| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <string.h> |
| 6 | |
| 7 | // This work is based on: |
| 8 | // Fabian Giesen. Simple lossless index buffer compression & follow-up. 2013 |
| 9 | // Conor Stokes. Vertex Cache Optimised Index Buffer Compression. 2014 |
| 10 | namespace meshopt |
| 11 | { |
| 12 | |
| 13 | const unsigned char = 0xe0; |
| 14 | const unsigned char = 0xd0; |
| 15 | |
| 16 | static int gEncodeIndexVersion = 0; |
| 17 | |
| 18 | typedef unsigned int VertexFifo[16]; |
| 19 | typedef unsigned int EdgeFifo[16][2]; |
| 20 | |
| 21 | static const unsigned int kTriangleIndexOrder[3][3] = { |
| 22 | {0, 1, 2}, |
| 23 | {1, 2, 0}, |
| 24 | {2, 0, 1}, |
| 25 | }; |
| 26 | |
| 27 | static const unsigned char kCodeAuxEncodingTable[16] = { |
| 28 | 0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9, 0x86, 0x65, 0x89, 0x68, 0x98, 0x01, 0x69, |
| 29 | 0, 0, // last two entries aren't used for encoding |
| 30 | }; |
| 31 | |
| 32 | static int rotateTriangle(unsigned int a, unsigned int b, unsigned int c, unsigned int next) |
| 33 | { |
| 34 | (void)a; |
| 35 | |
| 36 | return (b == next) ? 1 : (c == next) ? 2 : 0; |
| 37 | } |
| 38 | |
| 39 | static int getEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, unsigned int c, size_t offset) |
| 40 | { |
| 41 | for (int i = 0; i < 16; ++i) |
| 42 | { |
| 43 | size_t index = (offset - 1 - i) & 15; |
| 44 | |
| 45 | unsigned int e0 = fifo[index][0]; |
| 46 | unsigned int e1 = fifo[index][1]; |
| 47 | |
| 48 | if (e0 == a && e1 == b) |
| 49 | return (i << 2) | 0; |
| 50 | if (e0 == b && e1 == c) |
| 51 | return (i << 2) | 1; |
| 52 | if (e0 == c && e1 == a) |
| 53 | return (i << 2) | 2; |
| 54 | } |
| 55 | |
| 56 | return -1; |
| 57 | } |
| 58 | |
| 59 | static void pushEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, size_t& offset) |
| 60 | { |
| 61 | fifo[offset][0] = a; |
| 62 | fifo[offset][1] = b; |
| 63 | offset = (offset + 1) & 15; |
| 64 | } |
| 65 | |
| 66 | static int getVertexFifo(VertexFifo fifo, unsigned int v, size_t offset) |
| 67 | { |
| 68 | for (int i = 0; i < 16; ++i) |
| 69 | { |
| 70 | size_t index = (offset - 1 - i) & 15; |
| 71 | |
| 72 | if (fifo[index] == v) |
| 73 | return i; |
| 74 | } |
| 75 | |
| 76 | return -1; |
| 77 | } |
| 78 | |
| 79 | static void pushVertexFifo(VertexFifo fifo, unsigned int v, size_t& offset, int cond = 1) |
| 80 | { |
| 81 | fifo[offset] = v; |
| 82 | offset = (offset + cond) & 15; |
| 83 | } |
| 84 | |
| 85 | static void encodeVByte(unsigned char*& data, unsigned int v) |
| 86 | { |
| 87 | // encode 32-bit value in up to 5 7-bit groups |
| 88 | do |
| 89 | { |
| 90 | *data++ = (v & 127) | (v > 127 ? 128 : 0); |
| 91 | v >>= 7; |
| 92 | } while (v); |
| 93 | } |
| 94 | |
| 95 | static unsigned int decodeVByte(const unsigned char*& data) |
| 96 | { |
| 97 | unsigned char lead = *data++; |
| 98 | |
| 99 | // fast path: single byte |
| 100 | if (lead < 128) |
| 101 | return lead; |
| 102 | |
| 103 | // slow path: up to 4 extra bytes |
| 104 | // note that this loop always terminates, which is important for malformed data |
| 105 | unsigned int result = lead & 127; |
| 106 | unsigned int shift = 7; |
| 107 | |
| 108 | for (int i = 0; i < 4; ++i) |
| 109 | { |
| 110 | unsigned char group = *data++; |
| 111 | result |= unsigned(group & 127) << shift; |
| 112 | shift += 7; |
| 113 | |
| 114 | if (group < 128) |
| 115 | break; |
| 116 | } |
| 117 | |
| 118 | return result; |
| 119 | } |
| 120 | |
| 121 | static void encodeIndex(unsigned char*& data, unsigned int index, unsigned int last) |
| 122 | { |
| 123 | unsigned int d = index - last; |
| 124 | unsigned int v = (d << 1) ^ (int(d) >> 31); |
| 125 | |
| 126 | encodeVByte(data, v); |
| 127 | } |
| 128 | |
| 129 | static unsigned int decodeIndex(const unsigned char*& data, unsigned int last) |
| 130 | { |
| 131 | unsigned int v = decodeVByte(data); |
| 132 | unsigned int d = (v >> 1) ^ -int(v & 1); |
| 133 | |
| 134 | return last + d; |
| 135 | } |
| 136 | |
| 137 | static int getCodeAuxIndex(unsigned char v, const unsigned char* table) |
| 138 | { |
| 139 | for (int i = 0; i < 16; ++i) |
| 140 | if (table[i] == v) |
| 141 | return i; |
| 142 | |
| 143 | return -1; |
| 144 | } |
| 145 | |
| 146 | static void writeTriangle(void* destination, size_t offset, size_t index_size, unsigned int a, unsigned int b, unsigned int c) |
| 147 | { |
| 148 | if (index_size == 2) |
| 149 | { |
| 150 | static_cast<unsigned short*>(destination)[offset + 0] = (unsigned short)(a); |
| 151 | static_cast<unsigned short*>(destination)[offset + 1] = (unsigned short)(b); |
| 152 | static_cast<unsigned short*>(destination)[offset + 2] = (unsigned short)(c); |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | static_cast<unsigned int*>(destination)[offset + 0] = a; |
| 157 | static_cast<unsigned int*>(destination)[offset + 1] = b; |
| 158 | static_cast<unsigned int*>(destination)[offset + 2] = c; |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | } // namespace meshopt |
| 163 | |
| 164 | size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count) |
| 165 | { |
| 166 | using namespace meshopt; |
| 167 | |
| 168 | assert(index_count % 3 == 0); |
| 169 | |
| 170 | // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table |
| 171 | if (buffer_size < 1 + index_count / 3 + 16) |
| 172 | return 0; |
| 173 | |
| 174 | int version = gEncodeIndexVersion; |
| 175 | |
| 176 | buffer[0] = (unsigned char)(kIndexHeader | version); |
| 177 | |
| 178 | EdgeFifo edgefifo; |
| 179 | memset(edgefifo, -1, sizeof(edgefifo)); |
| 180 | |
| 181 | VertexFifo vertexfifo; |
| 182 | memset(vertexfifo, -1, sizeof(vertexfifo)); |
| 183 | |
| 184 | size_t edgefifooffset = 0; |
| 185 | size_t vertexfifooffset = 0; |
| 186 | |
| 187 | unsigned int next = 0; |
| 188 | unsigned int last = 0; |
| 189 | |
| 190 | unsigned char* code = buffer + 1; |
| 191 | unsigned char* data = code + index_count / 3; |
| 192 | unsigned char* data_safe_end = buffer + buffer_size - 16; |
| 193 | |
| 194 | int fecmax = version >= 1 ? 13 : 15; |
| 195 | |
| 196 | // use static encoding table; it's possible to pack the result and then build an optimal table and repack |
| 197 | // for now we keep it simple and use the table that has been generated based on symbol frequency on a training mesh set |
| 198 | const unsigned char* codeaux_table = kCodeAuxEncodingTable; |
| 199 | |
| 200 | for (size_t i = 0; i < index_count; i += 3) |
| 201 | { |
| 202 | // make sure we have enough space to write a triangle |
| 203 | // each triangle writes at most 16 bytes: 1b for codeaux and 5b for each free index |
| 204 | // after this we can be sure we can write without extra bounds checks |
| 205 | if (data > data_safe_end) |
| 206 | return 0; |
| 207 | |
| 208 | int fer = getEdgeFifo(edgefifo, indices[i + 0], indices[i + 1], indices[i + 2], edgefifooffset); |
| 209 | |
| 210 | if (fer >= 0 && (fer >> 2) < 15) |
| 211 | { |
| 212 | const unsigned int* order = kTriangleIndexOrder[fer & 3]; |
| 213 | |
| 214 | unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]]; |
| 215 | |
| 216 | // encode edge index and vertex fifo index, next or free index |
| 217 | int fe = fer >> 2; |
| 218 | int fc = getVertexFifo(vertexfifo, c, vertexfifooffset); |
| 219 | |
| 220 | int fec = (fc >= 1 && fc < fecmax) ? fc : (c == next) ? (next++, 0) : 15; |
| 221 | |
| 222 | if (fec == 15 && version >= 1) |
| 223 | { |
| 224 | // encode last-1 and last+1 to optimize strip-like sequences |
| 225 | if (c + 1 == last) |
| 226 | fec = 13, last = c; |
| 227 | if (c == last + 1) |
| 228 | fec = 14, last = c; |
| 229 | } |
| 230 | |
| 231 | *code++ = (unsigned char)((fe << 4) | fec); |
| 232 | |
| 233 | // note that we need to update the last index since free indices are delta-encoded |
| 234 | if (fec == 15) |
| 235 | encodeIndex(data, c, last), last = c; |
| 236 | |
| 237 | // we only need to push third vertex since first two are likely already in the vertex fifo |
| 238 | if (fec == 0 || fec >= fecmax) |
| 239 | pushVertexFifo(vertexfifo, c, vertexfifooffset); |
| 240 | |
| 241 | // we only need to push two new edges to edge fifo since the third one is already there |
| 242 | pushEdgeFifo(edgefifo, c, b, edgefifooffset); |
| 243 | pushEdgeFifo(edgefifo, a, c, edgefifooffset); |
| 244 | } |
| 245 | else |
| 246 | { |
| 247 | int rotation = rotateTriangle(indices[i + 0], indices[i + 1], indices[i + 2], next); |
| 248 | const unsigned int* order = kTriangleIndexOrder[rotation]; |
| 249 | |
| 250 | unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]]; |
| 251 | |
| 252 | // if a/b/c are 0/1/2, we emit a reset code |
| 253 | bool reset = false; |
| 254 | |
| 255 | if (a == 0 && b == 1 && c == 2 && next > 0 && version >= 1) |
| 256 | { |
| 257 | reset = true; |
| 258 | next = 0; |
| 259 | |
| 260 | // reset vertex fifo to make sure we don't accidentally reference vertices from that in the future |
| 261 | // this makes sure next continues to get incremented instead of being stuck |
| 262 | memset(vertexfifo, -1, sizeof(vertexfifo)); |
| 263 | } |
| 264 | |
| 265 | int fb = getVertexFifo(vertexfifo, b, vertexfifooffset); |
| 266 | int fc = getVertexFifo(vertexfifo, c, vertexfifooffset); |
| 267 | |
| 268 | // after rotation, a is almost always equal to next, so we don't waste bits on FIFO encoding for a |
| 269 | int fea = (a == next) ? (next++, 0) : 15; |
| 270 | int feb = (fb >= 0 && fb < 14) ? (fb + 1) : (b == next) ? (next++, 0) : 15; |
| 271 | int fec = (fc >= 0 && fc < 14) ? (fc + 1) : (c == next) ? (next++, 0) : 15; |
| 272 | |
| 273 | // we encode feb & fec in 4 bits using a table if possible, and as a full byte otherwise |
| 274 | unsigned char codeaux = (unsigned char)((feb << 4) | fec); |
| 275 | int codeauxindex = getCodeAuxIndex(codeaux, codeaux_table); |
| 276 | |
| 277 | // <14 encodes an index into codeaux table, 14 encodes fea=0, 15 encodes fea=15 |
| 278 | if (fea == 0 && codeauxindex >= 0 && codeauxindex < 14 && !reset) |
| 279 | { |
| 280 | *code++ = (unsigned char)((15 << 4) | codeauxindex); |
| 281 | } |
| 282 | else |
| 283 | { |
| 284 | *code++ = (unsigned char)((15 << 4) | 14 | fea); |
| 285 | *data++ = codeaux; |
| 286 | } |
| 287 | |
| 288 | // note that we need to update the last index since free indices are delta-encoded |
| 289 | if (fea == 15) |
| 290 | encodeIndex(data, a, last), last = a; |
| 291 | |
| 292 | if (feb == 15) |
| 293 | encodeIndex(data, b, last), last = b; |
| 294 | |
| 295 | if (fec == 15) |
| 296 | encodeIndex(data, c, last), last = c; |
| 297 | |
| 298 | // only push vertices that weren't already in fifo |
| 299 | if (fea == 0 || fea == 15) |
| 300 | pushVertexFifo(vertexfifo, a, vertexfifooffset); |
| 301 | |
| 302 | if (feb == 0 || feb == 15) |
| 303 | pushVertexFifo(vertexfifo, b, vertexfifooffset); |
| 304 | |
| 305 | if (fec == 0 || fec == 15) |
| 306 | pushVertexFifo(vertexfifo, c, vertexfifooffset); |
| 307 | |
| 308 | // all three edges aren't in the fifo; pushing all of them is important so that we can match them for later triangles |
| 309 | pushEdgeFifo(edgefifo, b, a, edgefifooffset); |
| 310 | pushEdgeFifo(edgefifo, c, b, edgefifooffset); |
| 311 | pushEdgeFifo(edgefifo, a, c, edgefifooffset); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | // make sure we have enough space to write codeaux table |
| 316 | if (data > data_safe_end) |
| 317 | return 0; |
| 318 | |
| 319 | // add codeaux encoding table to the end of the stream; this is used for decoding codeaux *and* as padding |
| 320 | // we need padding for decoding to be able to assume that each triangle is encoded as <= 16 bytes of extra data |
| 321 | // this is enough space for aux byte + 5 bytes per varint index which is the absolute worst case for any input |
| 322 | for (size_t i = 0; i < 16; ++i) |
| 323 | { |
| 324 | // decoder assumes that table entries never refer to separately encoded indices |
| 325 | assert((codeaux_table[i] & 0xf) != 0xf && (codeaux_table[i] >> 4) != 0xf); |
| 326 | |
| 327 | *data++ = codeaux_table[i]; |
| 328 | } |
| 329 | |
| 330 | // since we encode restarts as codeaux without a table reference, we need to make sure 00 is encoded as a table reference |
| 331 | assert(codeaux_table[0] == 0); |
| 332 | |
| 333 | assert(data >= buffer + index_count / 3 + 16); |
| 334 | assert(data <= buffer + buffer_size); |
| 335 | |
| 336 | return data - buffer; |
| 337 | } |
| 338 | |
| 339 | size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count) |
| 340 | { |
| 341 | assert(index_count % 3 == 0); |
| 342 | |
| 343 | // compute number of bits required for each index |
| 344 | unsigned int vertex_bits = 1; |
| 345 | |
| 346 | while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits) |
| 347 | vertex_bits++; |
| 348 | |
| 349 | // worst-case encoding is 2 header bytes + 3 varint-7 encoded index deltas |
| 350 | unsigned int vertex_groups = (vertex_bits + 1 + 6) / 7; |
| 351 | |
| 352 | return 1 + (index_count / 3) * (2 + 3 * vertex_groups) + 16; |
| 353 | } |
| 354 | |
| 355 | void meshopt_encodeIndexVersion(int version) |
| 356 | { |
| 357 | assert(unsigned(version) <= 1); |
| 358 | |
| 359 | meshopt::gEncodeIndexVersion = version; |
| 360 | } |
| 361 | |
| 362 | int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size) |
| 363 | { |
| 364 | using namespace meshopt; |
| 365 | |
| 366 | assert(index_count % 3 == 0); |
| 367 | assert(index_size == 2 || index_size == 4); |
| 368 | |
| 369 | // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table |
| 370 | if (buffer_size < 1 + index_count / 3 + 16) |
| 371 | return -2; |
| 372 | |
| 373 | if ((buffer[0] & 0xf0) != kIndexHeader) |
| 374 | return -1; |
| 375 | |
| 376 | int version = buffer[0] & 0x0f; |
| 377 | if (version > 1) |
| 378 | return -1; |
| 379 | |
| 380 | EdgeFifo edgefifo; |
| 381 | memset(edgefifo, -1, sizeof(edgefifo)); |
| 382 | |
| 383 | VertexFifo vertexfifo; |
| 384 | memset(vertexfifo, -1, sizeof(vertexfifo)); |
| 385 | |
| 386 | size_t edgefifooffset = 0; |
| 387 | size_t vertexfifooffset = 0; |
| 388 | |
| 389 | unsigned int next = 0; |
| 390 | unsigned int last = 0; |
| 391 | |
| 392 | int fecmax = version >= 1 ? 13 : 15; |
| 393 | |
| 394 | // since we store 16-byte codeaux table at the end, triangle data has to begin before data_safe_end |
| 395 | const unsigned char* code = buffer + 1; |
| 396 | const unsigned char* data = code + index_count / 3; |
| 397 | const unsigned char* data_safe_end = buffer + buffer_size - 16; |
| 398 | |
| 399 | const unsigned char* codeaux_table = data_safe_end; |
| 400 | |
| 401 | for (size_t i = 0; i < index_count; i += 3) |
| 402 | { |
| 403 | // make sure we have enough data to read for a triangle |
| 404 | // each triangle reads at most 16 bytes of data: 1b for codeaux and 5b for each free index |
| 405 | // after this we can be sure we can read without extra bounds checks |
| 406 | if (data > data_safe_end) |
| 407 | return -2; |
| 408 | |
| 409 | unsigned char codetri = *code++; |
| 410 | |
| 411 | if (codetri < 0xf0) |
| 412 | { |
| 413 | int fe = codetri >> 4; |
| 414 | |
| 415 | // fifo reads are wrapped around 16 entry buffer |
| 416 | unsigned int a = edgefifo[(edgefifooffset - 1 - fe) & 15][0]; |
| 417 | unsigned int b = edgefifo[(edgefifooffset - 1 - fe) & 15][1]; |
| 418 | |
| 419 | int fec = codetri & 15; |
| 420 | |
| 421 | // note: this is the most common path in the entire decoder |
| 422 | // inside this if we try to stay branchless (by using cmov/etc.) since these aren't predictable |
| 423 | if (fec < fecmax) |
| 424 | { |
| 425 | // fifo reads are wrapped around 16 entry buffer |
| 426 | unsigned int cf = vertexfifo[(vertexfifooffset - 1 - fec) & 15]; |
| 427 | unsigned int c = (fec == 0) ? next : cf; |
| 428 | |
| 429 | int fec0 = fec == 0; |
| 430 | next += fec0; |
| 431 | |
| 432 | // output triangle |
| 433 | writeTriangle(destination, i, index_size, a, b, c); |
| 434 | |
| 435 | // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly |
| 436 | pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0); |
| 437 | |
| 438 | pushEdgeFifo(edgefifo, c, b, edgefifooffset); |
| 439 | pushEdgeFifo(edgefifo, a, c, edgefifooffset); |
| 440 | } |
| 441 | else |
| 442 | { |
| 443 | unsigned int c = 0; |
| 444 | |
| 445 | // fec - (fec ^ 3) decodes 13, 14 into -1, 1 |
| 446 | // note that we need to update the last index since free indices are delta-encoded |
| 447 | last = c = (fec != 15) ? last + (fec - (fec ^ 3)) : decodeIndex(data, last); |
| 448 | |
| 449 | // output triangle |
| 450 | writeTriangle(destination, i, index_size, a, b, c); |
| 451 | |
| 452 | // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly |
| 453 | pushVertexFifo(vertexfifo, c, vertexfifooffset); |
| 454 | |
| 455 | pushEdgeFifo(edgefifo, c, b, edgefifooffset); |
| 456 | pushEdgeFifo(edgefifo, a, c, edgefifooffset); |
| 457 | } |
| 458 | } |
| 459 | else |
| 460 | { |
| 461 | // fast path: read codeaux from the table |
| 462 | if (codetri < 0xfe) |
| 463 | { |
| 464 | unsigned char codeaux = codeaux_table[codetri & 15]; |
| 465 | |
| 466 | // note: table can't contain feb/fec=15 |
| 467 | int feb = codeaux >> 4; |
| 468 | int fec = codeaux & 15; |
| 469 | |
| 470 | // fifo reads are wrapped around 16 entry buffer |
| 471 | // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior |
| 472 | unsigned int a = next++; |
| 473 | |
| 474 | unsigned int bf = vertexfifo[(vertexfifooffset - feb) & 15]; |
| 475 | unsigned int b = (feb == 0) ? next : bf; |
| 476 | |
| 477 | int feb0 = feb == 0; |
| 478 | next += feb0; |
| 479 | |
| 480 | unsigned int cf = vertexfifo[(vertexfifooffset - fec) & 15]; |
| 481 | unsigned int c = (fec == 0) ? next : cf; |
| 482 | |
| 483 | int fec0 = fec == 0; |
| 484 | next += fec0; |
| 485 | |
| 486 | // output triangle |
| 487 | writeTriangle(destination, i, index_size, a, b, c); |
| 488 | |
| 489 | // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly |
| 490 | pushVertexFifo(vertexfifo, a, vertexfifooffset); |
| 491 | pushVertexFifo(vertexfifo, b, vertexfifooffset, feb0); |
| 492 | pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0); |
| 493 | |
| 494 | pushEdgeFifo(edgefifo, b, a, edgefifooffset); |
| 495 | pushEdgeFifo(edgefifo, c, b, edgefifooffset); |
| 496 | pushEdgeFifo(edgefifo, a, c, edgefifooffset); |
| 497 | } |
| 498 | else |
| 499 | { |
| 500 | // slow path: read a full byte for codeaux instead of using a table lookup |
| 501 | unsigned char codeaux = *data++; |
| 502 | |
| 503 | int fea = codetri == 0xfe ? 0 : 15; |
| 504 | int feb = codeaux >> 4; |
| 505 | int fec = codeaux & 15; |
| 506 | |
| 507 | // reset: codeaux is 0 but encoded as not-a-table |
| 508 | if (codeaux == 0) |
| 509 | next = 0; |
| 510 | |
| 511 | // fifo reads are wrapped around 16 entry buffer |
| 512 | // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior |
| 513 | unsigned int a = (fea == 0) ? next++ : 0; |
| 514 | unsigned int b = (feb == 0) ? next++ : vertexfifo[(vertexfifooffset - feb) & 15]; |
| 515 | unsigned int c = (fec == 0) ? next++ : vertexfifo[(vertexfifooffset - fec) & 15]; |
| 516 | |
| 517 | // note that we need to update the last index since free indices are delta-encoded |
| 518 | if (fea == 15) |
| 519 | last = a = decodeIndex(data, last); |
| 520 | |
| 521 | if (feb == 15) |
| 522 | last = b = decodeIndex(data, last); |
| 523 | |
| 524 | if (fec == 15) |
| 525 | last = c = decodeIndex(data, last); |
| 526 | |
| 527 | // output triangle |
| 528 | writeTriangle(destination, i, index_size, a, b, c); |
| 529 | |
| 530 | // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly |
| 531 | pushVertexFifo(vertexfifo, a, vertexfifooffset); |
| 532 | pushVertexFifo(vertexfifo, b, vertexfifooffset, (feb == 0) | (feb == 15)); |
| 533 | pushVertexFifo(vertexfifo, c, vertexfifooffset, (fec == 0) | (fec == 15)); |
| 534 | |
| 535 | pushEdgeFifo(edgefifo, b, a, edgefifooffset); |
| 536 | pushEdgeFifo(edgefifo, c, b, edgefifooffset); |
| 537 | pushEdgeFifo(edgefifo, a, c, edgefifooffset); |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | // we should've read all data bytes and stopped at the boundary between data and codeaux table |
| 543 | if (data != data_safe_end) |
| 544 | return -3; |
| 545 | |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count) |
| 550 | { |
| 551 | using namespace meshopt; |
| 552 | |
| 553 | // the minimum valid encoding is header, 1 byte per index and a 4-byte tail |
| 554 | if (buffer_size < 1 + index_count + 4) |
| 555 | return 0; |
| 556 | |
| 557 | int version = gEncodeIndexVersion; |
| 558 | |
| 559 | buffer[0] = (unsigned char)(kSequenceHeader | version); |
| 560 | |
| 561 | unsigned int last[2] = {}; |
| 562 | unsigned int current = 0; |
| 563 | |
| 564 | unsigned char* data = buffer + 1; |
| 565 | unsigned char* data_safe_end = buffer + buffer_size - 4; |
| 566 | |
| 567 | for (size_t i = 0; i < index_count; ++i) |
| 568 | { |
| 569 | // make sure we have enough data to write |
| 570 | // each index writes at most 5 bytes of data; there's a 4 byte tail after data_safe_end |
| 571 | // after this we can be sure we can write without extra bounds checks |
| 572 | if (data >= data_safe_end) |
| 573 | return 0; |
| 574 | |
| 575 | unsigned int index = indices[i]; |
| 576 | |
| 577 | // this is a heuristic that switches between baselines when the delta grows too large |
| 578 | // we want the encoded delta to fit into one byte (7 bits), but 2 bits are used for sign and baseline index |
| 579 | // for now we immediately switch the baseline when delta grows too large - this can be adjusted arbitrarily |
| 580 | int cd = int(index - last[current]); |
| 581 | current ^= ((cd < 0 ? -cd : cd) >= 30); |
| 582 | |
| 583 | // encode delta from the last index |
| 584 | unsigned int d = index - last[current]; |
| 585 | unsigned int v = (d << 1) ^ (int(d) >> 31); |
| 586 | |
| 587 | // note: low bit encodes the index of the last baseline which will be used for reconstruction |
| 588 | encodeVByte(data, (v << 1) | current); |
| 589 | |
| 590 | // update last for the next iteration that uses it |
| 591 | last[current] = index; |
| 592 | } |
| 593 | |
| 594 | // make sure we have enough space to write tail |
| 595 | if (data > data_safe_end) |
| 596 | return 0; |
| 597 | |
| 598 | for (int k = 0; k < 4; ++k) |
| 599 | *data++ = 0; |
| 600 | |
| 601 | return data - buffer; |
| 602 | } |
| 603 | |
| 604 | size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count) |
| 605 | { |
| 606 | // compute number of bits required for each index |
| 607 | unsigned int vertex_bits = 1; |
| 608 | |
| 609 | while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits) |
| 610 | vertex_bits++; |
| 611 | |
| 612 | // worst-case encoding is 1 varint-7 encoded index delta for a K bit value and an extra bit |
| 613 | unsigned int vertex_groups = (vertex_bits + 1 + 1 + 6) / 7; |
| 614 | |
| 615 | return 1 + index_count * vertex_groups + 4; |
| 616 | } |
| 617 | |
| 618 | int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size) |
| 619 | { |
| 620 | using namespace meshopt; |
| 621 | |
| 622 | // the minimum valid encoding is header, 1 byte per index and a 4-byte tail |
| 623 | if (buffer_size < 1 + index_count + 4) |
| 624 | return -2; |
| 625 | |
| 626 | if ((buffer[0] & 0xf0) != kSequenceHeader) |
| 627 | return -1; |
| 628 | |
| 629 | int version = buffer[0] & 0x0f; |
| 630 | if (version > 1) |
| 631 | return -1; |
| 632 | |
| 633 | const unsigned char* data = buffer + 1; |
| 634 | const unsigned char* data_safe_end = buffer + buffer_size - 4; |
| 635 | |
| 636 | unsigned int last[2] = {}; |
| 637 | |
| 638 | for (size_t i = 0; i < index_count; ++i) |
| 639 | { |
| 640 | // make sure we have enough data to read |
| 641 | // each index reads at most 5 bytes of data; there's a 4 byte tail after data_safe_end |
| 642 | // after this we can be sure we can read without extra bounds checks |
| 643 | if (data >= data_safe_end) |
| 644 | return -2; |
| 645 | |
| 646 | unsigned int v = decodeVByte(data); |
| 647 | |
| 648 | // decode the index of the last baseline |
| 649 | unsigned int current = v & 1; |
| 650 | v >>= 1; |
| 651 | |
| 652 | // reconstruct index as a delta |
| 653 | unsigned int d = (v >> 1) ^ -int(v & 1); |
| 654 | unsigned int index = last[current] + d; |
| 655 | |
| 656 | // update last for the next iteration that uses it |
| 657 | last[current] = index; |
| 658 | |
| 659 | if (index_size == 2) |
| 660 | { |
| 661 | static_cast<unsigned short*>(destination)[i] = (unsigned short)(index); |
| 662 | } |
| 663 | else |
| 664 | { |
| 665 | static_cast<unsigned int*>(destination)[i] = index; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | // we should've read all data bytes and stopped at the boundary between data and tail |
| 670 | if (data != data_safe_end) |
| 671 | return -3; |
| 672 | |
| 673 | return 0; |
| 674 | } |
| 675 | |