1 | /* |
2 | * Helper functions for the RSA module |
3 | * |
4 | * Copyright The Mbed TLS Contributors |
5 | * SPDX-License-Identifier: Apache-2.0 |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | * not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | * |
19 | */ |
20 | |
21 | #include "common.h" |
22 | |
23 | #if defined(MBEDTLS_RSA_C) |
24 | |
25 | #include "mbedtls/rsa.h" |
26 | #include "mbedtls/bignum.h" |
27 | #include "mbedtls/rsa_internal.h" |
28 | |
29 | /* |
30 | * Compute RSA prime factors from public and private exponents |
31 | * |
32 | * Summary of algorithm: |
33 | * Setting F := lcm(P-1,Q-1), the idea is as follows: |
34 | * |
35 | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) |
36 | * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the |
37 | * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four |
38 | * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) |
39 | * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime |
40 | * factors of N. |
41 | * |
42 | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same |
43 | * construction still applies since (-)^K is the identity on the set of |
44 | * roots of 1 in Z/NZ. |
45 | * |
46 | * The public and private key primitives (-)^E and (-)^D are mutually inverse |
47 | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. |
48 | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. |
49 | * Splitting L = 2^t * K with K odd, we have |
50 | * |
51 | * DE - 1 = FL = (F/2) * (2^(t+1)) * K, |
52 | * |
53 | * so (F / 2) * K is among the numbers |
54 | * |
55 | * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord |
56 | * |
57 | * where ord is the order of 2 in (DE - 1). |
58 | * We can therefore iterate through these numbers apply the construction |
59 | * of (a) and (b) above to attempt to factor N. |
60 | * |
61 | */ |
62 | int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, |
63 | mbedtls_mpi const *E, mbedtls_mpi const *D, |
64 | mbedtls_mpi *P, mbedtls_mpi *Q) |
65 | { |
66 | int ret = 0; |
67 | |
68 | uint16_t attempt; /* Number of current attempt */ |
69 | uint16_t iter; /* Number of squares computed in the current attempt */ |
70 | |
71 | uint16_t order; /* Order of 2 in DE - 1 */ |
72 | |
73 | mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ |
74 | mbedtls_mpi K; /* Temporary holding the current candidate */ |
75 | |
76 | const unsigned char primes[] = { 2, |
77 | 3, 5, 7, 11, 13, 17, 19, 23, |
78 | 29, 31, 37, 41, 43, 47, 53, 59, |
79 | 61, 67, 71, 73, 79, 83, 89, 97, |
80 | 101, 103, 107, 109, 113, 127, 131, 137, |
81 | 139, 149, 151, 157, 163, 167, 173, 179, |
82 | 181, 191, 193, 197, 199, 211, 223, 227, |
83 | 229, 233, 239, 241, 251 }; |
84 | |
85 | const size_t num_primes = sizeof(primes) / sizeof(*primes); |
86 | |
87 | if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) { |
88 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
89 | } |
90 | |
91 | if (mbedtls_mpi_cmp_int(N, 0) <= 0 || |
92 | mbedtls_mpi_cmp_int(D, 1) <= 0 || |
93 | mbedtls_mpi_cmp_mpi(D, N) >= 0 || |
94 | mbedtls_mpi_cmp_int(E, 1) <= 0 || |
95 | mbedtls_mpi_cmp_mpi(E, N) >= 0) { |
96 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
97 | } |
98 | |
99 | /* |
100 | * Initializations and temporary changes |
101 | */ |
102 | |
103 | mbedtls_mpi_init(&K); |
104 | mbedtls_mpi_init(&T); |
105 | |
106 | /* T := DE - 1 */ |
107 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E)); |
108 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1)); |
109 | |
110 | if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) { |
111 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
112 | goto cleanup; |
113 | } |
114 | |
115 | /* After this operation, T holds the largest odd divisor of DE - 1. */ |
116 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order)); |
117 | |
118 | /* |
119 | * Actual work |
120 | */ |
121 | |
122 | /* Skip trying 2 if N == 1 mod 8 */ |
123 | attempt = 0; |
124 | if (N->p[0] % 8 == 1) { |
125 | attempt = 1; |
126 | } |
127 | |
128 | for (; attempt < num_primes; ++attempt) { |
129 | mbedtls_mpi_lset(&K, primes[attempt]); |
130 | |
131 | /* Check if gcd(K,N) = 1 */ |
132 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); |
133 | if (mbedtls_mpi_cmp_int(P, 1) != 0) { |
134 | continue; |
135 | } |
136 | |
137 | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... |
138 | * and check whether they have nontrivial GCD with N. */ |
139 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N, |
140 | Q /* temporarily use Q for storing Montgomery |
141 | * multiplication helper values */)); |
142 | |
143 | for (iter = 1; iter <= order; ++iter) { |
144 | /* If we reach 1 prematurely, there's no point |
145 | * in continuing to square K */ |
146 | if (mbedtls_mpi_cmp_int(&K, 1) == 0) { |
147 | break; |
148 | } |
149 | |
150 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1)); |
151 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); |
152 | |
153 | if (mbedtls_mpi_cmp_int(P, 1) == 1 && |
154 | mbedtls_mpi_cmp_mpi(P, N) == -1) { |
155 | /* |
156 | * Have found a nontrivial divisor P of N. |
157 | * Set Q := N / P. |
158 | */ |
159 | |
160 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P)); |
161 | goto cleanup; |
162 | } |
163 | |
164 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
165 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K)); |
166 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N)); |
167 | } |
168 | |
169 | /* |
170 | * If we get here, then either we prematurely aborted the loop because |
171 | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must |
172 | * be 1 if D,E,N were consistent. |
173 | * Check if that's the case and abort if not, to avoid very long, |
174 | * yet eventually failing, computations if N,D,E were not sane. |
175 | */ |
176 | if (mbedtls_mpi_cmp_int(&K, 1) != 0) { |
177 | break; |
178 | } |
179 | } |
180 | |
181 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
182 | |
183 | cleanup: |
184 | |
185 | mbedtls_mpi_free(&K); |
186 | mbedtls_mpi_free(&T); |
187 | return ret; |
188 | } |
189 | |
190 | /* |
191 | * Given P, Q and the public exponent E, deduce D. |
192 | * This is essentially a modular inversion. |
193 | */ |
194 | int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P, |
195 | mbedtls_mpi const *Q, |
196 | mbedtls_mpi const *E, |
197 | mbedtls_mpi *D) |
198 | { |
199 | int ret = 0; |
200 | mbedtls_mpi K, L; |
201 | |
202 | if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) { |
203 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
204 | } |
205 | |
206 | if (mbedtls_mpi_cmp_int(P, 1) <= 0 || |
207 | mbedtls_mpi_cmp_int(Q, 1) <= 0 || |
208 | mbedtls_mpi_cmp_int(E, 0) == 0) { |
209 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
210 | } |
211 | |
212 | mbedtls_mpi_init(&K); |
213 | mbedtls_mpi_init(&L); |
214 | |
215 | /* Temporarily put K := P-1 and L := Q-1 */ |
216 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
217 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); |
218 | |
219 | /* Temporarily put D := gcd(P-1, Q-1) */ |
220 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L)); |
221 | |
222 | /* K := LCM(P-1, Q-1) */ |
223 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L)); |
224 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D)); |
225 | |
226 | /* Compute modular inverse of E in LCM(P-1, Q-1) */ |
227 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K)); |
228 | |
229 | cleanup: |
230 | |
231 | mbedtls_mpi_free(&K); |
232 | mbedtls_mpi_free(&L); |
233 | |
234 | return ret; |
235 | } |
236 | |
237 | /* |
238 | * Check that RSA CRT parameters are in accordance with core parameters. |
239 | */ |
240 | int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, |
241 | const mbedtls_mpi *D, const mbedtls_mpi *DP, |
242 | const mbedtls_mpi *DQ, const mbedtls_mpi *QP) |
243 | { |
244 | int ret = 0; |
245 | |
246 | mbedtls_mpi K, L; |
247 | mbedtls_mpi_init(&K); |
248 | mbedtls_mpi_init(&L); |
249 | |
250 | /* Check that DP - D == 0 mod P - 1 */ |
251 | if (DP != NULL) { |
252 | if (P == NULL) { |
253 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
254 | goto cleanup; |
255 | } |
256 | |
257 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
258 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D)); |
259 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); |
260 | |
261 | if (mbedtls_mpi_cmp_int(&L, 0) != 0) { |
262 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
263 | goto cleanup; |
264 | } |
265 | } |
266 | |
267 | /* Check that DQ - D == 0 mod Q - 1 */ |
268 | if (DQ != NULL) { |
269 | if (Q == NULL) { |
270 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
271 | goto cleanup; |
272 | } |
273 | |
274 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); |
275 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D)); |
276 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); |
277 | |
278 | if (mbedtls_mpi_cmp_int(&L, 0) != 0) { |
279 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
280 | goto cleanup; |
281 | } |
282 | } |
283 | |
284 | /* Check that QP * Q - 1 == 0 mod P */ |
285 | if (QP != NULL) { |
286 | if (P == NULL || Q == NULL) { |
287 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
288 | goto cleanup; |
289 | } |
290 | |
291 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q)); |
292 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
293 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P)); |
294 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
295 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
296 | goto cleanup; |
297 | } |
298 | } |
299 | |
300 | cleanup: |
301 | |
302 | /* Wrap MPI error codes by RSA check failure error code */ |
303 | if (ret != 0 && |
304 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && |
305 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) { |
306 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
307 | } |
308 | |
309 | mbedtls_mpi_free(&K); |
310 | mbedtls_mpi_free(&L); |
311 | |
312 | return ret; |
313 | } |
314 | |
315 | /* |
316 | * Check that core RSA parameters are sane. |
317 | */ |
318 | int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P, |
319 | const mbedtls_mpi *Q, const mbedtls_mpi *D, |
320 | const mbedtls_mpi *E, |
321 | int (*f_rng)(void *, unsigned char *, size_t), |
322 | void *p_rng) |
323 | { |
324 | int ret = 0; |
325 | mbedtls_mpi K, L; |
326 | |
327 | mbedtls_mpi_init(&K); |
328 | mbedtls_mpi_init(&L); |
329 | |
330 | /* |
331 | * Step 1: If PRNG provided, check that P and Q are prime |
332 | */ |
333 | |
334 | #if defined(MBEDTLS_GENPRIME) |
335 | /* |
336 | * When generating keys, the strongest security we support aims for an error |
337 | * rate of at most 2^-100 and we are aiming for the same certainty here as |
338 | * well. |
339 | */ |
340 | if (f_rng != NULL && P != NULL && |
341 | (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) { |
342 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
343 | goto cleanup; |
344 | } |
345 | |
346 | if (f_rng != NULL && Q != NULL && |
347 | (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) { |
348 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
349 | goto cleanup; |
350 | } |
351 | #else |
352 | ((void) f_rng); |
353 | ((void) p_rng); |
354 | #endif /* MBEDTLS_GENPRIME */ |
355 | |
356 | /* |
357 | * Step 2: Check that 1 < N = P * Q |
358 | */ |
359 | |
360 | if (P != NULL && Q != NULL && N != NULL) { |
361 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q)); |
362 | if (mbedtls_mpi_cmp_int(N, 1) <= 0 || |
363 | mbedtls_mpi_cmp_mpi(&K, N) != 0) { |
364 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
365 | goto cleanup; |
366 | } |
367 | } |
368 | |
369 | /* |
370 | * Step 3: Check and 1 < D, E < N if present. |
371 | */ |
372 | |
373 | if (N != NULL && D != NULL && E != NULL) { |
374 | if (mbedtls_mpi_cmp_int(D, 1) <= 0 || |
375 | mbedtls_mpi_cmp_int(E, 1) <= 0 || |
376 | mbedtls_mpi_cmp_mpi(D, N) >= 0 || |
377 | mbedtls_mpi_cmp_mpi(E, N) >= 0) { |
378 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
379 | goto cleanup; |
380 | } |
381 | } |
382 | |
383 | /* |
384 | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 |
385 | */ |
386 | |
387 | if (P != NULL && Q != NULL && D != NULL && E != NULL) { |
388 | if (mbedtls_mpi_cmp_int(P, 1) <= 0 || |
389 | mbedtls_mpi_cmp_int(Q, 1) <= 0) { |
390 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
391 | goto cleanup; |
392 | } |
393 | |
394 | /* Compute DE-1 mod P-1 */ |
395 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); |
396 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
397 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1)); |
398 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); |
399 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
400 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
401 | goto cleanup; |
402 | } |
403 | |
404 | /* Compute DE-1 mod Q-1 */ |
405 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); |
406 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
407 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); |
408 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); |
409 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
410 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
411 | goto cleanup; |
412 | } |
413 | } |
414 | |
415 | cleanup: |
416 | |
417 | mbedtls_mpi_free(&K); |
418 | mbedtls_mpi_free(&L); |
419 | |
420 | /* Wrap MPI error codes by RSA check failure error code */ |
421 | if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) { |
422 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
423 | } |
424 | |
425 | return ret; |
426 | } |
427 | |
428 | int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, |
429 | const mbedtls_mpi *D, mbedtls_mpi *DP, |
430 | mbedtls_mpi *DQ, mbedtls_mpi *QP) |
431 | { |
432 | int ret = 0; |
433 | mbedtls_mpi K; |
434 | mbedtls_mpi_init(&K); |
435 | |
436 | /* DP = D mod P-1 */ |
437 | if (DP != NULL) { |
438 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
439 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K)); |
440 | } |
441 | |
442 | /* DQ = D mod Q-1 */ |
443 | if (DQ != NULL) { |
444 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); |
445 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K)); |
446 | } |
447 | |
448 | /* QP = Q^{-1} mod P */ |
449 | if (QP != NULL) { |
450 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P)); |
451 | } |
452 | |
453 | cleanup: |
454 | mbedtls_mpi_free(&K); |
455 | |
456 | return ret; |
457 | } |
458 | |
459 | #endif /* MBEDTLS_RSA_C */ |
460 | |