1 | /** |
2 | * Constant-time functions |
3 | * |
4 | * Copyright The Mbed TLS Contributors |
5 | * SPDX-License-Identifier: Apache-2.0 |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | * not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | */ |
19 | |
20 | /* |
21 | * The following functions are implemented without using comparison operators, as those |
22 | * might be translated to branches by some compilers on some platforms. |
23 | */ |
24 | |
25 | #include "common.h" |
26 | #include "constant_time_internal.h" |
27 | #include "mbedtls/constant_time.h" |
28 | #include "mbedtls/error.h" |
29 | #include "mbedtls/platform_util.h" |
30 | |
31 | #if defined(MBEDTLS_BIGNUM_C) |
32 | #include "mbedtls/bignum.h" |
33 | #endif |
34 | |
35 | #if defined(MBEDTLS_SSL_TLS_C) |
36 | #include "mbedtls/ssl_internal.h" |
37 | #endif |
38 | |
39 | #if defined(MBEDTLS_RSA_C) |
40 | #include "mbedtls/rsa.h" |
41 | #endif |
42 | |
43 | #if defined(MBEDTLS_BASE64_C) |
44 | #include "constant_time_invasive.h" |
45 | #endif |
46 | |
47 | #include <string.h> |
48 | |
49 | int mbedtls_ct_memcmp(const void *a, |
50 | const void *b, |
51 | size_t n) |
52 | { |
53 | size_t i; |
54 | volatile const unsigned char *A = (volatile const unsigned char *) a; |
55 | volatile const unsigned char *B = (volatile const unsigned char *) b; |
56 | volatile unsigned char diff = 0; |
57 | |
58 | for (i = 0; i < n; i++) { |
59 | /* Read volatile data in order before computing diff. |
60 | * This avoids IAR compiler warning: |
61 | * 'the order of volatile accesses is undefined ..' */ |
62 | unsigned char x = A[i], y = B[i]; |
63 | diff |= x ^ y; |
64 | } |
65 | |
66 | return (int) diff; |
67 | } |
68 | |
69 | unsigned mbedtls_ct_uint_mask(unsigned value) |
70 | { |
71 | /* MSVC has a warning about unary minus on unsigned, but this is |
72 | * well-defined and precisely what we want to do here */ |
73 | #if defined(_MSC_VER) |
74 | #pragma warning( push ) |
75 | #pragma warning( disable : 4146 ) |
76 | #endif |
77 | return -((value | -value) >> (sizeof(value) * 8 - 1)); |
78 | #if defined(_MSC_VER) |
79 | #pragma warning( pop ) |
80 | #endif |
81 | } |
82 | |
83 | #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) |
84 | |
85 | size_t mbedtls_ct_size_mask(size_t value) |
86 | { |
87 | /* MSVC has a warning about unary minus on unsigned integer types, |
88 | * but this is well-defined and precisely what we want to do here. */ |
89 | #if defined(_MSC_VER) |
90 | #pragma warning( push ) |
91 | #pragma warning( disable : 4146 ) |
92 | #endif |
93 | return -((value | -value) >> (sizeof(value) * 8 - 1)); |
94 | #if defined(_MSC_VER) |
95 | #pragma warning( pop ) |
96 | #endif |
97 | } |
98 | |
99 | #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */ |
100 | |
101 | #if defined(MBEDTLS_BIGNUM_C) |
102 | |
103 | mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value) |
104 | { |
105 | /* MSVC has a warning about unary minus on unsigned, but this is |
106 | * well-defined and precisely what we want to do here */ |
107 | #if defined(_MSC_VER) |
108 | #pragma warning( push ) |
109 | #pragma warning( disable : 4146 ) |
110 | #endif |
111 | return -((value | -value) >> (sizeof(value) * 8 - 1)); |
112 | #if defined(_MSC_VER) |
113 | #pragma warning( pop ) |
114 | #endif |
115 | } |
116 | |
117 | #endif /* MBEDTLS_BIGNUM_C */ |
118 | |
119 | #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) |
120 | |
121 | /** Constant-flow mask generation for "less than" comparison: |
122 | * - if \p x < \p y, return all-bits 1, that is (size_t) -1 |
123 | * - otherwise, return all bits 0, that is 0 |
124 | * |
125 | * This function can be used to write constant-time code by replacing branches |
126 | * with bit operations using masks. |
127 | * |
128 | * \param x The first value to analyze. |
129 | * \param y The second value to analyze. |
130 | * |
131 | * \return All-bits-one if \p x is less than \p y, otherwise zero. |
132 | */ |
133 | static size_t mbedtls_ct_size_mask_lt(size_t x, |
134 | size_t y) |
135 | { |
136 | /* This has the most significant bit set if and only if x < y */ |
137 | const size_t sub = x - y; |
138 | |
139 | /* sub1 = (x < y) ? 1 : 0 */ |
140 | const size_t sub1 = sub >> (sizeof(sub) * 8 - 1); |
141 | |
142 | /* mask = (x < y) ? 0xff... : 0x00... */ |
143 | const size_t mask = mbedtls_ct_size_mask(sub1); |
144 | |
145 | return mask; |
146 | } |
147 | |
148 | size_t mbedtls_ct_size_mask_ge(size_t x, |
149 | size_t y) |
150 | { |
151 | return ~mbedtls_ct_size_mask_lt(x, y); |
152 | } |
153 | |
154 | #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */ |
155 | |
156 | #if defined(MBEDTLS_BASE64_C) |
157 | |
158 | /* Return 0xff if low <= c <= high, 0 otherwise. |
159 | * |
160 | * Constant flow with respect to c. |
161 | */ |
162 | MBEDTLS_STATIC_TESTABLE |
163 | unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low, |
164 | unsigned char high, |
165 | unsigned char c) |
166 | { |
167 | /* low_mask is: 0 if low <= c, 0x...ff if low > c */ |
168 | unsigned low_mask = ((unsigned) c - low) >> 8; |
169 | /* high_mask is: 0 if c <= high, 0x...ff if c > high */ |
170 | unsigned high_mask = ((unsigned) high - c) >> 8; |
171 | return ~(low_mask | high_mask) & 0xff; |
172 | } |
173 | |
174 | #endif /* MBEDTLS_BASE64_C */ |
175 | |
176 | unsigned mbedtls_ct_size_bool_eq(size_t x, |
177 | size_t y) |
178 | { |
179 | /* diff = 0 if x == y, non-zero otherwise */ |
180 | const size_t diff = x ^ y; |
181 | |
182 | /* MSVC has a warning about unary minus on unsigned integer types, |
183 | * but this is well-defined and precisely what we want to do here. */ |
184 | #if defined(_MSC_VER) |
185 | #pragma warning( push ) |
186 | #pragma warning( disable : 4146 ) |
187 | #endif |
188 | |
189 | /* diff_msb's most significant bit is equal to x != y */ |
190 | const size_t diff_msb = (diff | (size_t) -diff); |
191 | |
192 | #if defined(_MSC_VER) |
193 | #pragma warning( pop ) |
194 | #endif |
195 | |
196 | /* diff1 = (x != y) ? 1 : 0 */ |
197 | const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1); |
198 | |
199 | return 1 ^ diff1; |
200 | } |
201 | |
202 | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
203 | |
204 | /** Constant-flow "greater than" comparison: |
205 | * return x > y |
206 | * |
207 | * This is equivalent to \p x > \p y, but is likely to be compiled |
208 | * to code using bitwise operation rather than a branch. |
209 | * |
210 | * \param x The first value to analyze. |
211 | * \param y The second value to analyze. |
212 | * |
213 | * \return 1 if \p x greater than \p y, otherwise 0. |
214 | */ |
215 | static unsigned mbedtls_ct_size_gt(size_t x, |
216 | size_t y) |
217 | { |
218 | /* Return the sign bit (1 for negative) of (y - x). */ |
219 | return (y - x) >> (sizeof(size_t) * 8 - 1); |
220 | } |
221 | |
222 | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
223 | |
224 | #if defined(MBEDTLS_BIGNUM_C) |
225 | |
226 | unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x, |
227 | const mbedtls_mpi_uint y) |
228 | { |
229 | mbedtls_mpi_uint ret; |
230 | mbedtls_mpi_uint cond; |
231 | |
232 | /* |
233 | * Check if the most significant bits (MSB) of the operands are different. |
234 | */ |
235 | cond = (x ^ y); |
236 | /* |
237 | * If the MSB are the same then the difference x-y will be negative (and |
238 | * have its MSB set to 1 during conversion to unsigned) if and only if x<y. |
239 | */ |
240 | ret = (x - y) & ~cond; |
241 | /* |
242 | * If the MSB are different, then the operand with the MSB of 1 is the |
243 | * bigger. (That is if y has MSB of 1, then x<y is true and it is false if |
244 | * the MSB of y is 0.) |
245 | */ |
246 | ret |= y & cond; |
247 | |
248 | |
249 | ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1); |
250 | |
251 | return (unsigned) ret; |
252 | } |
253 | |
254 | #endif /* MBEDTLS_BIGNUM_C */ |
255 | |
256 | unsigned mbedtls_ct_uint_if(unsigned condition, |
257 | unsigned if1, |
258 | unsigned if0) |
259 | { |
260 | unsigned mask = mbedtls_ct_uint_mask(condition); |
261 | return (mask & if1) | (~mask & if0); |
262 | } |
263 | |
264 | #if defined(MBEDTLS_BIGNUM_C) |
265 | |
266 | void mbedtls_ct_mpi_uint_cond_assign(size_t n, |
267 | mbedtls_mpi_uint *dest, |
268 | const mbedtls_mpi_uint *src, |
269 | unsigned char condition) |
270 | { |
271 | size_t i; |
272 | |
273 | /* MSVC has a warning about unary minus on unsigned integer types, |
274 | * but this is well-defined and precisely what we want to do here. */ |
275 | #if defined(_MSC_VER) |
276 | #pragma warning( push ) |
277 | #pragma warning( disable : 4146 ) |
278 | #endif |
279 | |
280 | /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */ |
281 | const mbedtls_mpi_uint mask = -condition; |
282 | |
283 | #if defined(_MSC_VER) |
284 | #pragma warning( pop ) |
285 | #endif |
286 | |
287 | for (i = 0; i < n; i++) { |
288 | dest[i] = (src[i] & mask) | (dest[i] & ~mask); |
289 | } |
290 | } |
291 | |
292 | #endif /* MBEDTLS_BIGNUM_C */ |
293 | |
294 | #if defined(MBEDTLS_BASE64_C) |
295 | |
296 | unsigned char mbedtls_ct_base64_enc_char(unsigned char value) |
297 | { |
298 | unsigned char digit = 0; |
299 | /* For each range of values, if value is in that range, mask digit with |
300 | * the corresponding value. Since value can only be in a single range, |
301 | * only at most one masking will change digit. */ |
302 | digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value); |
303 | digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26); |
304 | digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52); |
305 | digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+'; |
306 | digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/'; |
307 | return digit; |
308 | } |
309 | |
310 | signed char mbedtls_ct_base64_dec_value(unsigned char c) |
311 | { |
312 | unsigned char val = 0; |
313 | /* For each range of digits, if c is in that range, mask val with |
314 | * the corresponding value. Since c can only be in a single range, |
315 | * only at most one masking will change val. Set val to one plus |
316 | * the desired value so that it stays 0 if c is in none of the ranges. */ |
317 | val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' + 0 + 1); |
318 | val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1); |
319 | val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1); |
320 | val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1); |
321 | val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1); |
322 | /* At this point, val is 0 if c is an invalid digit and v+1 if c is |
323 | * a digit with the value v. */ |
324 | return val - 1; |
325 | } |
326 | |
327 | #endif /* MBEDTLS_BASE64_C */ |
328 | |
329 | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
330 | |
331 | /** Shift some data towards the left inside a buffer. |
332 | * |
333 | * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally |
334 | * equivalent to |
335 | * ``` |
336 | * memmove(start, start + offset, total - offset); |
337 | * memset(start + offset, 0, total - offset); |
338 | * ``` |
339 | * but it strives to use a memory access pattern (and thus total timing) |
340 | * that does not depend on \p offset. This timing independence comes at |
341 | * the expense of performance. |
342 | * |
343 | * \param start Pointer to the start of the buffer. |
344 | * \param total Total size of the buffer. |
345 | * \param offset Offset from which to copy \p total - \p offset bytes. |
346 | */ |
347 | static void mbedtls_ct_mem_move_to_left(void *start, |
348 | size_t total, |
349 | size_t offset) |
350 | { |
351 | volatile unsigned char *buf = start; |
352 | size_t i, n; |
353 | if (total == 0) { |
354 | return; |
355 | } |
356 | for (i = 0; i < total; i++) { |
357 | unsigned no_op = mbedtls_ct_size_gt(total - offset, i); |
358 | /* The first `total - offset` passes are a no-op. The last |
359 | * `offset` passes shift the data one byte to the left and |
360 | * zero out the last byte. */ |
361 | for (n = 0; n < total - 1; n++) { |
362 | unsigned char current = buf[n]; |
363 | unsigned char next = buf[n+1]; |
364 | buf[n] = mbedtls_ct_uint_if(no_op, current, next); |
365 | } |
366 | buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0); |
367 | } |
368 | } |
369 | |
370 | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
371 | |
372 | #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) |
373 | void mbedtls_ct_memcpy_if_eq(unsigned char *dest, |
374 | const unsigned char *src, |
375 | size_t len, |
376 | size_t c1, |
377 | size_t c2) |
378 | { |
379 | /* mask = c1 == c2 ? 0xff : 0x00 */ |
380 | const size_t equal = mbedtls_ct_size_bool_eq(c1, c2); |
381 | const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal); |
382 | |
383 | /* dest[i] = c1 == c2 ? src[i] : dest[i] */ |
384 | for (size_t i = 0; i < len; i++) { |
385 | dest[i] = (src[i] & mask) | (dest[i] & ~mask); |
386 | } |
387 | } |
388 | |
389 | void mbedtls_ct_memcpy_offset(unsigned char *dest, |
390 | const unsigned char *src, |
391 | size_t offset, |
392 | size_t offset_min, |
393 | size_t offset_max, |
394 | size_t len) |
395 | { |
396 | size_t offsetval; |
397 | |
398 | for (offsetval = offset_min; offsetval <= offset_max; offsetval++) { |
399 | mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len, |
400 | offsetval, offset); |
401 | } |
402 | } |
403 | |
404 | int mbedtls_ct_hmac(mbedtls_md_context_t *ctx, |
405 | const unsigned char *add_data, |
406 | size_t add_data_len, |
407 | const unsigned char *data, |
408 | size_t data_len_secret, |
409 | size_t min_data_len, |
410 | size_t max_data_len, |
411 | unsigned char *output) |
412 | { |
413 | /* |
414 | * This function breaks the HMAC abstraction and uses the md_clone() |
415 | * extension to the MD API in order to get constant-flow behaviour. |
416 | * |
417 | * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means |
418 | * concatenation, and okey/ikey are the XOR of the key with some fixed bit |
419 | * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx. |
420 | * |
421 | * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to |
422 | * minlen, then cloning the context, and for each byte up to maxlen |
423 | * finishing up the hash computation, keeping only the correct result. |
424 | * |
425 | * Then we only need to compute HASH(okey + inner_hash) and we're done. |
426 | */ |
427 | const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info); |
428 | /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5, |
429 | * all of which have the same block size except SHA-384. */ |
430 | const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64; |
431 | const unsigned char * const ikey = ctx->hmac_ctx; |
432 | const unsigned char * const okey = ikey + block_size; |
433 | const size_t hash_size = mbedtls_md_get_size(ctx->md_info); |
434 | |
435 | unsigned char aux_out[MBEDTLS_MD_MAX_SIZE]; |
436 | mbedtls_md_context_t aux; |
437 | size_t offset; |
438 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
439 | |
440 | mbedtls_md_init(&aux); |
441 | |
442 | #define MD_CHK(func_call) \ |
443 | do { \ |
444 | ret = (func_call); \ |
445 | if (ret != 0) \ |
446 | goto cleanup; \ |
447 | } while (0) |
448 | |
449 | MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0)); |
450 | |
451 | /* After hmac_start() of hmac_reset(), ikey has already been hashed, |
452 | * so we can start directly with the message */ |
453 | MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len)); |
454 | MD_CHK(mbedtls_md_update(ctx, data, min_data_len)); |
455 | |
456 | /* Fill the hash buffer in advance with something that is |
457 | * not a valid hash (barring an attack on the hash and |
458 | * deliberately-crafted input), in case the caller doesn't |
459 | * check the return status properly. */ |
460 | memset(output, '!', hash_size); |
461 | |
462 | /* For each possible length, compute the hash up to that point */ |
463 | for (offset = min_data_len; offset <= max_data_len; offset++) { |
464 | MD_CHK(mbedtls_md_clone(&aux, ctx)); |
465 | MD_CHK(mbedtls_md_finish(&aux, aux_out)); |
466 | /* Keep only the correct inner_hash in the output buffer */ |
467 | mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size, |
468 | offset, data_len_secret); |
469 | |
470 | if (offset < max_data_len) { |
471 | MD_CHK(mbedtls_md_update(ctx, data + offset, 1)); |
472 | } |
473 | } |
474 | |
475 | /* The context needs to finish() before it starts() again */ |
476 | MD_CHK(mbedtls_md_finish(ctx, aux_out)); |
477 | |
478 | /* Now compute HASH(okey + inner_hash) */ |
479 | MD_CHK(mbedtls_md_starts(ctx)); |
480 | MD_CHK(mbedtls_md_update(ctx, okey, block_size)); |
481 | MD_CHK(mbedtls_md_update(ctx, output, hash_size)); |
482 | MD_CHK(mbedtls_md_finish(ctx, output)); |
483 | |
484 | /* Done, get ready for next time */ |
485 | MD_CHK(mbedtls_md_hmac_reset(ctx)); |
486 | |
487 | #undef MD_CHK |
488 | |
489 | cleanup: |
490 | mbedtls_md_free(&aux); |
491 | return ret; |
492 | } |
493 | |
494 | #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */ |
495 | |
496 | #if defined(MBEDTLS_BIGNUM_C) |
497 | |
498 | #define MPI_VALIDATE_RET(cond) \ |
499 | MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA) |
500 | |
501 | /* |
502 | * Conditionally assign X = Y, without leaking information |
503 | * about whether the assignment was made or not. |
504 | * (Leaking information about the respective sizes of X and Y is ok however.) |
505 | */ |
506 | #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103) |
507 | /* |
508 | * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See: |
509 | * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989 |
510 | */ |
511 | __declspec(noinline) |
512 | #endif |
513 | int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X, |
514 | const mbedtls_mpi *Y, |
515 | unsigned char assign) |
516 | { |
517 | int ret = 0; |
518 | size_t i; |
519 | mbedtls_mpi_uint limb_mask; |
520 | MPI_VALIDATE_RET(X != NULL); |
521 | MPI_VALIDATE_RET(Y != NULL); |
522 | |
523 | /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */ |
524 | limb_mask = mbedtls_ct_mpi_uint_mask(assign);; |
525 | |
526 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n)); |
527 | |
528 | X->s = (int) mbedtls_ct_uint_if(assign, Y->s, X->s); |
529 | |
530 | mbedtls_ct_mpi_uint_cond_assign(Y->n, X->p, Y->p, assign); |
531 | |
532 | for (i = Y->n; i < X->n; i++) { |
533 | X->p[i] &= ~limb_mask; |
534 | } |
535 | |
536 | cleanup: |
537 | return ret; |
538 | } |
539 | |
540 | /* |
541 | * Conditionally swap X and Y, without leaking information |
542 | * about whether the swap was made or not. |
543 | * Here it is not ok to simply swap the pointers, which would lead to |
544 | * different memory access patterns when X and Y are used afterwards. |
545 | */ |
546 | int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X, |
547 | mbedtls_mpi *Y, |
548 | unsigned char swap) |
549 | { |
550 | int ret, s; |
551 | size_t i; |
552 | mbedtls_mpi_uint limb_mask; |
553 | mbedtls_mpi_uint tmp; |
554 | MPI_VALIDATE_RET(X != NULL); |
555 | MPI_VALIDATE_RET(Y != NULL); |
556 | |
557 | if (X == Y) { |
558 | return 0; |
559 | } |
560 | |
561 | /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */ |
562 | limb_mask = mbedtls_ct_mpi_uint_mask(swap); |
563 | |
564 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n)); |
565 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n)); |
566 | |
567 | s = X->s; |
568 | X->s = (int) mbedtls_ct_uint_if(swap, Y->s, X->s); |
569 | Y->s = (int) mbedtls_ct_uint_if(swap, s, Y->s); |
570 | |
571 | |
572 | for (i = 0; i < X->n; i++) { |
573 | tmp = X->p[i]; |
574 | X->p[i] = (X->p[i] & ~limb_mask) | (Y->p[i] & limb_mask); |
575 | Y->p[i] = (Y->p[i] & ~limb_mask) | (tmp & limb_mask); |
576 | } |
577 | |
578 | cleanup: |
579 | return ret; |
580 | } |
581 | |
582 | /* |
583 | * Compare signed values in constant time |
584 | */ |
585 | int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X, |
586 | const mbedtls_mpi *Y, |
587 | unsigned *ret) |
588 | { |
589 | size_t i; |
590 | /* The value of any of these variables is either 0 or 1 at all times. */ |
591 | unsigned cond, done, X_is_negative, Y_is_negative; |
592 | |
593 | MPI_VALIDATE_RET(X != NULL); |
594 | MPI_VALIDATE_RET(Y != NULL); |
595 | MPI_VALIDATE_RET(ret != NULL); |
596 | |
597 | if (X->n != Y->n) { |
598 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
599 | } |
600 | |
601 | /* |
602 | * Set sign_N to 1 if N >= 0, 0 if N < 0. |
603 | * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0. |
604 | */ |
605 | X_is_negative = (X->s & 2) >> 1; |
606 | Y_is_negative = (Y->s & 2) >> 1; |
607 | |
608 | /* |
609 | * If the signs are different, then the positive operand is the bigger. |
610 | * That is if X is negative (X_is_negative == 1), then X < Y is true and it |
611 | * is false if X is positive (X_is_negative == 0). |
612 | */ |
613 | cond = (X_is_negative ^ Y_is_negative); |
614 | *ret = cond & X_is_negative; |
615 | |
616 | /* |
617 | * This is a constant-time function. We might have the result, but we still |
618 | * need to go through the loop. Record if we have the result already. |
619 | */ |
620 | done = cond; |
621 | |
622 | for (i = X->n; i > 0; i--) { |
623 | /* |
624 | * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both |
625 | * X and Y are negative. |
626 | * |
627 | * Again even if we can make a decision, we just mark the result and |
628 | * the fact that we are done and continue looping. |
629 | */ |
630 | cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]); |
631 | *ret |= cond & (1 - done) & X_is_negative; |
632 | done |= cond; |
633 | |
634 | /* |
635 | * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both |
636 | * X and Y are positive. |
637 | * |
638 | * Again even if we can make a decision, we just mark the result and |
639 | * the fact that we are done and continue looping. |
640 | */ |
641 | cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]); |
642 | *ret |= cond & (1 - done) & (1 - X_is_negative); |
643 | done |= cond; |
644 | } |
645 | |
646 | return 0; |
647 | } |
648 | |
649 | #endif /* MBEDTLS_BIGNUM_C */ |
650 | |
651 | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
652 | |
653 | int mbedtls_ct_rsaes_pkcs1_v15_unpadding(int mode, |
654 | unsigned char *input, |
655 | size_t ilen, |
656 | unsigned char *output, |
657 | size_t output_max_len, |
658 | size_t *olen) |
659 | { |
660 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
661 | size_t i, plaintext_max_size; |
662 | |
663 | /* The following variables take sensitive values: their value must |
664 | * not leak into the observable behavior of the function other than |
665 | * the designated outputs (output, olen, return value). Otherwise |
666 | * this would open the execution of the function to |
667 | * side-channel-based variants of the Bleichenbacher padding oracle |
668 | * attack. Potential side channels include overall timing, memory |
669 | * access patterns (especially visible to an adversary who has access |
670 | * to a shared memory cache), and branches (especially visible to |
671 | * an adversary who has access to a shared code cache or to a shared |
672 | * branch predictor). */ |
673 | size_t pad_count = 0; |
674 | unsigned bad = 0; |
675 | unsigned char pad_done = 0; |
676 | size_t plaintext_size = 0; |
677 | unsigned output_too_large; |
678 | |
679 | plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11 |
680 | : output_max_len; |
681 | |
682 | /* Check and get padding length in constant time and constant |
683 | * memory trace. The first byte must be 0. */ |
684 | bad |= input[0]; |
685 | |
686 | if (mode == MBEDTLS_RSA_PRIVATE) { |
687 | /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00 |
688 | * where PS must be at least 8 nonzero bytes. */ |
689 | bad |= input[1] ^ MBEDTLS_RSA_CRYPT; |
690 | |
691 | /* Read the whole buffer. Set pad_done to nonzero if we find |
692 | * the 0x00 byte and remember the padding length in pad_count. */ |
693 | for (i = 2; i < ilen; i++) { |
694 | pad_done |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1; |
695 | pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1; |
696 | } |
697 | } else { |
698 | /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00 |
699 | * where PS must be at least 8 bytes with the value 0xFF. */ |
700 | bad |= input[1] ^ MBEDTLS_RSA_SIGN; |
701 | |
702 | /* Read the whole buffer. Set pad_done to nonzero if we find |
703 | * the 0x00 byte and remember the padding length in pad_count. |
704 | * If there's a non-0xff byte in the padding, the padding is bad. */ |
705 | for (i = 2; i < ilen; i++) { |
706 | pad_done |= mbedtls_ct_uint_if(input[i], 0, 1); |
707 | pad_count += mbedtls_ct_uint_if(pad_done, 0, 1); |
708 | bad |= mbedtls_ct_uint_if(pad_done, 0, input[i] ^ 0xFF); |
709 | } |
710 | } |
711 | |
712 | /* If pad_done is still zero, there's no data, only unfinished padding. */ |
713 | bad |= mbedtls_ct_uint_if(pad_done, 0, 1); |
714 | |
715 | /* There must be at least 8 bytes of padding. */ |
716 | bad |= mbedtls_ct_size_gt(8, pad_count); |
717 | |
718 | /* If the padding is valid, set plaintext_size to the number of |
719 | * remaining bytes after stripping the padding. If the padding |
720 | * is invalid, avoid leaking this fact through the size of the |
721 | * output: use the maximum message size that fits in the output |
722 | * buffer. Do it without branches to avoid leaking the padding |
723 | * validity through timing. RSA keys are small enough that all the |
724 | * size_t values involved fit in unsigned int. */ |
725 | plaintext_size = mbedtls_ct_uint_if( |
726 | bad, (unsigned) plaintext_max_size, |
727 | (unsigned) (ilen - pad_count - 3)); |
728 | |
729 | /* Set output_too_large to 0 if the plaintext fits in the output |
730 | * buffer and to 1 otherwise. */ |
731 | output_too_large = mbedtls_ct_size_gt(plaintext_size, |
732 | plaintext_max_size); |
733 | |
734 | /* Set ret without branches to avoid timing attacks. Return: |
735 | * - INVALID_PADDING if the padding is bad (bad != 0). |
736 | * - OUTPUT_TOO_LARGE if the padding is good but the decrypted |
737 | * plaintext does not fit in the output buffer. |
738 | * - 0 if the padding is correct. */ |
739 | ret = -(int) mbedtls_ct_uint_if( |
740 | bad, -MBEDTLS_ERR_RSA_INVALID_PADDING, |
741 | mbedtls_ct_uint_if(output_too_large, |
742 | -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE, |
743 | 0)); |
744 | |
745 | /* If the padding is bad or the plaintext is too large, zero the |
746 | * data that we're about to copy to the output buffer. |
747 | * We need to copy the same amount of data |
748 | * from the same buffer whether the padding is good or not to |
749 | * avoid leaking the padding validity through overall timing or |
750 | * through memory or cache access patterns. */ |
751 | bad = mbedtls_ct_uint_mask(bad | output_too_large); |
752 | for (i = 11; i < ilen; i++) { |
753 | input[i] &= ~bad; |
754 | } |
755 | |
756 | /* If the plaintext is too large, truncate it to the buffer size. |
757 | * Copy anyway to avoid revealing the length through timing, because |
758 | * revealing the length is as bad as revealing the padding validity |
759 | * for a Bleichenbacher attack. */ |
760 | plaintext_size = mbedtls_ct_uint_if(output_too_large, |
761 | (unsigned) plaintext_max_size, |
762 | (unsigned) plaintext_size); |
763 | |
764 | /* Move the plaintext to the leftmost position where it can start in |
765 | * the working buffer, i.e. make it start plaintext_max_size from |
766 | * the end of the buffer. Do this with a memory access trace that |
767 | * does not depend on the plaintext size. After this move, the |
768 | * starting location of the plaintext is no longer sensitive |
769 | * information. */ |
770 | mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size, |
771 | plaintext_max_size, |
772 | plaintext_max_size - plaintext_size); |
773 | |
774 | /* Finally copy the decrypted plaintext plus trailing zeros into the output |
775 | * buffer. If output_max_len is 0, then output may be an invalid pointer |
776 | * and the result of memcpy() would be undefined; prevent undefined |
777 | * behavior making sure to depend only on output_max_len (the size of the |
778 | * user-provided output buffer), which is independent from plaintext |
779 | * length, validity of padding, success of the decryption, and other |
780 | * secrets. */ |
781 | if (output_max_len != 0) { |
782 | memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size); |
783 | } |
784 | |
785 | /* Report the amount of data we copied to the output buffer. In case |
786 | * of errors (bad padding or output too large), the value of *olen |
787 | * when this function returns is not specified. Making it equivalent |
788 | * to the good case limits the risks of leaking the padding validity. */ |
789 | *olen = plaintext_size; |
790 | |
791 | return ret; |
792 | } |
793 | |
794 | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
795 | |