1, %%xmm0 \n\t" // round 0 |
445 | "add $16, %1 \n\t" // point to next round key |
446 | "subl $1, %0 \n\t" // normal rounds = nr - 1 |
447 | "test %2, %2 \n\t" // mode? |
448 | "jz 2f \n\t" // 0 = decrypt |
449 | |
450 | "1: \n\t" // encryption loop |
451 | "movdqu (%1), %%xmm1 \n\t" // load round key |
452 | AESENC(xmm1_xmm0) // do round |
453 | "add $16, %1 \n\t" // point to next round key |
454 | "subl $1, %0 \n\t" // loop |
455 | "jnz 1b \n\t" |
456 | "movdqu (%1), %%xmm1 \n\t" // load round key |
457 | AESENCLAST(xmm1_xmm0) // last round |
458 | "jmp 3f \n\t" |
459 | |
460 | "2: \n\t" // decryption loop |
461 | "movdqu (%1), %%xmm1 \n\t" |
462 | AESDEC(xmm1_xmm0) // do round |
463 | "add $16, %1 \n\t" |
464 | "subl $1, %0 \n\t" |
465 | "jnz 2b \n\t" |
466 | "movdqu (%1), %%xmm1 \n\t" // load round key |
467 | AESDECLAST(xmm1_xmm0) // last round |
468 | |
469 | "3: \n\t" |
470 | "movdqu %%xmm0, (%4) \n\t" // export output |
471 | : |
472 | : "r" (ctx->nr), "r" (ctx->rk), "r" (mode), "r" (input), "r" (output) |
473 | : "memory" , "cc" , "xmm0" , "xmm1" ); |
474 | |
475 | |
476 | return 0; |
477 | } |
478 | |
479 | /* |
480 | * GCM multiplication: c = a times b in GF(2^128) |
481 | * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. |
482 | */ |
483 | void mbedtls_aesni_gcm_mult(unsigned char c[16], |
484 | const unsigned char a[16], |
485 | const unsigned char b[16]) |
486 | { |
487 | unsigned char aa[16], bb[16], cc[16]; |
488 | size_t i; |
489 | |
490 | /* The inputs are in big-endian order, so byte-reverse them */ |
491 | for (i = 0; i < 16; i++) { |
492 | aa[i] = a[15 - i]; |
493 | bb[i] = b[15 - i]; |
494 | } |
495 | |
496 | asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0 |
497 | "movdqu (%1), %%xmm1 \n\t" // b1:b0 |
498 | |
499 | /* |
500 | * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 |
501 | * using [CLMUL-WP] algorithm 1 (p. 12). |
502 | */ |
503 | "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0 |
504 | "movdqa %%xmm1, %%xmm3 \n\t" // same |
505 | "movdqa %%xmm1, %%xmm4 \n\t" // same |
506 | PCLMULQDQ(xmm0_xmm1, "0x00" ) // a0*b0 = c1:c0 |
507 | PCLMULQDQ(xmm0_xmm2, "0x11" ) // a1*b1 = d1:d0 |
508 | PCLMULQDQ(xmm0_xmm3, "0x10" ) // a0*b1 = e1:e0 |
509 | PCLMULQDQ(xmm0_xmm4, "0x01" ) // a1*b0 = f1:f0 |
510 | "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0 |
511 | "movdqa %%xmm4, %%xmm3 \n\t" // same |
512 | "psrldq $8, %%xmm4 \n\t" // 0:e1+f1 |
513 | "pslldq $8, %%xmm3 \n\t" // e0+f0:0 |
514 | "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1 |
515 | "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0 |
516 | |
517 | /* |
518 | * Now shift the result one bit to the left, |
519 | * taking advantage of [CLMUL-WP] eq 27 (p. 18) |
520 | */ |
521 | "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0 |
522 | "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2 |
523 | "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1 |
524 | "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1 |
525 | "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63 |
526 | "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63 |
527 | "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63 |
528 | "pslldq $8, %%xmm3 \n\t" // r0>>63:0 |
529 | "pslldq $8, %%xmm4 \n\t" // r2>>63:0 |
530 | "psrldq $8, %%xmm5 \n\t" // 0:r1>>63 |
531 | "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1 |
532 | "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1 |
533 | "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63 |
534 | |
535 | /* |
536 | * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 |
537 | * using [CLMUL-WP] algorithm 5 (p. 18). |
538 | * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). |
539 | */ |
540 | /* Step 2 (1) */ |
541 | "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0 |
542 | "movdqa %%xmm1, %%xmm4 \n\t" // same |
543 | "movdqa %%xmm1, %%xmm5 \n\t" // same |
544 | "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a |
545 | "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b |
546 | "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c |
547 | |
548 | /* Step 2 (2) */ |
549 | "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b |
550 | "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c |
551 | "pslldq $8, %%xmm3 \n\t" // a+b+c:0 |
552 | "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0 |
553 | |
554 | /* Steps 3 and 4 */ |
555 | "movdqa %%xmm1,%%xmm0 \n\t" // d:x0 |
556 | "movdqa %%xmm1,%%xmm4 \n\t" // same |
557 | "movdqa %%xmm1,%%xmm5 \n\t" // same |
558 | "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0' |
559 | "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0' |
560 | "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0' |
561 | "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0' |
562 | "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0' |
563 | // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing |
564 | // bits carried from d. Now get those\t bits back in. |
565 | "movdqa %%xmm1,%%xmm3 \n\t" // d:x0 |
566 | "movdqa %%xmm1,%%xmm4 \n\t" // same |
567 | "movdqa %%xmm1,%%xmm5 \n\t" // same |
568 | "psllq $63, %%xmm3 \n\t" // d<<63:stuff |
569 | "psllq $62, %%xmm4 \n\t" // d<<62:stuff |
570 | "psllq $57, %%xmm5 \n\t" // d<<57:stuff |
571 | "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff |
572 | "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff |
573 | "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d |
574 | "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0 |
575 | "pxor %%xmm1, %%xmm0 \n\t" // h1:h0 |
576 | "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0 |
577 | |
578 | "movdqu %%xmm0, (%2) \n\t" // done |
579 | : |
580 | : "r" (aa), "r" (bb), "r" (cc) |
581 | : "memory" , "cc" , "xmm0" , "xmm1" , "xmm2" , "xmm3" , "xmm4" , "xmm5" ); |
582 | |
583 | /* Now byte-reverse the outputs */ |
584 | for (i = 0; i < 16; i++) { |
585 | c[i] = cc[15 - i]; |
586 | } |
587 | |
588 | return; |
589 | } |
590 | |
591 | /* |
592 | * Compute decryption round keys from encryption round keys |
593 | */ |
594 | void mbedtls_aesni_inverse_key(unsigned char *invkey, |
595 | const unsigned char *fwdkey, int nr) |
596 | { |
597 | unsigned char *ik = invkey; |
598 | const unsigned char *fk = fwdkey + 16 * nr; |
599 | |
600 | memcpy(ik, fk, 16); |
601 | |
602 | for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) { |
603 | asm ("movdqu (%0), %%xmm0 \n\t" |
604 | AESIMC(xmm0_xmm0) |
605 | "movdqu %%xmm0, (%1) \n\t" |
606 | : |
607 | : "r" (fk), "r" (ik) |
608 | : "memory" , "xmm0" ); |
609 | } |
610 | |
611 | memcpy(ik, fk, 16); |
612 | } |
613 | |
614 | /* |
615 | * Key expansion, 128-bit case |
616 | */ |
617 | static void aesni_setkey_enc_128(unsigned char *rk, |
618 | const unsigned char *key) |
619 | { |
620 | asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key |
621 | "movdqu %%xmm0, (%0) \n\t" // as round key 0 |
622 | "jmp 2f \n\t" // skip auxiliary routine |
623 | |
624 | /* |
625 | * Finish generating the next round key. |
626 | * |
627 | * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff |
628 | * with X = rot( sub( r3 ) ) ^ RCON. |
629 | * |
630 | * On exit, xmm0 is r7:r6:r5:r4 |
631 | * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 |
632 | * and those are written to the round key buffer. |
633 | */ |
634 | "1: \n\t" |
635 | "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X |
636 | "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4 |
637 | "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0 |
638 | "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4 |
639 | "pslldq $4, %%xmm0 \n\t" // etc |
640 | "pxor %%xmm0, %%xmm1 \n\t" |
641 | "pslldq $4, %%xmm0 \n\t" |
642 | "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time! |
643 | "add $16, %0 \n\t" // point to next round key |
644 | "movdqu %%xmm0, (%0) \n\t" // write it |
645 | "ret \n\t" |
646 | |
647 | /* Main "loop" */ |
648 | "2: \n\t" |
649 | AESKEYGENA(xmm0_xmm1, "0x01" ) "call 1b \n\t" |
650 | AESKEYGENA(xmm0_xmm1, "0x02" ) "call 1b \n\t" |
651 | AESKEYGENA(xmm0_xmm1, "0x04" ) "call 1b \n\t" |
652 | AESKEYGENA(xmm0_xmm1, "0x08" ) "call 1b \n\t" |
653 | AESKEYGENA(xmm0_xmm1, "0x10" ) "call 1b \n\t" |
654 | AESKEYGENA(xmm0_xmm1, "0x20" ) "call 1b \n\t" |
655 | AESKEYGENA(xmm0_xmm1, "0x40" ) "call 1b \n\t" |
656 | AESKEYGENA(xmm0_xmm1, "0x80" ) "call 1b \n\t" |
657 | AESKEYGENA(xmm0_xmm1, "0x1B" ) "call 1b \n\t" |
658 | AESKEYGENA(xmm0_xmm1, "0x36" ) "call 1b \n\t" |
659 | : |
660 | : "r" (rk), "r" (key) |
661 | : "memory" , "cc" , "0" ); |
662 | } |
663 | |
664 | /* |
665 | * Key expansion, 192-bit case |
666 | */ |
667 | static void aesni_setkey_enc_192(unsigned char *rk, |
668 | const unsigned char *key) |
669 | { |
670 | asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key |
671 | "movdqu %%xmm0, (%0) \n\t" |
672 | "add $16, %0 \n\t" |
673 | "movq 16(%1), %%xmm1 \n\t" |
674 | "movq %%xmm1, (%0) \n\t" |
675 | "add $8, %0 \n\t" |
676 | "jmp 2f \n\t" // skip auxiliary routine |
677 | |
678 | /* |
679 | * Finish generating the next 6 quarter-keys. |
680 | * |
681 | * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 |
682 | * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. |
683 | * |
684 | * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 |
685 | * and those are written to the round key buffer. |
686 | */ |
687 | "1: \n\t" |
688 | "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X |
689 | "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4 |
690 | "pslldq $4, %%xmm0 \n\t" // etc |
691 | "pxor %%xmm0, %%xmm2 \n\t" |
692 | "pslldq $4, %%xmm0 \n\t" |
693 | "pxor %%xmm0, %%xmm2 \n\t" |
694 | "pslldq $4, %%xmm0 \n\t" |
695 | "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6 |
696 | "movdqu %%xmm0, (%0) \n\t" |
697 | "add $16, %0 \n\t" |
698 | "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9 |
699 | "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10 |
700 | "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0 |
701 | "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10 |
702 | "movq %%xmm1, (%0) \n\t" |
703 | "add $8, %0 \n\t" |
704 | "ret \n\t" |
705 | |
706 | "2: \n\t" |
707 | AESKEYGENA(xmm1_xmm2, "0x01" ) "call 1b \n\t" |
708 | AESKEYGENA(xmm1_xmm2, "0x02" ) "call 1b \n\t" |
709 | AESKEYGENA(xmm1_xmm2, "0x04" ) "call 1b \n\t" |
710 | AESKEYGENA(xmm1_xmm2, "0x08" ) "call 1b \n\t" |
711 | AESKEYGENA(xmm1_xmm2, "0x10" ) "call 1b \n\t" |
712 | AESKEYGENA(xmm1_xmm2, "0x20" ) "call 1b \n\t" |
713 | AESKEYGENA(xmm1_xmm2, "0x40" ) "call 1b \n\t" |
714 | AESKEYGENA(xmm1_xmm2, "0x80" ) "call 1b \n\t" |
715 | |
716 | : |
717 | : "r" (rk), "r" (key) |
718 | : "memory" , "cc" , "0" ); |
719 | } |
720 | |
721 | /* |
722 | * Key expansion, 256-bit case |
723 | */ |
724 | static void aesni_setkey_enc_256(unsigned char *rk, |
725 | const unsigned char *key) |
726 | { |
727 | asm ("movdqu (%1), %%xmm0 \n\t" |
728 | "movdqu %%xmm0, (%0) \n\t" |
729 | "add $16, %0 \n\t" |
730 | "movdqu 16(%1), %%xmm1 \n\t" |
731 | "movdqu %%xmm1, (%0) \n\t" |
732 | "jmp 2f \n\t" // skip auxiliary routine |
733 | |
734 | /* |
735 | * Finish generating the next two round keys. |
736 | * |
737 | * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and |
738 | * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON |
739 | * |
740 | * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 |
741 | * and those have been written to the output buffer. |
742 | */ |
743 | "1: \n\t" |
744 | "pshufd $0xff, %%xmm2, %%xmm2 \n\t" |
745 | "pxor %%xmm0, %%xmm2 \n\t" |
746 | "pslldq $4, %%xmm0 \n\t" |
747 | "pxor %%xmm0, %%xmm2 \n\t" |
748 | "pslldq $4, %%xmm0 \n\t" |
749 | "pxor %%xmm0, %%xmm2 \n\t" |
750 | "pslldq $4, %%xmm0 \n\t" |
751 | "pxor %%xmm2, %%xmm0 \n\t" |
752 | "add $16, %0 \n\t" |
753 | "movdqu %%xmm0, (%0) \n\t" |
754 | |
755 | /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) |
756 | * and proceed to generate next round key from there */ |
757 | AESKEYGENA(xmm0_xmm2, "0x00" ) |
758 | "pshufd $0xaa, %%xmm2, %%xmm2 \n\t" |
759 | "pxor %%xmm1, %%xmm2 \n\t" |
760 | "pslldq $4, %%xmm1 \n\t" |
761 | "pxor %%xmm1, %%xmm2 \n\t" |
762 | "pslldq $4, %%xmm1 \n\t" |
763 | "pxor %%xmm1, %%xmm2 \n\t" |
764 | "pslldq $4, %%xmm1 \n\t" |
765 | "pxor %%xmm2, %%xmm1 \n\t" |
766 | "add $16, %0 \n\t" |
767 | "movdqu %%xmm1, (%0) \n\t" |
768 | "ret \n\t" |
769 | |
770 | /* |
771 | * Main "loop" - Generating one more key than necessary, |
772 | * see definition of mbedtls_aes_context.buf |
773 | */ |
774 | "2: \n\t" |
775 | AESKEYGENA(xmm1_xmm2, "0x01" ) "call 1b \n\t" |
776 | AESKEYGENA(xmm1_xmm2, "0x02" ) "call 1b \n\t" |
777 | AESKEYGENA(xmm1_xmm2, "0x04" ) "call 1b \n\t" |
778 | AESKEYGENA(xmm1_xmm2, "0x08" ) "call 1b \n\t" |
779 | AESKEYGENA(xmm1_xmm2, "0x10" ) "call 1b \n\t" |
780 | AESKEYGENA(xmm1_xmm2, "0x20" ) "call 1b \n\t" |
781 | AESKEYGENA(xmm1_xmm2, "0x40" ) "call 1b \n\t" |
782 | : |
783 | : "r" (rk), "r" (key) |
784 | : "memory" , "cc" , "0" ); |
785 | } |
786 | |
787 | #endif /* MBEDTLS_AESNI_HAVE_CODE */ |
788 | |
789 | /* |
790 | * Key expansion, wrapper |
791 | */ |
792 | int mbedtls_aesni_setkey_enc(unsigned char *rk, |
793 | const unsigned char *key, |
794 | size_t bits) |
795 | { |
796 | switch (bits) { |
797 | case 128: aesni_setkey_enc_128(rk, key); break; |
798 | case 192: aesni_setkey_enc_192(rk, key); break; |
799 | case 256: aesni_setkey_enc_256(rk, key); break; |
800 | default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; |
801 | } |
802 | |
803 | return 0; |
804 | } |
805 | |
806 | #endif /* MBEDTLS_AESNI_HAVE_CODE */ |
807 | |
808 | #endif /* MBEDTLS_AESNI_C */ |
809 | |