| 1 | /** |
| 2 | * Constant-time functions |
| 3 | * |
| 4 | * Copyright The Mbed TLS Contributors |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 8 | * not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * The following functions are implemented without using comparison operators, as those |
| 22 | * might be translated to branches by some compilers on some platforms. |
| 23 | */ |
| 24 | |
| 25 | #include "common.h" |
| 26 | #include "constant_time_internal.h" |
| 27 | #include "mbedtls/constant_time.h" |
| 28 | #include "mbedtls/error.h" |
| 29 | #include "mbedtls/platform_util.h" |
| 30 | |
| 31 | #if defined(MBEDTLS_BIGNUM_C) |
| 32 | #include "mbedtls/bignum.h" |
| 33 | #endif |
| 34 | |
| 35 | #if defined(MBEDTLS_SSL_TLS_C) |
| 36 | #include "mbedtls/ssl_internal.h" |
| 37 | #endif |
| 38 | |
| 39 | #if defined(MBEDTLS_RSA_C) |
| 40 | #include "mbedtls/rsa.h" |
| 41 | #endif |
| 42 | |
| 43 | #if defined(MBEDTLS_BASE64_C) |
| 44 | #include "constant_time_invasive.h" |
| 45 | #endif |
| 46 | |
| 47 | #include <string.h> |
| 48 | |
| 49 | int mbedtls_ct_memcmp(const void *a, |
| 50 | const void *b, |
| 51 | size_t n) |
| 52 | { |
| 53 | size_t i; |
| 54 | volatile const unsigned char *A = (volatile const unsigned char *) a; |
| 55 | volatile const unsigned char *B = (volatile const unsigned char *) b; |
| 56 | volatile unsigned char diff = 0; |
| 57 | |
| 58 | for (i = 0; i < n; i++) { |
| 59 | /* Read volatile data in order before computing diff. |
| 60 | * This avoids IAR compiler warning: |
| 61 | * 'the order of volatile accesses is undefined ..' */ |
| 62 | unsigned char x = A[i], y = B[i]; |
| 63 | diff |= x ^ y; |
| 64 | } |
| 65 | |
| 66 | return (int) diff; |
| 67 | } |
| 68 | |
| 69 | unsigned mbedtls_ct_uint_mask(unsigned value) |
| 70 | { |
| 71 | /* MSVC has a warning about unary minus on unsigned, but this is |
| 72 | * well-defined and precisely what we want to do here */ |
| 73 | #if defined(_MSC_VER) |
| 74 | #pragma warning( push ) |
| 75 | #pragma warning( disable : 4146 ) |
| 76 | #endif |
| 77 | return -((value | -value) >> (sizeof(value) * 8 - 1)); |
| 78 | #if defined(_MSC_VER) |
| 79 | #pragma warning( pop ) |
| 80 | #endif |
| 81 | } |
| 82 | |
| 83 | #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) |
| 84 | |
| 85 | size_t mbedtls_ct_size_mask(size_t value) |
| 86 | { |
| 87 | /* MSVC has a warning about unary minus on unsigned integer types, |
| 88 | * but this is well-defined and precisely what we want to do here. */ |
| 89 | #if defined(_MSC_VER) |
| 90 | #pragma warning( push ) |
| 91 | #pragma warning( disable : 4146 ) |
| 92 | #endif |
| 93 | return -((value | -value) >> (sizeof(value) * 8 - 1)); |
| 94 | #if defined(_MSC_VER) |
| 95 | #pragma warning( pop ) |
| 96 | #endif |
| 97 | } |
| 98 | |
| 99 | #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */ |
| 100 | |
| 101 | #if defined(MBEDTLS_BIGNUM_C) |
| 102 | |
| 103 | mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value) |
| 104 | { |
| 105 | /* MSVC has a warning about unary minus on unsigned, but this is |
| 106 | * well-defined and precisely what we want to do here */ |
| 107 | #if defined(_MSC_VER) |
| 108 | #pragma warning( push ) |
| 109 | #pragma warning( disable : 4146 ) |
| 110 | #endif |
| 111 | return -((value | -value) >> (sizeof(value) * 8 - 1)); |
| 112 | #if defined(_MSC_VER) |
| 113 | #pragma warning( pop ) |
| 114 | #endif |
| 115 | } |
| 116 | |
| 117 | #endif /* MBEDTLS_BIGNUM_C */ |
| 118 | |
| 119 | #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) |
| 120 | |
| 121 | /** Constant-flow mask generation for "less than" comparison: |
| 122 | * - if \p x < \p y, return all-bits 1, that is (size_t) -1 |
| 123 | * - otherwise, return all bits 0, that is 0 |
| 124 | * |
| 125 | * This function can be used to write constant-time code by replacing branches |
| 126 | * with bit operations using masks. |
| 127 | * |
| 128 | * \param x The first value to analyze. |
| 129 | * \param y The second value to analyze. |
| 130 | * |
| 131 | * \return All-bits-one if \p x is less than \p y, otherwise zero. |
| 132 | */ |
| 133 | static size_t mbedtls_ct_size_mask_lt(size_t x, |
| 134 | size_t y) |
| 135 | { |
| 136 | /* This has the most significant bit set if and only if x < y */ |
| 137 | const size_t sub = x - y; |
| 138 | |
| 139 | /* sub1 = (x < y) ? 1 : 0 */ |
| 140 | const size_t sub1 = sub >> (sizeof(sub) * 8 - 1); |
| 141 | |
| 142 | /* mask = (x < y) ? 0xff... : 0x00... */ |
| 143 | const size_t mask = mbedtls_ct_size_mask(sub1); |
| 144 | |
| 145 | return mask; |
| 146 | } |
| 147 | |
| 148 | size_t mbedtls_ct_size_mask_ge(size_t x, |
| 149 | size_t y) |
| 150 | { |
| 151 | return ~mbedtls_ct_size_mask_lt(x, y); |
| 152 | } |
| 153 | |
| 154 | #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */ |
| 155 | |
| 156 | #if defined(MBEDTLS_BASE64_C) |
| 157 | |
| 158 | /* Return 0xff if low <= c <= high, 0 otherwise. |
| 159 | * |
| 160 | * Constant flow with respect to c. |
| 161 | */ |
| 162 | MBEDTLS_STATIC_TESTABLE |
| 163 | unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low, |
| 164 | unsigned char high, |
| 165 | unsigned char c) |
| 166 | { |
| 167 | /* low_mask is: 0 if low <= c, 0x...ff if low > c */ |
| 168 | unsigned low_mask = ((unsigned) c - low) >> 8; |
| 169 | /* high_mask is: 0 if c <= high, 0x...ff if c > high */ |
| 170 | unsigned high_mask = ((unsigned) high - c) >> 8; |
| 171 | return ~(low_mask | high_mask) & 0xff; |
| 172 | } |
| 173 | |
| 174 | #endif /* MBEDTLS_BASE64_C */ |
| 175 | |
| 176 | unsigned mbedtls_ct_size_bool_eq(size_t x, |
| 177 | size_t y) |
| 178 | { |
| 179 | /* diff = 0 if x == y, non-zero otherwise */ |
| 180 | const size_t diff = x ^ y; |
| 181 | |
| 182 | /* MSVC has a warning about unary minus on unsigned integer types, |
| 183 | * but this is well-defined and precisely what we want to do here. */ |
| 184 | #if defined(_MSC_VER) |
| 185 | #pragma warning( push ) |
| 186 | #pragma warning( disable : 4146 ) |
| 187 | #endif |
| 188 | |
| 189 | /* diff_msb's most significant bit is equal to x != y */ |
| 190 | const size_t diff_msb = (diff | (size_t) -diff); |
| 191 | |
| 192 | #if defined(_MSC_VER) |
| 193 | #pragma warning( pop ) |
| 194 | #endif |
| 195 | |
| 196 | /* diff1 = (x != y) ? 1 : 0 */ |
| 197 | const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1); |
| 198 | |
| 199 | return 1 ^ diff1; |
| 200 | } |
| 201 | |
| 202 | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
| 203 | |
| 204 | /** Constant-flow "greater than" comparison: |
| 205 | * return x > y |
| 206 | * |
| 207 | * This is equivalent to \p x > \p y, but is likely to be compiled |
| 208 | * to code using bitwise operation rather than a branch. |
| 209 | * |
| 210 | * \param x The first value to analyze. |
| 211 | * \param y The second value to analyze. |
| 212 | * |
| 213 | * \return 1 if \p x greater than \p y, otherwise 0. |
| 214 | */ |
| 215 | static unsigned mbedtls_ct_size_gt(size_t x, |
| 216 | size_t y) |
| 217 | { |
| 218 | /* Return the sign bit (1 for negative) of (y - x). */ |
| 219 | return (y - x) >> (sizeof(size_t) * 8 - 1); |
| 220 | } |
| 221 | |
| 222 | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
| 223 | |
| 224 | #if defined(MBEDTLS_BIGNUM_C) |
| 225 | |
| 226 | unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x, |
| 227 | const mbedtls_mpi_uint y) |
| 228 | { |
| 229 | mbedtls_mpi_uint ret; |
| 230 | mbedtls_mpi_uint cond; |
| 231 | |
| 232 | /* |
| 233 | * Check if the most significant bits (MSB) of the operands are different. |
| 234 | */ |
| 235 | cond = (x ^ y); |
| 236 | /* |
| 237 | * If the MSB are the same then the difference x-y will be negative (and |
| 238 | * have its MSB set to 1 during conversion to unsigned) if and only if x<y. |
| 239 | */ |
| 240 | ret = (x - y) & ~cond; |
| 241 | /* |
| 242 | * If the MSB are different, then the operand with the MSB of 1 is the |
| 243 | * bigger. (That is if y has MSB of 1, then x<y is true and it is false if |
| 244 | * the MSB of y is 0.) |
| 245 | */ |
| 246 | ret |= y & cond; |
| 247 | |
| 248 | |
| 249 | ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1); |
| 250 | |
| 251 | return (unsigned) ret; |
| 252 | } |
| 253 | |
| 254 | #endif /* MBEDTLS_BIGNUM_C */ |
| 255 | |
| 256 | unsigned mbedtls_ct_uint_if(unsigned condition, |
| 257 | unsigned if1, |
| 258 | unsigned if0) |
| 259 | { |
| 260 | unsigned mask = mbedtls_ct_uint_mask(condition); |
| 261 | return (mask & if1) | (~mask & if0); |
| 262 | } |
| 263 | |
| 264 | #if defined(MBEDTLS_BIGNUM_C) |
| 265 | |
| 266 | void mbedtls_ct_mpi_uint_cond_assign(size_t n, |
| 267 | mbedtls_mpi_uint *dest, |
| 268 | const mbedtls_mpi_uint *src, |
| 269 | unsigned char condition) |
| 270 | { |
| 271 | size_t i; |
| 272 | |
| 273 | /* MSVC has a warning about unary minus on unsigned integer types, |
| 274 | * but this is well-defined and precisely what we want to do here. */ |
| 275 | #if defined(_MSC_VER) |
| 276 | #pragma warning( push ) |
| 277 | #pragma warning( disable : 4146 ) |
| 278 | #endif |
| 279 | |
| 280 | /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */ |
| 281 | const mbedtls_mpi_uint mask = -condition; |
| 282 | |
| 283 | #if defined(_MSC_VER) |
| 284 | #pragma warning( pop ) |
| 285 | #endif |
| 286 | |
| 287 | for (i = 0; i < n; i++) { |
| 288 | dest[i] = (src[i] & mask) | (dest[i] & ~mask); |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | #endif /* MBEDTLS_BIGNUM_C */ |
| 293 | |
| 294 | #if defined(MBEDTLS_BASE64_C) |
| 295 | |
| 296 | unsigned char mbedtls_ct_base64_enc_char(unsigned char value) |
| 297 | { |
| 298 | unsigned char digit = 0; |
| 299 | /* For each range of values, if value is in that range, mask digit with |
| 300 | * the corresponding value. Since value can only be in a single range, |
| 301 | * only at most one masking will change digit. */ |
| 302 | digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value); |
| 303 | digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26); |
| 304 | digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52); |
| 305 | digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+'; |
| 306 | digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/'; |
| 307 | return digit; |
| 308 | } |
| 309 | |
| 310 | signed char mbedtls_ct_base64_dec_value(unsigned char c) |
| 311 | { |
| 312 | unsigned char val = 0; |
| 313 | /* For each range of digits, if c is in that range, mask val with |
| 314 | * the corresponding value. Since c can only be in a single range, |
| 315 | * only at most one masking will change val. Set val to one plus |
| 316 | * the desired value so that it stays 0 if c is in none of the ranges. */ |
| 317 | val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' + 0 + 1); |
| 318 | val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1); |
| 319 | val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1); |
| 320 | val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1); |
| 321 | val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1); |
| 322 | /* At this point, val is 0 if c is an invalid digit and v+1 if c is |
| 323 | * a digit with the value v. */ |
| 324 | return val - 1; |
| 325 | } |
| 326 | |
| 327 | #endif /* MBEDTLS_BASE64_C */ |
| 328 | |
| 329 | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
| 330 | |
| 331 | /** Shift some data towards the left inside a buffer. |
| 332 | * |
| 333 | * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally |
| 334 | * equivalent to |
| 335 | * ``` |
| 336 | * memmove(start, start + offset, total - offset); |
| 337 | * memset(start + offset, 0, total - offset); |
| 338 | * ``` |
| 339 | * but it strives to use a memory access pattern (and thus total timing) |
| 340 | * that does not depend on \p offset. This timing independence comes at |
| 341 | * the expense of performance. |
| 342 | * |
| 343 | * \param start Pointer to the start of the buffer. |
| 344 | * \param total Total size of the buffer. |
| 345 | * \param offset Offset from which to copy \p total - \p offset bytes. |
| 346 | */ |
| 347 | static void mbedtls_ct_mem_move_to_left(void *start, |
| 348 | size_t total, |
| 349 | size_t offset) |
| 350 | { |
| 351 | volatile unsigned char *buf = start; |
| 352 | size_t i, n; |
| 353 | if (total == 0) { |
| 354 | return; |
| 355 | } |
| 356 | for (i = 0; i < total; i++) { |
| 357 | unsigned no_op = mbedtls_ct_size_gt(total - offset, i); |
| 358 | /* The first `total - offset` passes are a no-op. The last |
| 359 | * `offset` passes shift the data one byte to the left and |
| 360 | * zero out the last byte. */ |
| 361 | for (n = 0; n < total - 1; n++) { |
| 362 | unsigned char current = buf[n]; |
| 363 | unsigned char next = buf[n+1]; |
| 364 | buf[n] = mbedtls_ct_uint_if(no_op, current, next); |
| 365 | } |
| 366 | buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
| 371 | |
| 372 | #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) |
| 373 | void mbedtls_ct_memcpy_if_eq(unsigned char *dest, |
| 374 | const unsigned char *src, |
| 375 | size_t len, |
| 376 | size_t c1, |
| 377 | size_t c2) |
| 378 | { |
| 379 | /* mask = c1 == c2 ? 0xff : 0x00 */ |
| 380 | const size_t equal = mbedtls_ct_size_bool_eq(c1, c2); |
| 381 | const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal); |
| 382 | |
| 383 | /* dest[i] = c1 == c2 ? src[i] : dest[i] */ |
| 384 | for (size_t i = 0; i < len; i++) { |
| 385 | dest[i] = (src[i] & mask) | (dest[i] & ~mask); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | void mbedtls_ct_memcpy_offset(unsigned char *dest, |
| 390 | const unsigned char *src, |
| 391 | size_t offset, |
| 392 | size_t offset_min, |
| 393 | size_t offset_max, |
| 394 | size_t len) |
| 395 | { |
| 396 | size_t offsetval; |
| 397 | |
| 398 | for (offsetval = offset_min; offsetval <= offset_max; offsetval++) { |
| 399 | mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len, |
| 400 | offsetval, offset); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | int mbedtls_ct_hmac(mbedtls_md_context_t *ctx, |
| 405 | const unsigned char *add_data, |
| 406 | size_t add_data_len, |
| 407 | const unsigned char *data, |
| 408 | size_t data_len_secret, |
| 409 | size_t min_data_len, |
| 410 | size_t max_data_len, |
| 411 | unsigned char *output) |
| 412 | { |
| 413 | /* |
| 414 | * This function breaks the HMAC abstraction and uses the md_clone() |
| 415 | * extension to the MD API in order to get constant-flow behaviour. |
| 416 | * |
| 417 | * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means |
| 418 | * concatenation, and okey/ikey are the XOR of the key with some fixed bit |
| 419 | * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx. |
| 420 | * |
| 421 | * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to |
| 422 | * minlen, then cloning the context, and for each byte up to maxlen |
| 423 | * finishing up the hash computation, keeping only the correct result. |
| 424 | * |
| 425 | * Then we only need to compute HASH(okey + inner_hash) and we're done. |
| 426 | */ |
| 427 | const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info); |
| 428 | /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5, |
| 429 | * all of which have the same block size except SHA-384. */ |
| 430 | const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64; |
| 431 | const unsigned char * const ikey = ctx->hmac_ctx; |
| 432 | const unsigned char * const okey = ikey + block_size; |
| 433 | const size_t hash_size = mbedtls_md_get_size(ctx->md_info); |
| 434 | |
| 435 | unsigned char aux_out[MBEDTLS_MD_MAX_SIZE]; |
| 436 | mbedtls_md_context_t aux; |
| 437 | size_t offset; |
| 438 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 439 | |
| 440 | mbedtls_md_init(&aux); |
| 441 | |
| 442 | #define MD_CHK(func_call) \ |
| 443 | do { \ |
| 444 | ret = (func_call); \ |
| 445 | if (ret != 0) \ |
| 446 | goto cleanup; \ |
| 447 | } while (0) |
| 448 | |
| 449 | MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0)); |
| 450 | |
| 451 | /* After hmac_start() of hmac_reset(), ikey has already been hashed, |
| 452 | * so we can start directly with the message */ |
| 453 | MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len)); |
| 454 | MD_CHK(mbedtls_md_update(ctx, data, min_data_len)); |
| 455 | |
| 456 | /* Fill the hash buffer in advance with something that is |
| 457 | * not a valid hash (barring an attack on the hash and |
| 458 | * deliberately-crafted input), in case the caller doesn't |
| 459 | * check the return status properly. */ |
| 460 | memset(output, '!', hash_size); |
| 461 | |
| 462 | /* For each possible length, compute the hash up to that point */ |
| 463 | for (offset = min_data_len; offset <= max_data_len; offset++) { |
| 464 | MD_CHK(mbedtls_md_clone(&aux, ctx)); |
| 465 | MD_CHK(mbedtls_md_finish(&aux, aux_out)); |
| 466 | /* Keep only the correct inner_hash in the output buffer */ |
| 467 | mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size, |
| 468 | offset, data_len_secret); |
| 469 | |
| 470 | if (offset < max_data_len) { |
| 471 | MD_CHK(mbedtls_md_update(ctx, data + offset, 1)); |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | /* The context needs to finish() before it starts() again */ |
| 476 | MD_CHK(mbedtls_md_finish(ctx, aux_out)); |
| 477 | |
| 478 | /* Now compute HASH(okey + inner_hash) */ |
| 479 | MD_CHK(mbedtls_md_starts(ctx)); |
| 480 | MD_CHK(mbedtls_md_update(ctx, okey, block_size)); |
| 481 | MD_CHK(mbedtls_md_update(ctx, output, hash_size)); |
| 482 | MD_CHK(mbedtls_md_finish(ctx, output)); |
| 483 | |
| 484 | /* Done, get ready for next time */ |
| 485 | MD_CHK(mbedtls_md_hmac_reset(ctx)); |
| 486 | |
| 487 | #undef MD_CHK |
| 488 | |
| 489 | cleanup: |
| 490 | mbedtls_md_free(&aux); |
| 491 | return ret; |
| 492 | } |
| 493 | |
| 494 | #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */ |
| 495 | |
| 496 | #if defined(MBEDTLS_BIGNUM_C) |
| 497 | |
| 498 | #define MPI_VALIDATE_RET(cond) \ |
| 499 | MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA) |
| 500 | |
| 501 | /* |
| 502 | * Conditionally assign X = Y, without leaking information |
| 503 | * about whether the assignment was made or not. |
| 504 | * (Leaking information about the respective sizes of X and Y is ok however.) |
| 505 | */ |
| 506 | #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103) |
| 507 | /* |
| 508 | * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See: |
| 509 | * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989 |
| 510 | */ |
| 511 | __declspec(noinline) |
| 512 | #endif |
| 513 | int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X, |
| 514 | const mbedtls_mpi *Y, |
| 515 | unsigned char assign) |
| 516 | { |
| 517 | int ret = 0; |
| 518 | size_t i; |
| 519 | mbedtls_mpi_uint limb_mask; |
| 520 | MPI_VALIDATE_RET(X != NULL); |
| 521 | MPI_VALIDATE_RET(Y != NULL); |
| 522 | |
| 523 | /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */ |
| 524 | limb_mask = mbedtls_ct_mpi_uint_mask(assign);; |
| 525 | |
| 526 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n)); |
| 527 | |
| 528 | X->s = (int) mbedtls_ct_uint_if(assign, Y->s, X->s); |
| 529 | |
| 530 | mbedtls_ct_mpi_uint_cond_assign(Y->n, X->p, Y->p, assign); |
| 531 | |
| 532 | for (i = Y->n; i < X->n; i++) { |
| 533 | X->p[i] &= ~limb_mask; |
| 534 | } |
| 535 | |
| 536 | cleanup: |
| 537 | return ret; |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * Conditionally swap X and Y, without leaking information |
| 542 | * about whether the swap was made or not. |
| 543 | * Here it is not ok to simply swap the pointers, which would lead to |
| 544 | * different memory access patterns when X and Y are used afterwards. |
| 545 | */ |
| 546 | int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X, |
| 547 | mbedtls_mpi *Y, |
| 548 | unsigned char swap) |
| 549 | { |
| 550 | int ret, s; |
| 551 | size_t i; |
| 552 | mbedtls_mpi_uint limb_mask; |
| 553 | mbedtls_mpi_uint tmp; |
| 554 | MPI_VALIDATE_RET(X != NULL); |
| 555 | MPI_VALIDATE_RET(Y != NULL); |
| 556 | |
| 557 | if (X == Y) { |
| 558 | return 0; |
| 559 | } |
| 560 | |
| 561 | /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */ |
| 562 | limb_mask = mbedtls_ct_mpi_uint_mask(swap); |
| 563 | |
| 564 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n)); |
| 565 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n)); |
| 566 | |
| 567 | s = X->s; |
| 568 | X->s = (int) mbedtls_ct_uint_if(swap, Y->s, X->s); |
| 569 | Y->s = (int) mbedtls_ct_uint_if(swap, s, Y->s); |
| 570 | |
| 571 | |
| 572 | for (i = 0; i < X->n; i++) { |
| 573 | tmp = X->p[i]; |
| 574 | X->p[i] = (X->p[i] & ~limb_mask) | (Y->p[i] & limb_mask); |
| 575 | Y->p[i] = (Y->p[i] & ~limb_mask) | (tmp & limb_mask); |
| 576 | } |
| 577 | |
| 578 | cleanup: |
| 579 | return ret; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Compare signed values in constant time |
| 584 | */ |
| 585 | int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X, |
| 586 | const mbedtls_mpi *Y, |
| 587 | unsigned *ret) |
| 588 | { |
| 589 | size_t i; |
| 590 | /* The value of any of these variables is either 0 or 1 at all times. */ |
| 591 | unsigned cond, done, X_is_negative, Y_is_negative; |
| 592 | |
| 593 | MPI_VALIDATE_RET(X != NULL); |
| 594 | MPI_VALIDATE_RET(Y != NULL); |
| 595 | MPI_VALIDATE_RET(ret != NULL); |
| 596 | |
| 597 | if (X->n != Y->n) { |
| 598 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * Set sign_N to 1 if N >= 0, 0 if N < 0. |
| 603 | * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0. |
| 604 | */ |
| 605 | X_is_negative = (X->s & 2) >> 1; |
| 606 | Y_is_negative = (Y->s & 2) >> 1; |
| 607 | |
| 608 | /* |
| 609 | * If the signs are different, then the positive operand is the bigger. |
| 610 | * That is if X is negative (X_is_negative == 1), then X < Y is true and it |
| 611 | * is false if X is positive (X_is_negative == 0). |
| 612 | */ |
| 613 | cond = (X_is_negative ^ Y_is_negative); |
| 614 | *ret = cond & X_is_negative; |
| 615 | |
| 616 | /* |
| 617 | * This is a constant-time function. We might have the result, but we still |
| 618 | * need to go through the loop. Record if we have the result already. |
| 619 | */ |
| 620 | done = cond; |
| 621 | |
| 622 | for (i = X->n; i > 0; i--) { |
| 623 | /* |
| 624 | * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both |
| 625 | * X and Y are negative. |
| 626 | * |
| 627 | * Again even if we can make a decision, we just mark the result and |
| 628 | * the fact that we are done and continue looping. |
| 629 | */ |
| 630 | cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]); |
| 631 | *ret |= cond & (1 - done) & X_is_negative; |
| 632 | done |= cond; |
| 633 | |
| 634 | /* |
| 635 | * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both |
| 636 | * X and Y are positive. |
| 637 | * |
| 638 | * Again even if we can make a decision, we just mark the result and |
| 639 | * the fact that we are done and continue looping. |
| 640 | */ |
| 641 | cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]); |
| 642 | *ret |= cond & (1 - done) & (1 - X_is_negative); |
| 643 | done |= cond; |
| 644 | } |
| 645 | |
| 646 | return 0; |
| 647 | } |
| 648 | |
| 649 | #endif /* MBEDTLS_BIGNUM_C */ |
| 650 | |
| 651 | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
| 652 | |
| 653 | int mbedtls_ct_rsaes_pkcs1_v15_unpadding(int mode, |
| 654 | unsigned char *input, |
| 655 | size_t ilen, |
| 656 | unsigned char *output, |
| 657 | size_t output_max_len, |
| 658 | size_t *olen) |
| 659 | { |
| 660 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 661 | size_t i, plaintext_max_size; |
| 662 | |
| 663 | /* The following variables take sensitive values: their value must |
| 664 | * not leak into the observable behavior of the function other than |
| 665 | * the designated outputs (output, olen, return value). Otherwise |
| 666 | * this would open the execution of the function to |
| 667 | * side-channel-based variants of the Bleichenbacher padding oracle |
| 668 | * attack. Potential side channels include overall timing, memory |
| 669 | * access patterns (especially visible to an adversary who has access |
| 670 | * to a shared memory cache), and branches (especially visible to |
| 671 | * an adversary who has access to a shared code cache or to a shared |
| 672 | * branch predictor). */ |
| 673 | size_t pad_count = 0; |
| 674 | unsigned bad = 0; |
| 675 | unsigned char pad_done = 0; |
| 676 | size_t plaintext_size = 0; |
| 677 | unsigned output_too_large; |
| 678 | |
| 679 | plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11 |
| 680 | : output_max_len; |
| 681 | |
| 682 | /* Check and get padding length in constant time and constant |
| 683 | * memory trace. The first byte must be 0. */ |
| 684 | bad |= input[0]; |
| 685 | |
| 686 | if (mode == MBEDTLS_RSA_PRIVATE) { |
| 687 | /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00 |
| 688 | * where PS must be at least 8 nonzero bytes. */ |
| 689 | bad |= input[1] ^ MBEDTLS_RSA_CRYPT; |
| 690 | |
| 691 | /* Read the whole buffer. Set pad_done to nonzero if we find |
| 692 | * the 0x00 byte and remember the padding length in pad_count. */ |
| 693 | for (i = 2; i < ilen; i++) { |
| 694 | pad_done |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1; |
| 695 | pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1; |
| 696 | } |
| 697 | } else { |
| 698 | /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00 |
| 699 | * where PS must be at least 8 bytes with the value 0xFF. */ |
| 700 | bad |= input[1] ^ MBEDTLS_RSA_SIGN; |
| 701 | |
| 702 | /* Read the whole buffer. Set pad_done to nonzero if we find |
| 703 | * the 0x00 byte and remember the padding length in pad_count. |
| 704 | * If there's a non-0xff byte in the padding, the padding is bad. */ |
| 705 | for (i = 2; i < ilen; i++) { |
| 706 | pad_done |= mbedtls_ct_uint_if(input[i], 0, 1); |
| 707 | pad_count += mbedtls_ct_uint_if(pad_done, 0, 1); |
| 708 | bad |= mbedtls_ct_uint_if(pad_done, 0, input[i] ^ 0xFF); |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | /* If pad_done is still zero, there's no data, only unfinished padding. */ |
| 713 | bad |= mbedtls_ct_uint_if(pad_done, 0, 1); |
| 714 | |
| 715 | /* There must be at least 8 bytes of padding. */ |
| 716 | bad |= mbedtls_ct_size_gt(8, pad_count); |
| 717 | |
| 718 | /* If the padding is valid, set plaintext_size to the number of |
| 719 | * remaining bytes after stripping the padding. If the padding |
| 720 | * is invalid, avoid leaking this fact through the size of the |
| 721 | * output: use the maximum message size that fits in the output |
| 722 | * buffer. Do it without branches to avoid leaking the padding |
| 723 | * validity through timing. RSA keys are small enough that all the |
| 724 | * size_t values involved fit in unsigned int. */ |
| 725 | plaintext_size = mbedtls_ct_uint_if( |
| 726 | bad, (unsigned) plaintext_max_size, |
| 727 | (unsigned) (ilen - pad_count - 3)); |
| 728 | |
| 729 | /* Set output_too_large to 0 if the plaintext fits in the output |
| 730 | * buffer and to 1 otherwise. */ |
| 731 | output_too_large = mbedtls_ct_size_gt(plaintext_size, |
| 732 | plaintext_max_size); |
| 733 | |
| 734 | /* Set ret without branches to avoid timing attacks. Return: |
| 735 | * - INVALID_PADDING if the padding is bad (bad != 0). |
| 736 | * - OUTPUT_TOO_LARGE if the padding is good but the decrypted |
| 737 | * plaintext does not fit in the output buffer. |
| 738 | * - 0 if the padding is correct. */ |
| 739 | ret = -(int) mbedtls_ct_uint_if( |
| 740 | bad, -MBEDTLS_ERR_RSA_INVALID_PADDING, |
| 741 | mbedtls_ct_uint_if(output_too_large, |
| 742 | -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE, |
| 743 | 0)); |
| 744 | |
| 745 | /* If the padding is bad or the plaintext is too large, zero the |
| 746 | * data that we're about to copy to the output buffer. |
| 747 | * We need to copy the same amount of data |
| 748 | * from the same buffer whether the padding is good or not to |
| 749 | * avoid leaking the padding validity through overall timing or |
| 750 | * through memory or cache access patterns. */ |
| 751 | bad = mbedtls_ct_uint_mask(bad | output_too_large); |
| 752 | for (i = 11; i < ilen; i++) { |
| 753 | input[i] &= ~bad; |
| 754 | } |
| 755 | |
| 756 | /* If the plaintext is too large, truncate it to the buffer size. |
| 757 | * Copy anyway to avoid revealing the length through timing, because |
| 758 | * revealing the length is as bad as revealing the padding validity |
| 759 | * for a Bleichenbacher attack. */ |
| 760 | plaintext_size = mbedtls_ct_uint_if(output_too_large, |
| 761 | (unsigned) plaintext_max_size, |
| 762 | (unsigned) plaintext_size); |
| 763 | |
| 764 | /* Move the plaintext to the leftmost position where it can start in |
| 765 | * the working buffer, i.e. make it start plaintext_max_size from |
| 766 | * the end of the buffer. Do this with a memory access trace that |
| 767 | * does not depend on the plaintext size. After this move, the |
| 768 | * starting location of the plaintext is no longer sensitive |
| 769 | * information. */ |
| 770 | mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size, |
| 771 | plaintext_max_size, |
| 772 | plaintext_max_size - plaintext_size); |
| 773 | |
| 774 | /* Finally copy the decrypted plaintext plus trailing zeros into the output |
| 775 | * buffer. If output_max_len is 0, then output may be an invalid pointer |
| 776 | * and the result of memcpy() would be undefined; prevent undefined |
| 777 | * behavior making sure to depend only on output_max_len (the size of the |
| 778 | * user-provided output buffer), which is independent from plaintext |
| 779 | * length, validity of padding, success of the decryption, and other |
| 780 | * secrets. */ |
| 781 | if (output_max_len != 0) { |
| 782 | memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size); |
| 783 | } |
| 784 | |
| 785 | /* Report the amount of data we copied to the output buffer. In case |
| 786 | * of errors (bad padding or output too large), the value of *olen |
| 787 | * when this function returns is not specified. Making it equivalent |
| 788 | * to the good case limits the risks of leaking the padding validity. */ |
| 789 | *olen = plaintext_size; |
| 790 | |
| 791 | return ret; |
| 792 | } |
| 793 | |
| 794 | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
| 795 | |