| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <string.h> |
| 6 | |
| 7 | // This work is based on: |
| 8 | // John McDonald, Mark Kilgard. Crack-Free Point-Normal Triangles using Adjacent Edge Normals. 2010 |
| 9 | namespace meshopt |
| 10 | { |
| 11 | |
| 12 | static unsigned int hashUpdate4(unsigned int h, const unsigned char* key, size_t len) |
| 13 | { |
| 14 | // MurmurHash2 |
| 15 | const unsigned int m = 0x5bd1e995; |
| 16 | const int r = 24; |
| 17 | |
| 18 | while (len >= 4) |
| 19 | { |
| 20 | unsigned int k = *reinterpret_cast<const unsigned int*>(key); |
| 21 | |
| 22 | k *= m; |
| 23 | k ^= k >> r; |
| 24 | k *= m; |
| 25 | |
| 26 | h *= m; |
| 27 | h ^= k; |
| 28 | |
| 29 | key += 4; |
| 30 | len -= 4; |
| 31 | } |
| 32 | |
| 33 | return h; |
| 34 | } |
| 35 | |
| 36 | struct VertexHasher |
| 37 | { |
| 38 | const unsigned char* vertices; |
| 39 | size_t vertex_size; |
| 40 | size_t vertex_stride; |
| 41 | |
| 42 | size_t hash(unsigned int index) const |
| 43 | { |
| 44 | return hashUpdate4(0, vertices + index * vertex_stride, vertex_size); |
| 45 | } |
| 46 | |
| 47 | bool equal(unsigned int lhs, unsigned int rhs) const |
| 48 | { |
| 49 | return memcmp(vertices + lhs * vertex_stride, vertices + rhs * vertex_stride, vertex_size) == 0; |
| 50 | } |
| 51 | }; |
| 52 | |
| 53 | struct VertexStreamHasher |
| 54 | { |
| 55 | const meshopt_Stream* streams; |
| 56 | size_t stream_count; |
| 57 | |
| 58 | size_t hash(unsigned int index) const |
| 59 | { |
| 60 | unsigned int h = 0; |
| 61 | |
| 62 | for (size_t i = 0; i < stream_count; ++i) |
| 63 | { |
| 64 | const meshopt_Stream& s = streams[i]; |
| 65 | const unsigned char* data = static_cast<const unsigned char*>(s.data); |
| 66 | |
| 67 | h = hashUpdate4(h, data + index * s.stride, s.size); |
| 68 | } |
| 69 | |
| 70 | return h; |
| 71 | } |
| 72 | |
| 73 | bool equal(unsigned int lhs, unsigned int rhs) const |
| 74 | { |
| 75 | for (size_t i = 0; i < stream_count; ++i) |
| 76 | { |
| 77 | const meshopt_Stream& s = streams[i]; |
| 78 | const unsigned char* data = static_cast<const unsigned char*>(s.data); |
| 79 | |
| 80 | if (memcmp(data + lhs * s.stride, data + rhs * s.stride, s.size) != 0) |
| 81 | return false; |
| 82 | } |
| 83 | |
| 84 | return true; |
| 85 | } |
| 86 | }; |
| 87 | |
| 88 | struct EdgeHasher |
| 89 | { |
| 90 | const unsigned int* remap; |
| 91 | |
| 92 | size_t hash(unsigned long long edge) const |
| 93 | { |
| 94 | unsigned int e0 = unsigned(edge >> 32); |
| 95 | unsigned int e1 = unsigned(edge); |
| 96 | |
| 97 | unsigned int h1 = remap[e0]; |
| 98 | unsigned int h2 = remap[e1]; |
| 99 | |
| 100 | const unsigned int m = 0x5bd1e995; |
| 101 | |
| 102 | // MurmurHash64B finalizer |
| 103 | h1 ^= h2 >> 18; |
| 104 | h1 *= m; |
| 105 | h2 ^= h1 >> 22; |
| 106 | h2 *= m; |
| 107 | h1 ^= h2 >> 17; |
| 108 | h1 *= m; |
| 109 | h2 ^= h1 >> 19; |
| 110 | h2 *= m; |
| 111 | |
| 112 | return h2; |
| 113 | } |
| 114 | |
| 115 | bool equal(unsigned long long lhs, unsigned long long rhs) const |
| 116 | { |
| 117 | unsigned int l0 = unsigned(lhs >> 32); |
| 118 | unsigned int l1 = unsigned(lhs); |
| 119 | |
| 120 | unsigned int r0 = unsigned(rhs >> 32); |
| 121 | unsigned int r1 = unsigned(rhs); |
| 122 | |
| 123 | return remap[l0] == remap[r0] && remap[l1] == remap[r1]; |
| 124 | } |
| 125 | }; |
| 126 | |
| 127 | static size_t hashBuckets(size_t count) |
| 128 | { |
| 129 | size_t buckets = 1; |
| 130 | while (buckets < count + count / 4) |
| 131 | buckets *= 2; |
| 132 | |
| 133 | return buckets; |
| 134 | } |
| 135 | |
| 136 | template <typename T, typename Hash> |
| 137 | static T* hashLookup(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty) |
| 138 | { |
| 139 | assert(buckets > 0); |
| 140 | assert((buckets & (buckets - 1)) == 0); |
| 141 | |
| 142 | size_t hashmod = buckets - 1; |
| 143 | size_t bucket = hash.hash(key) & hashmod; |
| 144 | |
| 145 | for (size_t probe = 0; probe <= hashmod; ++probe) |
| 146 | { |
| 147 | T& item = table[bucket]; |
| 148 | |
| 149 | if (item == empty) |
| 150 | return &item; |
| 151 | |
| 152 | if (hash.equal(item, key)) |
| 153 | return &item; |
| 154 | |
| 155 | // hash collision, quadratic probing |
| 156 | bucket = (bucket + probe + 1) & hashmod; |
| 157 | } |
| 158 | |
| 159 | assert(false && "Hash table is full" ); // unreachable |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | static void buildPositionRemap(unsigned int* remap, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator) |
| 164 | { |
| 165 | VertexHasher vertex_hasher = {reinterpret_cast<const unsigned char*>(vertex_positions), 3 * sizeof(float), vertex_positions_stride}; |
| 166 | |
| 167 | size_t vertex_table_size = hashBuckets(vertex_count); |
| 168 | unsigned int* vertex_table = allocator.allocate<unsigned int>(vertex_table_size); |
| 169 | memset(vertex_table, -1, vertex_table_size * sizeof(unsigned int)); |
| 170 | |
| 171 | for (size_t i = 0; i < vertex_count; ++i) |
| 172 | { |
| 173 | unsigned int index = unsigned(i); |
| 174 | unsigned int* entry = hashLookup(vertex_table, vertex_table_size, vertex_hasher, index, ~0u); |
| 175 | |
| 176 | if (*entry == ~0u) |
| 177 | *entry = index; |
| 178 | |
| 179 | remap[index] = *entry; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | } // namespace meshopt |
| 184 | |
| 185 | size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) |
| 186 | { |
| 187 | using namespace meshopt; |
| 188 | |
| 189 | assert(indices || index_count == vertex_count); |
| 190 | assert(!indices || index_count % 3 == 0); |
| 191 | assert(vertex_size > 0 && vertex_size <= 256); |
| 192 | |
| 193 | meshopt_Allocator allocator; |
| 194 | |
| 195 | memset(destination, -1, vertex_count * sizeof(unsigned int)); |
| 196 | |
| 197 | VertexHasher hasher = {static_cast<const unsigned char*>(vertices), vertex_size, vertex_size}; |
| 198 | |
| 199 | size_t table_size = hashBuckets(vertex_count); |
| 200 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 201 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 202 | |
| 203 | unsigned int next_vertex = 0; |
| 204 | |
| 205 | for (size_t i = 0; i < index_count; ++i) |
| 206 | { |
| 207 | unsigned int index = indices ? indices[i] : unsigned(i); |
| 208 | assert(index < vertex_count); |
| 209 | |
| 210 | if (destination[index] == ~0u) |
| 211 | { |
| 212 | unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u); |
| 213 | |
| 214 | if (*entry == ~0u) |
| 215 | { |
| 216 | *entry = index; |
| 217 | |
| 218 | destination[index] = next_vertex++; |
| 219 | } |
| 220 | else |
| 221 | { |
| 222 | assert(destination[*entry] != ~0u); |
| 223 | |
| 224 | destination[index] = destination[*entry]; |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | assert(next_vertex <= vertex_count); |
| 230 | |
| 231 | return next_vertex; |
| 232 | } |
| 233 | |
| 234 | size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count) |
| 235 | { |
| 236 | using namespace meshopt; |
| 237 | |
| 238 | assert(indices || index_count == vertex_count); |
| 239 | assert(index_count % 3 == 0); |
| 240 | assert(stream_count > 0 && stream_count <= 16); |
| 241 | |
| 242 | for (size_t i = 0; i < stream_count; ++i) |
| 243 | { |
| 244 | assert(streams[i].size > 0 && streams[i].size <= 256); |
| 245 | assert(streams[i].size <= streams[i].stride); |
| 246 | } |
| 247 | |
| 248 | meshopt_Allocator allocator; |
| 249 | |
| 250 | memset(destination, -1, vertex_count * sizeof(unsigned int)); |
| 251 | |
| 252 | VertexStreamHasher hasher = {streams, stream_count}; |
| 253 | |
| 254 | size_t table_size = hashBuckets(vertex_count); |
| 255 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 256 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 257 | |
| 258 | unsigned int next_vertex = 0; |
| 259 | |
| 260 | for (size_t i = 0; i < index_count; ++i) |
| 261 | { |
| 262 | unsigned int index = indices ? indices[i] : unsigned(i); |
| 263 | assert(index < vertex_count); |
| 264 | |
| 265 | if (destination[index] == ~0u) |
| 266 | { |
| 267 | unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u); |
| 268 | |
| 269 | if (*entry == ~0u) |
| 270 | { |
| 271 | *entry = index; |
| 272 | |
| 273 | destination[index] = next_vertex++; |
| 274 | } |
| 275 | else |
| 276 | { |
| 277 | assert(destination[*entry] != ~0u); |
| 278 | |
| 279 | destination[index] = destination[*entry]; |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | assert(next_vertex <= vertex_count); |
| 285 | |
| 286 | return next_vertex; |
| 287 | } |
| 288 | |
| 289 | void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap) |
| 290 | { |
| 291 | assert(vertex_size > 0 && vertex_size <= 256); |
| 292 | |
| 293 | meshopt_Allocator allocator; |
| 294 | |
| 295 | // support in-place remap |
| 296 | if (destination == vertices) |
| 297 | { |
| 298 | unsigned char* vertices_copy = allocator.allocate<unsigned char>(vertex_count * vertex_size); |
| 299 | memcpy(vertices_copy, vertices, vertex_count * vertex_size); |
| 300 | vertices = vertices_copy; |
| 301 | } |
| 302 | |
| 303 | for (size_t i = 0; i < vertex_count; ++i) |
| 304 | { |
| 305 | if (remap[i] != ~0u) |
| 306 | { |
| 307 | assert(remap[i] < vertex_count); |
| 308 | |
| 309 | memcpy(static_cast<unsigned char*>(destination) + remap[i] * vertex_size, static_cast<const unsigned char*>(vertices) + i * vertex_size, vertex_size); |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap) |
| 315 | { |
| 316 | assert(index_count % 3 == 0); |
| 317 | |
| 318 | for (size_t i = 0; i < index_count; ++i) |
| 319 | { |
| 320 | unsigned int index = indices ? indices[i] : unsigned(i); |
| 321 | assert(remap[index] != ~0u); |
| 322 | |
| 323 | destination[i] = remap[index]; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride) |
| 328 | { |
| 329 | using namespace meshopt; |
| 330 | |
| 331 | assert(indices); |
| 332 | assert(index_count % 3 == 0); |
| 333 | assert(vertex_size > 0 && vertex_size <= 256); |
| 334 | assert(vertex_size <= vertex_stride); |
| 335 | |
| 336 | meshopt_Allocator allocator; |
| 337 | |
| 338 | unsigned int* remap = allocator.allocate<unsigned int>(vertex_count); |
| 339 | memset(remap, -1, vertex_count * sizeof(unsigned int)); |
| 340 | |
| 341 | VertexHasher hasher = {static_cast<const unsigned char*>(vertices), vertex_size, vertex_stride}; |
| 342 | |
| 343 | size_t table_size = hashBuckets(vertex_count); |
| 344 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 345 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 346 | |
| 347 | for (size_t i = 0; i < index_count; ++i) |
| 348 | { |
| 349 | unsigned int index = indices[i]; |
| 350 | assert(index < vertex_count); |
| 351 | |
| 352 | if (remap[index] == ~0u) |
| 353 | { |
| 354 | unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u); |
| 355 | |
| 356 | if (*entry == ~0u) |
| 357 | *entry = index; |
| 358 | |
| 359 | remap[index] = *entry; |
| 360 | } |
| 361 | |
| 362 | destination[i] = remap[index]; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count) |
| 367 | { |
| 368 | using namespace meshopt; |
| 369 | |
| 370 | assert(indices); |
| 371 | assert(index_count % 3 == 0); |
| 372 | assert(stream_count > 0 && stream_count <= 16); |
| 373 | |
| 374 | for (size_t i = 0; i < stream_count; ++i) |
| 375 | { |
| 376 | assert(streams[i].size > 0 && streams[i].size <= 256); |
| 377 | assert(streams[i].size <= streams[i].stride); |
| 378 | } |
| 379 | |
| 380 | meshopt_Allocator allocator; |
| 381 | |
| 382 | unsigned int* remap = allocator.allocate<unsigned int>(vertex_count); |
| 383 | memset(remap, -1, vertex_count * sizeof(unsigned int)); |
| 384 | |
| 385 | VertexStreamHasher hasher = {streams, stream_count}; |
| 386 | |
| 387 | size_t table_size = hashBuckets(vertex_count); |
| 388 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 389 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 390 | |
| 391 | for (size_t i = 0; i < index_count; ++i) |
| 392 | { |
| 393 | unsigned int index = indices[i]; |
| 394 | assert(index < vertex_count); |
| 395 | |
| 396 | if (remap[index] == ~0u) |
| 397 | { |
| 398 | unsigned int* entry = hashLookup(table, table_size, hasher, index, ~0u); |
| 399 | |
| 400 | if (*entry == ~0u) |
| 401 | *entry = index; |
| 402 | |
| 403 | remap[index] = *entry; |
| 404 | } |
| 405 | |
| 406 | destination[i] = remap[index]; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
| 411 | { |
| 412 | using namespace meshopt; |
| 413 | |
| 414 | assert(index_count % 3 == 0); |
| 415 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 416 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 417 | |
| 418 | meshopt_Allocator allocator; |
| 419 | |
| 420 | static const int next[4] = {1, 2, 0, 1}; |
| 421 | |
| 422 | // build position remap: for each vertex, which other (canonical) vertex does it map to? |
| 423 | unsigned int* remap = allocator.allocate<unsigned int>(vertex_count); |
| 424 | buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator); |
| 425 | |
| 426 | // build edge set; this stores all triangle edges but we can look these up by any other wedge |
| 427 | EdgeHasher edge_hasher = {remap}; |
| 428 | |
| 429 | size_t edge_table_size = hashBuckets(index_count); |
| 430 | unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size); |
| 431 | unsigned int* edge_vertex_table = allocator.allocate<unsigned int>(edge_table_size); |
| 432 | |
| 433 | memset(edge_table, -1, edge_table_size * sizeof(unsigned long long)); |
| 434 | memset(edge_vertex_table, -1, edge_table_size * sizeof(unsigned int)); |
| 435 | |
| 436 | for (size_t i = 0; i < index_count; i += 3) |
| 437 | { |
| 438 | for (int e = 0; e < 3; ++e) |
| 439 | { |
| 440 | unsigned int i0 = indices[i + e]; |
| 441 | unsigned int i1 = indices[i + next[e]]; |
| 442 | unsigned int i2 = indices[i + next[e + 1]]; |
| 443 | assert(i0 < vertex_count && i1 < vertex_count && i2 < vertex_count); |
| 444 | |
| 445 | unsigned long long edge = ((unsigned long long)i0 << 32) | i1; |
| 446 | unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull); |
| 447 | |
| 448 | if (*entry == ~0ull) |
| 449 | { |
| 450 | *entry = edge; |
| 451 | |
| 452 | // store vertex opposite to the edge |
| 453 | edge_vertex_table[entry - edge_table] = i2; |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | // build resulting index buffer: 6 indices for each input triangle |
| 459 | for (size_t i = 0; i < index_count; i += 3) |
| 460 | { |
| 461 | unsigned int patch[6]; |
| 462 | |
| 463 | for (int e = 0; e < 3; ++e) |
| 464 | { |
| 465 | unsigned int i0 = indices[i + e]; |
| 466 | unsigned int i1 = indices[i + next[e]]; |
| 467 | assert(i0 < vertex_count && i1 < vertex_count); |
| 468 | |
| 469 | // note: this refers to the opposite edge! |
| 470 | unsigned long long edge = ((unsigned long long)i1 << 32) | i0; |
| 471 | unsigned long long* oppe = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull); |
| 472 | |
| 473 | patch[e * 2 + 0] = i0; |
| 474 | patch[e * 2 + 1] = (*oppe == ~0ull) ? i0 : edge_vertex_table[oppe - edge_table]; |
| 475 | } |
| 476 | |
| 477 | memcpy(destination + i * 2, patch, sizeof(patch)); |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
| 482 | { |
| 483 | using namespace meshopt; |
| 484 | |
| 485 | assert(index_count % 3 == 0); |
| 486 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 487 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 488 | |
| 489 | meshopt_Allocator allocator; |
| 490 | |
| 491 | static const int next[3] = {1, 2, 0}; |
| 492 | |
| 493 | // build position remap: for each vertex, which other (canonical) vertex does it map to? |
| 494 | unsigned int* remap = allocator.allocate<unsigned int>(vertex_count); |
| 495 | buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator); |
| 496 | |
| 497 | // build edge set; this stores all triangle edges but we can look these up by any other wedge |
| 498 | EdgeHasher edge_hasher = {remap}; |
| 499 | |
| 500 | size_t edge_table_size = hashBuckets(index_count); |
| 501 | unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size); |
| 502 | memset(edge_table, -1, edge_table_size * sizeof(unsigned long long)); |
| 503 | |
| 504 | for (size_t i = 0; i < index_count; i += 3) |
| 505 | { |
| 506 | for (int e = 0; e < 3; ++e) |
| 507 | { |
| 508 | unsigned int i0 = indices[i + e]; |
| 509 | unsigned int i1 = indices[i + next[e]]; |
| 510 | assert(i0 < vertex_count && i1 < vertex_count); |
| 511 | |
| 512 | unsigned long long edge = ((unsigned long long)i0 << 32) | i1; |
| 513 | unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull); |
| 514 | |
| 515 | if (*entry == ~0ull) |
| 516 | *entry = edge; |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | // build resulting index buffer: 12 indices for each input triangle |
| 521 | for (size_t i = 0; i < index_count; i += 3) |
| 522 | { |
| 523 | unsigned int patch[12]; |
| 524 | |
| 525 | for (int e = 0; e < 3; ++e) |
| 526 | { |
| 527 | unsigned int i0 = indices[i + e]; |
| 528 | unsigned int i1 = indices[i + next[e]]; |
| 529 | assert(i0 < vertex_count && i1 < vertex_count); |
| 530 | |
| 531 | // note: this refers to the opposite edge! |
| 532 | unsigned long long edge = ((unsigned long long)i1 << 32) | i0; |
| 533 | unsigned long long oppe = *hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull); |
| 534 | |
| 535 | // use the same edge if opposite edge doesn't exist (border) |
| 536 | oppe = (oppe == ~0ull) ? edge : oppe; |
| 537 | |
| 538 | // triangle index (0, 1, 2) |
| 539 | patch[e] = i0; |
| 540 | |
| 541 | // opposite edge (3, 4; 5, 6; 7, 8) |
| 542 | patch[3 + e * 2 + 0] = unsigned(oppe); |
| 543 | patch[3 + e * 2 + 1] = unsigned(oppe >> 32); |
| 544 | |
| 545 | // dominant vertex (9, 10, 11) |
| 546 | patch[9 + e] = remap[i0]; |
| 547 | } |
| 548 | |
| 549 | memcpy(destination + i * 4, patch, sizeof(patch)); |
| 550 | } |
| 551 | } |
| 552 | |