1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
2 | #include "meshoptimizer.h" |
3 | |
4 | #include <assert.h> |
5 | #include <float.h> |
6 | #include <string.h> |
7 | |
8 | // This work is based on: |
9 | // Nicolas Capens. Advanced Rasterization. 2004 |
10 | namespace meshopt |
11 | { |
12 | |
13 | const int kViewport = 256; |
14 | |
15 | struct OverdrawBuffer |
16 | { |
17 | float z[kViewport][kViewport][2]; |
18 | unsigned int overdraw[kViewport][kViewport][2]; |
19 | }; |
20 | |
21 | #ifndef min |
22 | #define min(a, b) ((a) < (b) ? (a) : (b)) |
23 | #endif |
24 | |
25 | #ifndef max |
26 | #define max(a, b) ((a) > (b) ? (a) : (b)) |
27 | #endif |
28 | |
29 | static float computeDepthGradients(float& dzdx, float& dzdy, float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3) |
30 | { |
31 | // z2 = z1 + dzdx * (x2 - x1) + dzdy * (y2 - y1) |
32 | // z3 = z1 + dzdx * (x3 - x1) + dzdy * (y3 - y1) |
33 | // (x2-x1 y2-y1)(dzdx) = (z2-z1) |
34 | // (x3-x1 y3-y1)(dzdy) (z3-z1) |
35 | // we'll solve it with Cramer's rule |
36 | float det = (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1); |
37 | float invdet = (det == 0) ? 0 : 1 / det; |
38 | |
39 | dzdx = (z2 - z1) * (y3 - y1) - (y2 - y1) * (z3 - z1) * invdet; |
40 | dzdy = (x2 - x1) * (z3 - z1) - (z2 - z1) * (x3 - x1) * invdet; |
41 | |
42 | return det; |
43 | } |
44 | |
45 | // half-space fixed point triangle rasterizer |
46 | static void rasterize(OverdrawBuffer* buffer, float v1x, float v1y, float v1z, float v2x, float v2y, float v2z, float v3x, float v3y, float v3z) |
47 | { |
48 | // compute depth gradients |
49 | float DZx, DZy; |
50 | float det = computeDepthGradients(DZx, DZy, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z); |
51 | int sign = det > 0; |
52 | |
53 | // flip backfacing triangles to simplify rasterization logic |
54 | if (sign) |
55 | { |
56 | // flipping v2 & v3 preserves depth gradients since they're based on v1 |
57 | float t; |
58 | t = v2x, v2x = v3x, v3x = t; |
59 | t = v2y, v2y = v3y, v3y = t; |
60 | t = v2z, v2z = v3z, v3z = t; |
61 | |
62 | // flip depth since we rasterize backfacing triangles to second buffer with reverse Z; only v1z is used below |
63 | v1z = kViewport - v1z; |
64 | DZx = -DZx; |
65 | DZy = -DZy; |
66 | } |
67 | |
68 | // coordinates, 28.4 fixed point |
69 | int X1 = int(16.0f * v1x + 0.5f); |
70 | int X2 = int(16.0f * v2x + 0.5f); |
71 | int X3 = int(16.0f * v3x + 0.5f); |
72 | |
73 | int Y1 = int(16.0f * v1y + 0.5f); |
74 | int Y2 = int(16.0f * v2y + 0.5f); |
75 | int Y3 = int(16.0f * v3y + 0.5f); |
76 | |
77 | // bounding rectangle, clipped against viewport |
78 | // since we rasterize pixels with covered centers, min >0.5 should round up |
79 | // as for max, due to top-left filling convention we will never rasterize right/bottom edges |
80 | // so max >= 0.5 should round down |
81 | int minx = max((min(X1, min(X2, X3)) + 7) >> 4, 0); |
82 | int maxx = min((max(X1, max(X2, X3)) + 7) >> 4, kViewport); |
83 | int miny = max((min(Y1, min(Y2, Y3)) + 7) >> 4, 0); |
84 | int maxy = min((max(Y1, max(Y2, Y3)) + 7) >> 4, kViewport); |
85 | |
86 | // deltas, 28.4 fixed point |
87 | int DX12 = X1 - X2; |
88 | int DX23 = X2 - X3; |
89 | int DX31 = X3 - X1; |
90 | |
91 | int DY12 = Y1 - Y2; |
92 | int DY23 = Y2 - Y3; |
93 | int DY31 = Y3 - Y1; |
94 | |
95 | // fill convention correction |
96 | int TL1 = DY12 < 0 || (DY12 == 0 && DX12 > 0); |
97 | int TL2 = DY23 < 0 || (DY23 == 0 && DX23 > 0); |
98 | int TL3 = DY31 < 0 || (DY31 == 0 && DX31 > 0); |
99 | |
100 | // half edge equations, 24.8 fixed point |
101 | // note that we offset minx/miny by half pixel since we want to rasterize pixels with covered centers |
102 | int FX = (minx << 4) + 8; |
103 | int FY = (miny << 4) + 8; |
104 | int CY1 = DX12 * (FY - Y1) - DY12 * (FX - X1) + TL1 - 1; |
105 | int CY2 = DX23 * (FY - Y2) - DY23 * (FX - X2) + TL2 - 1; |
106 | int CY3 = DX31 * (FY - Y3) - DY31 * (FX - X3) + TL3 - 1; |
107 | float ZY = v1z + (DZx * float(FX - X1) + DZy * float(FY - Y1)) * (1 / 16.f); |
108 | |
109 | for (int y = miny; y < maxy; y++) |
110 | { |
111 | int CX1 = CY1; |
112 | int CX2 = CY2; |
113 | int CX3 = CY3; |
114 | float ZX = ZY; |
115 | |
116 | for (int x = minx; x < maxx; x++) |
117 | { |
118 | // check if all CXn are non-negative |
119 | if ((CX1 | CX2 | CX3) >= 0) |
120 | { |
121 | if (ZX >= buffer->z[y][x][sign]) |
122 | { |
123 | buffer->z[y][x][sign] = ZX; |
124 | buffer->overdraw[y][x][sign]++; |
125 | } |
126 | } |
127 | |
128 | // signed left shift is UB for negative numbers so use unsigned-signed casts |
129 | CX1 -= int(unsigned(DY12) << 4); |
130 | CX2 -= int(unsigned(DY23) << 4); |
131 | CX3 -= int(unsigned(DY31) << 4); |
132 | ZX += DZx; |
133 | } |
134 | |
135 | // signed left shift is UB for negative numbers so use unsigned-signed casts |
136 | CY1 += int(unsigned(DX12) << 4); |
137 | CY2 += int(unsigned(DX23) << 4); |
138 | CY3 += int(unsigned(DX31) << 4); |
139 | ZY += DZy; |
140 | } |
141 | } |
142 | |
143 | } // namespace meshopt |
144 | |
145 | meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
146 | { |
147 | using namespace meshopt; |
148 | |
149 | assert(index_count % 3 == 0); |
150 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
151 | assert(vertex_positions_stride % sizeof(float) == 0); |
152 | |
153 | meshopt_Allocator allocator; |
154 | |
155 | size_t vertex_stride_float = vertex_positions_stride / sizeof(float); |
156 | |
157 | meshopt_OverdrawStatistics result = {}; |
158 | |
159 | float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; |
160 | float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; |
161 | |
162 | for (size_t i = 0; i < vertex_count; ++i) |
163 | { |
164 | const float* v = vertex_positions + i * vertex_stride_float; |
165 | |
166 | for (int j = 0; j < 3; ++j) |
167 | { |
168 | minv[j] = min(minv[j], v[j]); |
169 | maxv[j] = max(maxv[j], v[j]); |
170 | } |
171 | } |
172 | |
173 | float extent = max(maxv[0] - minv[0], max(maxv[1] - minv[1], maxv[2] - minv[2])); |
174 | float scale = kViewport / extent; |
175 | |
176 | float* triangles = allocator.allocate<float>(index_count * 3); |
177 | |
178 | for (size_t i = 0; i < index_count; ++i) |
179 | { |
180 | unsigned int index = indices[i]; |
181 | assert(index < vertex_count); |
182 | |
183 | const float* v = vertex_positions + index * vertex_stride_float; |
184 | |
185 | triangles[i * 3 + 0] = (v[0] - minv[0]) * scale; |
186 | triangles[i * 3 + 1] = (v[1] - minv[1]) * scale; |
187 | triangles[i * 3 + 2] = (v[2] - minv[2]) * scale; |
188 | } |
189 | |
190 | OverdrawBuffer* buffer = allocator.allocate<OverdrawBuffer>(1); |
191 | |
192 | for (int axis = 0; axis < 3; ++axis) |
193 | { |
194 | memset(buffer, 0, sizeof(OverdrawBuffer)); |
195 | |
196 | for (size_t i = 0; i < index_count; i += 3) |
197 | { |
198 | const float* vn0 = &triangles[3 * (i + 0)]; |
199 | const float* vn1 = &triangles[3 * (i + 1)]; |
200 | const float* vn2 = &triangles[3 * (i + 2)]; |
201 | |
202 | switch (axis) |
203 | { |
204 | case 0: |
205 | rasterize(buffer, vn0[2], vn0[1], vn0[0], vn1[2], vn1[1], vn1[0], vn2[2], vn2[1], vn2[0]); |
206 | break; |
207 | case 1: |
208 | rasterize(buffer, vn0[0], vn0[2], vn0[1], vn1[0], vn1[2], vn1[1], vn2[0], vn2[2], vn2[1]); |
209 | break; |
210 | case 2: |
211 | rasterize(buffer, vn0[1], vn0[0], vn0[2], vn1[1], vn1[0], vn1[2], vn2[1], vn2[0], vn2[2]); |
212 | break; |
213 | } |
214 | } |
215 | |
216 | for (int y = 0; y < kViewport; ++y) |
217 | for (int x = 0; x < kViewport; ++x) |
218 | for (int s = 0; s < 2; ++s) |
219 | { |
220 | unsigned int overdraw = buffer->overdraw[y][x][s]; |
221 | |
222 | result.pixels_covered += overdraw > 0; |
223 | result.pixels_shaded += overdraw; |
224 | } |
225 | } |
226 | |
227 | result.overdraw = result.pixels_covered ? float(result.pixels_shaded) / float(result.pixels_covered) : 0.f; |
228 | |
229 | return result; |
230 | } |
231 | |