| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <float.h> |
| 6 | #include <math.h> |
| 7 | #include <string.h> |
| 8 | |
| 9 | #ifndef TRACE |
| 10 | #define TRACE 0 |
| 11 | #endif |
| 12 | |
| 13 | #if TRACE |
| 14 | #include <stdio.h> |
| 15 | #endif |
| 16 | |
| 17 | #if TRACE |
| 18 | #define TRACESTATS(i) stats[i]++; |
| 19 | #else |
| 20 | #define TRACESTATS(i) (void)0 |
| 21 | #endif |
| 22 | |
| 23 | #define ATTRIBUTES 3 |
| 24 | |
| 25 | // This work is based on: |
| 26 | // Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997 |
| 27 | // Michael Garland. Quadric-based polygonal surface simplification. 1999 |
| 28 | // Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000 |
| 29 | // Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003 |
| 30 | // Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019 |
| 31 | namespace meshopt |
| 32 | { |
| 33 | |
| 34 | struct EdgeAdjacency |
| 35 | { |
| 36 | struct Edge |
| 37 | { |
| 38 | unsigned int next; |
| 39 | unsigned int prev; |
| 40 | }; |
| 41 | |
| 42 | unsigned int* counts; |
| 43 | unsigned int* offsets; |
| 44 | Edge* data; |
| 45 | }; |
| 46 | |
| 47 | static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator) |
| 48 | { |
| 49 | adjacency.counts = allocator.allocate<unsigned int>(vertex_count); |
| 50 | adjacency.offsets = allocator.allocate<unsigned int>(vertex_count); |
| 51 | adjacency.data = allocator.allocate<EdgeAdjacency::Edge>(index_count); |
| 52 | } |
| 53 | |
| 54 | static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap) |
| 55 | { |
| 56 | size_t face_count = index_count / 3; |
| 57 | |
| 58 | // fill edge counts |
| 59 | memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int)); |
| 60 | |
| 61 | for (size_t i = 0; i < index_count; ++i) |
| 62 | { |
| 63 | unsigned int v = remap ? remap[indices[i]] : indices[i]; |
| 64 | assert(v < vertex_count); |
| 65 | |
| 66 | adjacency.counts[v]++; |
| 67 | } |
| 68 | |
| 69 | // fill offset table |
| 70 | unsigned int offset = 0; |
| 71 | |
| 72 | for (size_t i = 0; i < vertex_count; ++i) |
| 73 | { |
| 74 | adjacency.offsets[i] = offset; |
| 75 | offset += adjacency.counts[i]; |
| 76 | } |
| 77 | |
| 78 | assert(offset == index_count); |
| 79 | |
| 80 | // fill edge data |
| 81 | for (size_t i = 0; i < face_count; ++i) |
| 82 | { |
| 83 | unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; |
| 84 | |
| 85 | if (remap) |
| 86 | { |
| 87 | a = remap[a]; |
| 88 | b = remap[b]; |
| 89 | c = remap[c]; |
| 90 | } |
| 91 | |
| 92 | adjacency.data[adjacency.offsets[a]].next = b; |
| 93 | adjacency.data[adjacency.offsets[a]].prev = c; |
| 94 | adjacency.offsets[a]++; |
| 95 | |
| 96 | adjacency.data[adjacency.offsets[b]].next = c; |
| 97 | adjacency.data[adjacency.offsets[b]].prev = a; |
| 98 | adjacency.offsets[b]++; |
| 99 | |
| 100 | adjacency.data[adjacency.offsets[c]].next = a; |
| 101 | adjacency.data[adjacency.offsets[c]].prev = b; |
| 102 | adjacency.offsets[c]++; |
| 103 | } |
| 104 | |
| 105 | // fix offsets that have been disturbed by the previous pass |
| 106 | for (size_t i = 0; i < vertex_count; ++i) |
| 107 | { |
| 108 | assert(adjacency.offsets[i] >= adjacency.counts[i]); |
| 109 | |
| 110 | adjacency.offsets[i] -= adjacency.counts[i]; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | struct PositionHasher |
| 115 | { |
| 116 | const float* vertex_positions; |
| 117 | size_t vertex_stride_float; |
| 118 | |
| 119 | size_t hash(unsigned int index) const |
| 120 | { |
| 121 | const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + index * vertex_stride_float); |
| 122 | |
| 123 | // scramble bits to make sure that integer coordinates have entropy in lower bits |
| 124 | unsigned int x = key[0] ^ (key[0] >> 17); |
| 125 | unsigned int y = key[1] ^ (key[1] >> 17); |
| 126 | unsigned int z = key[2] ^ (key[2] >> 17); |
| 127 | |
| 128 | // Optimized Spatial Hashing for Collision Detection of Deformable Objects |
| 129 | return (x * 73856093) ^ (y * 19349663) ^ (z * 83492791); |
| 130 | } |
| 131 | |
| 132 | bool equal(unsigned int lhs, unsigned int rhs) const |
| 133 | { |
| 134 | return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0; |
| 135 | } |
| 136 | }; |
| 137 | |
| 138 | static size_t hashBuckets2(size_t count) |
| 139 | { |
| 140 | size_t buckets = 1; |
| 141 | while (buckets < count + count / 4) |
| 142 | buckets *= 2; |
| 143 | |
| 144 | return buckets; |
| 145 | } |
| 146 | |
| 147 | template <typename T, typename Hash> |
| 148 | static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty) |
| 149 | { |
| 150 | assert(buckets > 0); |
| 151 | assert((buckets & (buckets - 1)) == 0); |
| 152 | |
| 153 | size_t hashmod = buckets - 1; |
| 154 | size_t bucket = hash.hash(key) & hashmod; |
| 155 | |
| 156 | for (size_t probe = 0; probe <= hashmod; ++probe) |
| 157 | { |
| 158 | T& item = table[bucket]; |
| 159 | |
| 160 | if (item == empty) |
| 161 | return &item; |
| 162 | |
| 163 | if (hash.equal(item, key)) |
| 164 | return &item; |
| 165 | |
| 166 | // hash collision, quadratic probing |
| 167 | bucket = (bucket + probe + 1) & hashmod; |
| 168 | } |
| 169 | |
| 170 | assert(false && "Hash table is full" ); // unreachable |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator) |
| 175 | { |
| 176 | PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)}; |
| 177 | |
| 178 | size_t table_size = hashBuckets2(vertex_count); |
| 179 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 180 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 181 | |
| 182 | // build forward remap: for each vertex, which other (canonical) vertex does it map to? |
| 183 | // we use position equivalence for this, and remap vertices to other existing vertices |
| 184 | for (size_t i = 0; i < vertex_count; ++i) |
| 185 | { |
| 186 | unsigned int index = unsigned(i); |
| 187 | unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u); |
| 188 | |
| 189 | if (*entry == ~0u) |
| 190 | *entry = index; |
| 191 | |
| 192 | remap[index] = *entry; |
| 193 | } |
| 194 | |
| 195 | // build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex? |
| 196 | // entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i |
| 197 | for (size_t i = 0; i < vertex_count; ++i) |
| 198 | wedge[i] = unsigned(i); |
| 199 | |
| 200 | for (size_t i = 0; i < vertex_count; ++i) |
| 201 | if (remap[i] != i) |
| 202 | { |
| 203 | unsigned int r = remap[i]; |
| 204 | |
| 205 | wedge[i] = wedge[r]; |
| 206 | wedge[r] = unsigned(i); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | enum VertexKind |
| 211 | { |
| 212 | Kind_Manifold, // not on an attribute seam, not on any boundary |
| 213 | Kind_Border, // not on an attribute seam, has exactly two open edges |
| 214 | Kind_Seam, // on an attribute seam with exactly two attribute seam edges |
| 215 | Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex |
| 216 | Kind_Locked, // none of the above; these vertices can't move |
| 217 | |
| 218 | Kind_Count |
| 219 | }; |
| 220 | |
| 221 | // manifold vertices can collapse onto anything |
| 222 | // border/seam vertices can only be collapsed onto border/seam respectively |
| 223 | // complex vertices can collapse onto complex/locked |
| 224 | // a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex |
| 225 | // for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore |
| 226 | const unsigned char kCanCollapse[Kind_Count][Kind_Count] = { |
| 227 | {1, 1, 1, 1, 1}, |
| 228 | {0, 1, 0, 0, 0}, |
| 229 | {0, 0, 1, 0, 0}, |
| 230 | {0, 0, 0, 1, 1}, |
| 231 | {0, 0, 0, 0, 0}, |
| 232 | }; |
| 233 | |
| 234 | // if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge |
| 235 | // note that for seam edges, the opposite edge isn't present in the attribute-based topology |
| 236 | // but is present if you consider a position-only mesh variant |
| 237 | const unsigned char kHasOpposite[Kind_Count][Kind_Count] = { |
| 238 | {1, 1, 1, 0, 1}, |
| 239 | {1, 0, 1, 0, 0}, |
| 240 | {1, 1, 1, 0, 1}, |
| 241 | {0, 0, 0, 0, 0}, |
| 242 | {1, 0, 1, 0, 0}, |
| 243 | }; |
| 244 | |
| 245 | static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b) |
| 246 | { |
| 247 | unsigned int count = adjacency.counts[a]; |
| 248 | const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a]; |
| 249 | |
| 250 | for (size_t i = 0; i < count; ++i) |
| 251 | if (edges[i].next == b) |
| 252 | return true; |
| 253 | |
| 254 | return false; |
| 255 | } |
| 256 | |
| 257 | static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge, unsigned int options) |
| 258 | { |
| 259 | memset(loop, -1, vertex_count * sizeof(unsigned int)); |
| 260 | memset(loopback, -1, vertex_count * sizeof(unsigned int)); |
| 261 | |
| 262 | // incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1 |
| 263 | // note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam |
| 264 | // but here it's okay to fill the data out for other types of vertices as well |
| 265 | unsigned int* openinc = loopback; |
| 266 | unsigned int* openout = loop; |
| 267 | |
| 268 | for (size_t i = 0; i < vertex_count; ++i) |
| 269 | { |
| 270 | unsigned int vertex = unsigned(i); |
| 271 | |
| 272 | unsigned int count = adjacency.counts[vertex]; |
| 273 | const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex]; |
| 274 | |
| 275 | for (size_t j = 0; j < count; ++j) |
| 276 | { |
| 277 | unsigned int target = edges[j].next; |
| 278 | |
| 279 | if (target == vertex) |
| 280 | { |
| 281 | // degenerate triangles have two distinct edges instead of three, and the self edge |
| 282 | // is bi-directional by definition; this can break border/seam classification by "closing" |
| 283 | // the open edge from another triangle and falsely marking the vertex as manifold |
| 284 | // instead we mark the vertex as having >1 open edges which turns it into locked/complex |
| 285 | openinc[vertex] = openout[vertex] = vertex; |
| 286 | } |
| 287 | else if (!hasEdge(adjacency, target, vertex)) |
| 288 | { |
| 289 | openinc[target] = (openinc[target] == ~0u) ? vertex : target; |
| 290 | openout[vertex] = (openout[vertex] == ~0u) ? target : vertex; |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | #if TRACE |
| 296 | size_t stats[4] = {}; |
| 297 | #endif |
| 298 | |
| 299 | for (size_t i = 0; i < vertex_count; ++i) |
| 300 | { |
| 301 | if (remap[i] == i) |
| 302 | { |
| 303 | if (wedge[i] == i) |
| 304 | { |
| 305 | // no attribute seam, need to check if it's manifold |
| 306 | unsigned int openi = openinc[i], openo = openout[i]; |
| 307 | |
| 308 | // note: we classify any vertices with no open edges as manifold |
| 309 | // this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold |
| 310 | // it's unclear if this is a problem in practice |
| 311 | if (openi == ~0u && openo == ~0u) |
| 312 | { |
| 313 | result[i] = Kind_Manifold; |
| 314 | } |
| 315 | else if (openi != i && openo != i) |
| 316 | { |
| 317 | result[i] = Kind_Border; |
| 318 | } |
| 319 | else |
| 320 | { |
| 321 | result[i] = Kind_Locked; |
| 322 | TRACESTATS(0); |
| 323 | } |
| 324 | } |
| 325 | else if (wedge[wedge[i]] == i) |
| 326 | { |
| 327 | // attribute seam; need to distinguish between Seam and Locked |
| 328 | unsigned int w = wedge[i]; |
| 329 | unsigned int openiv = openinc[i], openov = openout[i]; |
| 330 | unsigned int openiw = openinc[w], openow = openout[w]; |
| 331 | |
| 332 | // seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap |
| 333 | if (openiv != ~0u && openiv != i && openov != ~0u && openov != i && |
| 334 | openiw != ~0u && openiw != w && openow != ~0u && openow != w) |
| 335 | { |
| 336 | if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw]) |
| 337 | { |
| 338 | result[i] = Kind_Seam; |
| 339 | } |
| 340 | else |
| 341 | { |
| 342 | result[i] = Kind_Locked; |
| 343 | TRACESTATS(1); |
| 344 | } |
| 345 | } |
| 346 | else |
| 347 | { |
| 348 | result[i] = Kind_Locked; |
| 349 | TRACESTATS(2); |
| 350 | } |
| 351 | } |
| 352 | else |
| 353 | { |
| 354 | // more than one vertex maps to this one; we don't have classification available |
| 355 | result[i] = Kind_Locked; |
| 356 | TRACESTATS(3); |
| 357 | } |
| 358 | } |
| 359 | else |
| 360 | { |
| 361 | assert(remap[i] < i); |
| 362 | |
| 363 | result[i] = result[remap[i]]; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | if (options & meshopt_SimplifyLockBorder) |
| 368 | for (size_t i = 0; i < vertex_count; ++i) |
| 369 | if (result[i] == Kind_Border) |
| 370 | result[i] = Kind_Locked; |
| 371 | |
| 372 | #if TRACE |
| 373 | printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n" , |
| 374 | int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3])); |
| 375 | #endif |
| 376 | } |
| 377 | |
| 378 | struct Vector3 |
| 379 | { |
| 380 | float x, y, z; |
| 381 | |
| 382 | #if ATTRIBUTES |
| 383 | float a[ATTRIBUTES]; |
| 384 | #endif |
| 385 | }; |
| 386 | |
| 387 | static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride) |
| 388 | { |
| 389 | size_t vertex_stride_float = vertex_positions_stride / sizeof(float); |
| 390 | |
| 391 | float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; |
| 392 | float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; |
| 393 | |
| 394 | for (size_t i = 0; i < vertex_count; ++i) |
| 395 | { |
| 396 | const float* v = vertex_positions_data + i * vertex_stride_float; |
| 397 | |
| 398 | if (result) |
| 399 | { |
| 400 | result[i].x = v[0]; |
| 401 | result[i].y = v[1]; |
| 402 | result[i].z = v[2]; |
| 403 | } |
| 404 | |
| 405 | for (int j = 0; j < 3; ++j) |
| 406 | { |
| 407 | float vj = v[j]; |
| 408 | |
| 409 | minv[j] = minv[j] > vj ? vj : minv[j]; |
| 410 | maxv[j] = maxv[j] < vj ? vj : maxv[j]; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | float extent = 0.f; |
| 415 | |
| 416 | extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); |
| 417 | extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); |
| 418 | extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); |
| 419 | |
| 420 | if (result) |
| 421 | { |
| 422 | float scale = extent == 0 ? 0.f : 1.f / extent; |
| 423 | |
| 424 | for (size_t i = 0; i < vertex_count; ++i) |
| 425 | { |
| 426 | result[i].x = (result[i].x - minv[0]) * scale; |
| 427 | result[i].y = (result[i].y - minv[1]) * scale; |
| 428 | result[i].z = (result[i].z - minv[2]) * scale; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | return extent; |
| 433 | } |
| 434 | |
| 435 | struct Quadric |
| 436 | { |
| 437 | float a00, a11, a22; |
| 438 | float a10, a20, a21; |
| 439 | float b0, b1, b2, c; |
| 440 | float w; |
| 441 | |
| 442 | #if ATTRIBUTES |
| 443 | float gx[ATTRIBUTES]; |
| 444 | float gy[ATTRIBUTES]; |
| 445 | float gz[ATTRIBUTES]; |
| 446 | float gw[ATTRIBUTES]; |
| 447 | #endif |
| 448 | }; |
| 449 | |
| 450 | struct Collapse |
| 451 | { |
| 452 | unsigned int v0; |
| 453 | unsigned int v1; |
| 454 | |
| 455 | union |
| 456 | { |
| 457 | unsigned int bidi; |
| 458 | float error; |
| 459 | unsigned int errorui; |
| 460 | }; |
| 461 | float distance_error; |
| 462 | }; |
| 463 | |
| 464 | static float normalize(Vector3& v) |
| 465 | { |
| 466 | float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z); |
| 467 | |
| 468 | if (length > 0) |
| 469 | { |
| 470 | v.x /= length; |
| 471 | v.y /= length; |
| 472 | v.z /= length; |
| 473 | } |
| 474 | |
| 475 | return length; |
| 476 | } |
| 477 | |
| 478 | static void quadricAdd(Quadric& Q, const Quadric& R) |
| 479 | { |
| 480 | Q.a00 += R.a00; |
| 481 | Q.a11 += R.a11; |
| 482 | Q.a22 += R.a22; |
| 483 | Q.a10 += R.a10; |
| 484 | Q.a20 += R.a20; |
| 485 | Q.a21 += R.a21; |
| 486 | Q.b0 += R.b0; |
| 487 | Q.b1 += R.b1; |
| 488 | Q.b2 += R.b2; |
| 489 | Q.c += R.c; |
| 490 | Q.w += R.w; |
| 491 | |
| 492 | #if ATTRIBUTES |
| 493 | for (int k = 0; k < ATTRIBUTES; ++k) |
| 494 | { |
| 495 | Q.gx[k] += R.gx[k]; |
| 496 | Q.gy[k] += R.gy[k]; |
| 497 | Q.gz[k] += R.gz[k]; |
| 498 | Q.gw[k] += R.gw[k]; |
| 499 | } |
| 500 | #endif |
| 501 | } |
| 502 | |
| 503 | static float quadricError(const Quadric& Q, const Vector3& v) |
| 504 | { |
| 505 | float rx = Q.b0; |
| 506 | float ry = Q.b1; |
| 507 | float rz = Q.b2; |
| 508 | |
| 509 | rx += Q.a10 * v.y; |
| 510 | ry += Q.a21 * v.z; |
| 511 | rz += Q.a20 * v.x; |
| 512 | |
| 513 | rx *= 2; |
| 514 | ry *= 2; |
| 515 | rz *= 2; |
| 516 | |
| 517 | rx += Q.a00 * v.x; |
| 518 | ry += Q.a11 * v.y; |
| 519 | rz += Q.a22 * v.z; |
| 520 | |
| 521 | float r = Q.c; |
| 522 | r += rx * v.x; |
| 523 | r += ry * v.y; |
| 524 | r += rz * v.z; |
| 525 | |
| 526 | #if ATTRIBUTES |
| 527 | // see quadricUpdateAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr |
| 528 | for (int k = 0; k < ATTRIBUTES; ++k) |
| 529 | { |
| 530 | float a = v.a[k]; |
| 531 | |
| 532 | r += a * a * Q.w; |
| 533 | r -= 2 * a * (v.x * Q.gx[k] + v.y * Q.gy[k] + v.z * Q.gz[k] + Q.gw[k]); |
| 534 | } |
| 535 | #endif |
| 536 | |
| 537 | float s = Q.w == 0.f ? 0.f : 1.f / Q.w; |
| 538 | |
| 539 | return fabsf(r) * s; |
| 540 | } |
| 541 | |
| 542 | static float quadricErrorNoAttributes(const Quadric& Q, const Vector3& v) |
| 543 | { |
| 544 | float rx = Q.b0; |
| 545 | float ry = Q.b1; |
| 546 | float rz = Q.b2; |
| 547 | |
| 548 | rx += Q.a10 * v.y; |
| 549 | ry += Q.a21 * v.z; |
| 550 | rz += Q.a20 * v.x; |
| 551 | |
| 552 | rx *= 2; |
| 553 | ry *= 2; |
| 554 | rz *= 2; |
| 555 | |
| 556 | rx += Q.a00 * v.x; |
| 557 | ry += Q.a11 * v.y; |
| 558 | rz += Q.a22 * v.z; |
| 559 | |
| 560 | float r = Q.c; |
| 561 | r += rx * v.x; |
| 562 | r += ry * v.y; |
| 563 | r += rz * v.z; |
| 564 | |
| 565 | float s = Q.w == 0.f ? 0.f : 1.f / Q.w; |
| 566 | |
| 567 | return fabsf(r) * s; |
| 568 | } |
| 569 | |
| 570 | static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w) |
| 571 | { |
| 572 | float aw = a * w; |
| 573 | float bw = b * w; |
| 574 | float cw = c * w; |
| 575 | float dw = d * w; |
| 576 | |
| 577 | Q.a00 = a * aw; |
| 578 | Q.a11 = b * bw; |
| 579 | Q.a22 = c * cw; |
| 580 | Q.a10 = a * bw; |
| 581 | Q.a20 = a * cw; |
| 582 | Q.a21 = b * cw; |
| 583 | Q.b0 = a * dw; |
| 584 | Q.b1 = b * dw; |
| 585 | Q.b2 = c * dw; |
| 586 | Q.c = d * dw; |
| 587 | Q.w = w; |
| 588 | |
| 589 | #if ATTRIBUTES |
| 590 | memset(Q.gx, 0, sizeof(Q.gx)); |
| 591 | memset(Q.gy, 0, sizeof(Q.gy)); |
| 592 | memset(Q.gz, 0, sizeof(Q.gz)); |
| 593 | memset(Q.gw, 0, sizeof(Q.gw)); |
| 594 | #endif |
| 595 | } |
| 596 | |
| 597 | static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w) |
| 598 | { |
| 599 | // we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric |
| 600 | Q.a00 = w; |
| 601 | Q.a11 = w; |
| 602 | Q.a22 = w; |
| 603 | Q.a10 = 0.f; |
| 604 | Q.a20 = 0.f; |
| 605 | Q.a21 = 0.f; |
| 606 | Q.b0 = -2.f * x * w; |
| 607 | Q.b1 = -2.f * y * w; |
| 608 | Q.b2 = -2.f * z * w; |
| 609 | Q.c = (x * x + y * y + z * z) * w; |
| 610 | Q.w = w; |
| 611 | } |
| 612 | |
| 613 | static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight) |
| 614 | { |
| 615 | Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; |
| 616 | Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; |
| 617 | |
| 618 | // normal = cross(p1 - p0, p2 - p0) |
| 619 | Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x}; |
| 620 | float area = normalize(normal); |
| 621 | |
| 622 | float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; |
| 623 | |
| 624 | // we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes |
| 625 | quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight); |
| 626 | } |
| 627 | |
| 628 | static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight) |
| 629 | { |
| 630 | Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; |
| 631 | float length = normalize(p10); |
| 632 | |
| 633 | // p20p = length of projection of p2-p0 onto normalize(p1 - p0) |
| 634 | Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; |
| 635 | float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z; |
| 636 | |
| 637 | // normal = altitude of triangle from point p2 onto edge p1-p0 |
| 638 | Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p}; |
| 639 | normalize(normal); |
| 640 | |
| 641 | float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; |
| 642 | |
| 643 | // note: the weight is scaled linearly with edge length; this has to match the triangle weight |
| 644 | quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight); |
| 645 | } |
| 646 | |
| 647 | #if ATTRIBUTES |
| 648 | static void quadricUpdateAttributes(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float w) |
| 649 | { |
| 650 | // for each attribute we want to encode the following function into the quadric: |
| 651 | // (eval(pos) - attr)^2 |
| 652 | // where eval(pos) interpolates attribute across the triangle like so: |
| 653 | // eval(pos) = pos.x * gx + pos.y * gy + pos.z * gz + gw |
| 654 | // where gx/gy/gz/gw are gradients |
| 655 | Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; |
| 656 | Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; |
| 657 | |
| 658 | // we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows: |
| 659 | // v = (d11 * d20 - d01 * d21) / denom |
| 660 | // w = (d00 * d21 - d01 * d20) / denom |
| 661 | // u = 1 - v - w |
| 662 | // here v0, v1 are triangle edge vectors, v2 is a vector from point to triangle corner, and dij = dot(vi, vj) |
| 663 | const Vector3& v0 = p10; |
| 664 | const Vector3& v1 = p20; |
| 665 | float d00 = v0.x * v0.x + v0.y * v0.y + v0.z * v0.z; |
| 666 | float d01 = v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; |
| 667 | float d11 = v1.x * v1.x + v1.y * v1.y + v1.z * v1.z; |
| 668 | float denom = d00 * d11 - d01 * d01; |
| 669 | float denomr = denom == 0 ? 0.f : 1.f / denom; |
| 670 | |
| 671 | // precompute gradient factors |
| 672 | // these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out common factors that are shared between attributes |
| 673 | float gx1 = (d11 * v0.x - d01 * v1.x) * denomr; |
| 674 | float gx2 = (d00 * v1.x - d01 * v0.x) * denomr; |
| 675 | float gy1 = (d11 * v0.y - d01 * v1.y) * denomr; |
| 676 | float gy2 = (d00 * v1.y - d01 * v0.y) * denomr; |
| 677 | float gz1 = (d11 * v0.z - d01 * v1.z) * denomr; |
| 678 | float gz2 = (d00 * v1.z - d01 * v0.z) * denomr; |
| 679 | |
| 680 | for (int k = 0; k < ATTRIBUTES; ++k) |
| 681 | { |
| 682 | float a0 = p0.a[k], a1 = p1.a[k], a2 = p2.a[k]; |
| 683 | |
| 684 | // compute gradient of eval(pos) for x/y/z/w |
| 685 | // the formulas below are obtained by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w |
| 686 | float gx = gx1 * (a1 - a0) + gx2 * (a2 - a0); |
| 687 | float gy = gy1 * (a1 - a0) + gy2 * (a2 - a0); |
| 688 | float gz = gz1 * (a1 - a0) + gz2 * (a2 - a0); |
| 689 | float gw = a0 - p0.x * gx - p0.y * gy - p0.z * gz; |
| 690 | |
| 691 | // quadric encodes (eval(pos)-attr)^2; this means that the resulting expansion needs to compute, for example, pos.x * pos.y * K |
| 692 | // since quadrics already encode factors for pos.x * pos.y, we can accumulate almost everything in basic quadric fields |
| 693 | Q.a00 += w * (gx * gx); |
| 694 | Q.a11 += w * (gy * gy); |
| 695 | Q.a22 += w * (gz * gz); |
| 696 | |
| 697 | Q.a10 += w * (gy * gx); |
| 698 | Q.a20 += w * (gz * gx); |
| 699 | Q.a21 += w * (gz * gy); |
| 700 | |
| 701 | Q.b0 += w * (gx * gw); |
| 702 | Q.b1 += w * (gy * gw); |
| 703 | Q.b2 += w * (gz * gw); |
| 704 | |
| 705 | Q.c += w * (gw * gw); |
| 706 | |
| 707 | // the only remaining sum components are ones that depend on attr; these will be addded during error evaluation, see quadricError |
| 708 | Q.gx[k] = w * gx; |
| 709 | Q.gy[k] = w * gy; |
| 710 | Q.gz[k] = w * gz; |
| 711 | Q.gw[k] = w * gw; |
| 712 | |
| 713 | #if TRACE > 2 |
| 714 | printf("attr%d: %e %e %e\n" , |
| 715 | k, |
| 716 | (gx * p0.x + gy * p0.y + gz * p0.z + gw - a0), |
| 717 | (gx * p1.x + gy * p1.y + gz * p1.z + gw - a1), |
| 718 | (gx * p2.x + gy * p2.y + gz * p2.z + gw - a2) |
| 719 | ); |
| 720 | #endif |
| 721 | } |
| 722 | } |
| 723 | #endif |
| 724 | |
| 725 | static void fillFaceQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap) |
| 726 | { |
| 727 | for (size_t i = 0; i < index_count; i += 3) |
| 728 | { |
| 729 | unsigned int i0 = indices[i + 0]; |
| 730 | unsigned int i1 = indices[i + 1]; |
| 731 | unsigned int i2 = indices[i + 2]; |
| 732 | |
| 733 | Quadric Q; |
| 734 | quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f); |
| 735 | quadricAdd(vertex_no_attrib_quadrics[remap[i0]], Q); |
| 736 | quadricAdd(vertex_no_attrib_quadrics[remap[i1]], Q); |
| 737 | quadricAdd(vertex_no_attrib_quadrics[remap[i2]], Q); |
| 738 | |
| 739 | #if ATTRIBUTES |
| 740 | quadricUpdateAttributes(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], Q.w); |
| 741 | #endif |
| 742 | quadricAdd(vertex_quadrics[remap[i0]], Q); |
| 743 | quadricAdd(vertex_quadrics[remap[i1]], Q); |
| 744 | quadricAdd(vertex_quadrics[remap[i2]], Q); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | static void fillEdgeQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback) |
| 749 | { |
| 750 | for (size_t i = 0; i < index_count; i += 3) |
| 751 | { |
| 752 | static const int next[3] = {1, 2, 0}; |
| 753 | |
| 754 | for (int e = 0; e < 3; ++e) |
| 755 | { |
| 756 | unsigned int i0 = indices[i + e]; |
| 757 | unsigned int i1 = indices[i + next[e]]; |
| 758 | |
| 759 | unsigned char k0 = vertex_kind[i0]; |
| 760 | unsigned char k1 = vertex_kind[i1]; |
| 761 | |
| 762 | // check that either i0 or i1 are border/seam and are on the same edge loop |
| 763 | // note that we need to add the error even for edged that connect e.g. border & locked |
| 764 | // if we don't do that, the adjacent border->border edge won't have correct errors for corners |
| 765 | if (k0 != Kind_Border && k0 != Kind_Seam && k1 != Kind_Border && k1 != Kind_Seam) |
| 766 | continue; |
| 767 | |
| 768 | if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1) |
| 769 | continue; |
| 770 | |
| 771 | if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0) |
| 772 | continue; |
| 773 | |
| 774 | // seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges |
| 775 | if (kHasOpposite[k0][k1] && remap[i1] > remap[i0]) |
| 776 | continue; |
| 777 | |
| 778 | unsigned int i2 = indices[i + next[next[e]]]; |
| 779 | |
| 780 | // we try hard to maintain border edge geometry; seam edges can move more freely |
| 781 | // due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical |
| 782 | const float kEdgeWeightSeam = 1.f; |
| 783 | const float kEdgeWeightBorder = 10.f; |
| 784 | |
| 785 | float edgeWeight = (k0 == Kind_Border || k1 == Kind_Border) ? kEdgeWeightBorder : kEdgeWeightSeam; |
| 786 | |
| 787 | Quadric Q; |
| 788 | quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight); |
| 789 | |
| 790 | quadricAdd(vertex_quadrics[remap[i0]], Q); |
| 791 | quadricAdd(vertex_quadrics[remap[i1]], Q); |
| 792 | |
| 793 | quadricAdd(vertex_no_attrib_quadrics[remap[i0]], Q); |
| 794 | quadricAdd(vertex_no_attrib_quadrics[remap[i1]], Q); |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | // does triangle ABC flip when C is replaced with D? |
| 800 | static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d) |
| 801 | { |
| 802 | Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z}; |
| 803 | Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z}; |
| 804 | Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z}; |
| 805 | |
| 806 | Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x}; |
| 807 | Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x}; |
| 808 | |
| 809 | return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z < 0; |
| 810 | } |
| 811 | |
| 812 | static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1) |
| 813 | { |
| 814 | assert(collapse_remap[i0] == i0); |
| 815 | assert(collapse_remap[i1] == i1); |
| 816 | |
| 817 | const Vector3& v0 = vertex_positions[i0]; |
| 818 | const Vector3& v1 = vertex_positions[i1]; |
| 819 | |
| 820 | const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]]; |
| 821 | size_t count = adjacency.counts[i0]; |
| 822 | |
| 823 | for (size_t i = 0; i < count; ++i) |
| 824 | { |
| 825 | unsigned int a = collapse_remap[edges[i].next]; |
| 826 | unsigned int b = collapse_remap[edges[i].prev]; |
| 827 | |
| 828 | // skip triangles that get collapsed |
| 829 | // note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0 |
| 830 | if (a == i1 || b == i1) |
| 831 | continue; |
| 832 | |
| 833 | // early-out when at least one triangle flips due to a collapse |
| 834 | if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1)) |
| 835 | return true; |
| 836 | } |
| 837 | |
| 838 | return false; |
| 839 | } |
| 840 | |
| 841 | static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop) |
| 842 | { |
| 843 | size_t collapse_count = 0; |
| 844 | |
| 845 | for (size_t i = 0; i < index_count; i += 3) |
| 846 | { |
| 847 | static const int next[3] = {1, 2, 0}; |
| 848 | |
| 849 | for (int e = 0; e < 3; ++e) |
| 850 | { |
| 851 | unsigned int i0 = indices[i + e]; |
| 852 | unsigned int i1 = indices[i + next[e]]; |
| 853 | |
| 854 | // this can happen either when input has a zero-length edge, or when we perform collapses for complex |
| 855 | // topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them |
| 856 | // we leave edges like this alone since they may be important for preserving mesh integrity |
| 857 | if (remap[i0] == remap[i1]) |
| 858 | continue; |
| 859 | |
| 860 | unsigned char k0 = vertex_kind[i0]; |
| 861 | unsigned char k1 = vertex_kind[i1]; |
| 862 | |
| 863 | // the edge has to be collapsible in at least one direction |
| 864 | if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0])) |
| 865 | continue; |
| 866 | |
| 867 | // manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges |
| 868 | if (kHasOpposite[k0][k1] && remap[i1] > remap[i0]) |
| 869 | continue; |
| 870 | |
| 871 | // two vertices are on a border or a seam, but there's no direct edge between them |
| 872 | // this indicates that they belong to two different edge loops and we should not collapse this edge |
| 873 | // loop[] tracks half edges so we only need to check i0->i1 |
| 874 | if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1) |
| 875 | continue; |
| 876 | |
| 877 | // edge can be collapsed in either direction - we will pick the one with minimum error |
| 878 | // note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional |
| 879 | if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0]) |
| 880 | { |
| 881 | Collapse c = {i0, i1, {/* bidi= */ 1}}; |
| 882 | collapses[collapse_count++] = c; |
| 883 | } |
| 884 | else |
| 885 | { |
| 886 | // edge can only be collapsed in one direction |
| 887 | unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1; |
| 888 | unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0; |
| 889 | |
| 890 | Collapse c = {e0, e1, {/* bidi= */ 0}}; |
| 891 | collapses[collapse_count++] = c; |
| 892 | } |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | return collapse_count; |
| 897 | } |
| 898 | |
| 899 | static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const Quadric* vertex_no_attrib_quadrics, const unsigned int* remap) |
| 900 | { |
| 901 | for (size_t i = 0; i < collapse_count; ++i) |
| 902 | { |
| 903 | Collapse& c = collapses[i]; |
| 904 | |
| 905 | unsigned int i0 = c.v0; |
| 906 | unsigned int i1 = c.v1; |
| 907 | |
| 908 | // most edges are bidirectional which means we need to evaluate errors for two collapses |
| 909 | // to keep this code branchless we just use the same edge for unidirectional edges |
| 910 | unsigned int j0 = c.bidi ? i1 : i0; |
| 911 | unsigned int j1 = c.bidi ? i0 : i1; |
| 912 | |
| 913 | const Quadric& qi = vertex_quadrics[remap[i0]]; |
| 914 | const Quadric& qj = vertex_quadrics[remap[j0]]; |
| 915 | |
| 916 | float ei = quadricError(qi, vertex_positions[i1]); |
| 917 | float ej = quadricError(qj, vertex_positions[j1]); |
| 918 | |
| 919 | const Quadric& naqi = vertex_no_attrib_quadrics[remap[i0]]; |
| 920 | const Quadric& naqj = vertex_no_attrib_quadrics[remap[j0]]; |
| 921 | |
| 922 | // pick edge direction with minimal error |
| 923 | c.v0 = ei <= ej ? i0 : j0; |
| 924 | c.v1 = ei <= ej ? i1 : j1; |
| 925 | c.error = ei <= ej ? ei : ej; |
| 926 | c.distance_error = ei <= ej ? quadricErrorNoAttributes(naqi, vertex_positions[i1]) : quadricErrorNoAttributes(naqj, vertex_positions[j1]); |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | #if TRACE > 1 |
| 931 | static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind) |
| 932 | { |
| 933 | size_t ckinds[Kind_Count][Kind_Count] = {}; |
| 934 | float cerrors[Kind_Count][Kind_Count] = {}; |
| 935 | |
| 936 | for (int k0 = 0; k0 < Kind_Count; ++k0) |
| 937 | for (int k1 = 0; k1 < Kind_Count; ++k1) |
| 938 | cerrors[k0][k1] = FLT_MAX; |
| 939 | |
| 940 | for (size_t i = 0; i < collapse_count; ++i) |
| 941 | { |
| 942 | unsigned int i0 = collapses[i].v0; |
| 943 | unsigned int i1 = collapses[i].v1; |
| 944 | |
| 945 | unsigned char k0 = vertex_kind[i0]; |
| 946 | unsigned char k1 = vertex_kind[i1]; |
| 947 | |
| 948 | ckinds[k0][k1]++; |
| 949 | cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1]; |
| 950 | } |
| 951 | |
| 952 | for (int k0 = 0; k0 < Kind_Count; ++k0) |
| 953 | for (int k1 = 0; k1 < Kind_Count; ++k1) |
| 954 | if (ckinds[k0][k1]) |
| 955 | printf("collapses %d -> %d: %d, min error %e\n" , k0, k1, int(ckinds[k0][k1]), ckinds[k0][k1] ? sqrtf(cerrors[k0][k1]) : 0.f); |
| 956 | } |
| 957 | |
| 958 | static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind) |
| 959 | { |
| 960 | size_t locked_collapses[Kind_Count][Kind_Count] = {}; |
| 961 | |
| 962 | for (size_t i = 0; i < index_count; i += 3) |
| 963 | { |
| 964 | static const int next[3] = {1, 2, 0}; |
| 965 | |
| 966 | for (int e = 0; e < 3; ++e) |
| 967 | { |
| 968 | unsigned int i0 = indices[i + e]; |
| 969 | unsigned int i1 = indices[i + next[e]]; |
| 970 | |
| 971 | unsigned char k0 = vertex_kind[i0]; |
| 972 | unsigned char k1 = vertex_kind[i1]; |
| 973 | |
| 974 | locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0]; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | for (int k0 = 0; k0 < Kind_Count; ++k0) |
| 979 | for (int k1 = 0; k1 < Kind_Count; ++k1) |
| 980 | if (locked_collapses[k0][k1]) |
| 981 | printf("locked collapses %d -> %d: %d\n" , k0, k1, int(locked_collapses[k0][k1])); |
| 982 | } |
| 983 | #endif |
| 984 | |
| 985 | static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count) |
| 986 | { |
| 987 | const int sort_bits = 11; |
| 988 | |
| 989 | // fill histogram for counting sort |
| 990 | unsigned int histogram[1 << sort_bits]; |
| 991 | memset(histogram, 0, sizeof(histogram)); |
| 992 | |
| 993 | for (size_t i = 0; i < collapse_count; ++i) |
| 994 | { |
| 995 | // skip sign bit since error is non-negative |
| 996 | unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits); |
| 997 | |
| 998 | histogram[key]++; |
| 999 | } |
| 1000 | |
| 1001 | // compute offsets based on histogram data |
| 1002 | size_t histogram_sum = 0; |
| 1003 | |
| 1004 | for (size_t i = 0; i < 1 << sort_bits; ++i) |
| 1005 | { |
| 1006 | size_t count = histogram[i]; |
| 1007 | histogram[i] = unsigned(histogram_sum); |
| 1008 | histogram_sum += count; |
| 1009 | } |
| 1010 | |
| 1011 | assert(histogram_sum == collapse_count); |
| 1012 | |
| 1013 | // compute sort order based on offsets |
| 1014 | for (size_t i = 0; i < collapse_count; ++i) |
| 1015 | { |
| 1016 | // skip sign bit since error is non-negative |
| 1017 | unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits); |
| 1018 | |
| 1019 | sort_order[histogram[key]++] = unsigned(i); |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error) |
| 1024 | { |
| 1025 | size_t edge_collapses = 0; |
| 1026 | size_t triangle_collapses = 0; |
| 1027 | |
| 1028 | // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit |
| 1029 | // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses |
| 1030 | size_t edge_collapse_goal = triangle_collapse_goal / 2; |
| 1031 | |
| 1032 | #if TRACE |
| 1033 | size_t stats[4] = {}; |
| 1034 | #endif |
| 1035 | |
| 1036 | for (size_t i = 0; i < collapse_count; ++i) |
| 1037 | { |
| 1038 | const Collapse& c = collapses[collapse_order[i]]; |
| 1039 | |
| 1040 | TRACESTATS(0); |
| 1041 | |
| 1042 | if (c.error > error_limit) |
| 1043 | break; |
| 1044 | |
| 1045 | if (triangle_collapses >= triangle_collapse_goal) |
| 1046 | break; |
| 1047 | |
| 1048 | // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked |
| 1049 | // as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor |
| 1050 | float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX; |
| 1051 | |
| 1052 | // on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd |
| 1053 | // topology, we only abort if we got over 1/6 collapses accordingly. |
| 1054 | if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 6) |
| 1055 | break; |
| 1056 | |
| 1057 | unsigned int i0 = c.v0; |
| 1058 | unsigned int i1 = c.v1; |
| 1059 | |
| 1060 | unsigned int r0 = remap[i0]; |
| 1061 | unsigned int r1 = remap[i1]; |
| 1062 | |
| 1063 | // we don't collapse vertices that had source or target vertex involved in a collapse |
| 1064 | // it's important to not move the vertices twice since it complicates the tracking/remapping logic |
| 1065 | // it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass |
| 1066 | if (collapse_locked[r0] | collapse_locked[r1]) |
| 1067 | { |
| 1068 | TRACESTATS(1); |
| 1069 | continue; |
| 1070 | } |
| 1071 | |
| 1072 | if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1)) |
| 1073 | { |
| 1074 | // adjust collapse goal since this collapse is invalid and shouldn't factor into error goal |
| 1075 | edge_collapse_goal++; |
| 1076 | |
| 1077 | TRACESTATS(2); |
| 1078 | continue; |
| 1079 | } |
| 1080 | |
| 1081 | assert(collapse_remap[r0] == r0); |
| 1082 | assert(collapse_remap[r1] == r1); |
| 1083 | |
| 1084 | quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]); |
| 1085 | quadricAdd(vertex_no_attrib_quadrics[r1], vertex_no_attrib_quadrics[r0]); |
| 1086 | |
| 1087 | if (vertex_kind[i0] == Kind_Complex) |
| 1088 | { |
| 1089 | unsigned int v = i0; |
| 1090 | |
| 1091 | do |
| 1092 | { |
| 1093 | collapse_remap[v] = r1; |
| 1094 | v = wedge[v]; |
| 1095 | } while (v != i0); |
| 1096 | } |
| 1097 | else if (vertex_kind[i0] == Kind_Seam) |
| 1098 | { |
| 1099 | // remap v0 to v1 and seam pair of v0 to seam pair of v1 |
| 1100 | unsigned int s0 = wedge[i0]; |
| 1101 | unsigned int s1 = wedge[i1]; |
| 1102 | |
| 1103 | assert(s0 != i0 && s1 != i1); |
| 1104 | assert(wedge[s0] == i0 && wedge[s1] == i1); |
| 1105 | |
| 1106 | collapse_remap[i0] = i1; |
| 1107 | collapse_remap[s0] = s1; |
| 1108 | } |
| 1109 | else |
| 1110 | { |
| 1111 | assert(wedge[i0] == i0); |
| 1112 | |
| 1113 | collapse_remap[i0] = i1; |
| 1114 | } |
| 1115 | |
| 1116 | collapse_locked[r0] = 1; |
| 1117 | collapse_locked[r1] = 1; |
| 1118 | |
| 1119 | // border edges collapse 1 triangle, other edges collapse 2 or more |
| 1120 | triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2; |
| 1121 | edge_collapses++; |
| 1122 | |
| 1123 | result_error = result_error < c.distance_error ? c.distance_error : result_error; |
| 1124 | } |
| 1125 | |
| 1126 | #if TRACE |
| 1127 | float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f; |
| 1128 | |
| 1129 | printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n" , |
| 1130 | int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect), |
| 1131 | int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2])); |
| 1132 | #endif |
| 1133 | |
| 1134 | return edge_collapses; |
| 1135 | } |
| 1136 | |
| 1137 | static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap) |
| 1138 | { |
| 1139 | size_t write = 0; |
| 1140 | |
| 1141 | for (size_t i = 0; i < index_count; i += 3) |
| 1142 | { |
| 1143 | unsigned int v0 = collapse_remap[indices[i + 0]]; |
| 1144 | unsigned int v1 = collapse_remap[indices[i + 1]]; |
| 1145 | unsigned int v2 = collapse_remap[indices[i + 2]]; |
| 1146 | |
| 1147 | // we never move the vertex twice during a single pass |
| 1148 | assert(collapse_remap[v0] == v0); |
| 1149 | assert(collapse_remap[v1] == v1); |
| 1150 | assert(collapse_remap[v2] == v2); |
| 1151 | |
| 1152 | if (v0 != v1 && v0 != v2 && v1 != v2) |
| 1153 | { |
| 1154 | indices[write + 0] = v0; |
| 1155 | indices[write + 1] = v1; |
| 1156 | indices[write + 2] = v2; |
| 1157 | write += 3; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | return write; |
| 1162 | } |
| 1163 | |
| 1164 | static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap) |
| 1165 | { |
| 1166 | for (size_t i = 0; i < vertex_count; ++i) |
| 1167 | { |
| 1168 | if (loop[i] != ~0u) |
| 1169 | { |
| 1170 | unsigned int l = loop[i]; |
| 1171 | unsigned int r = collapse_remap[l]; |
| 1172 | |
| 1173 | // i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes |
| 1174 | loop[i] = (i == r) ? loop[l] : r; |
| 1175 | } |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | struct CellHasher |
| 1180 | { |
| 1181 | const unsigned int* vertex_ids; |
| 1182 | |
| 1183 | size_t hash(unsigned int i) const |
| 1184 | { |
| 1185 | unsigned int h = vertex_ids[i]; |
| 1186 | |
| 1187 | // MurmurHash2 finalizer |
| 1188 | h ^= h >> 13; |
| 1189 | h *= 0x5bd1e995; |
| 1190 | h ^= h >> 15; |
| 1191 | return h; |
| 1192 | } |
| 1193 | |
| 1194 | bool equal(unsigned int lhs, unsigned int rhs) const |
| 1195 | { |
| 1196 | return vertex_ids[lhs] == vertex_ids[rhs]; |
| 1197 | } |
| 1198 | }; |
| 1199 | |
| 1200 | struct IdHasher |
| 1201 | { |
| 1202 | size_t hash(unsigned int id) const |
| 1203 | { |
| 1204 | unsigned int h = id; |
| 1205 | |
| 1206 | // MurmurHash2 finalizer |
| 1207 | h ^= h >> 13; |
| 1208 | h *= 0x5bd1e995; |
| 1209 | h ^= h >> 15; |
| 1210 | return h; |
| 1211 | } |
| 1212 | |
| 1213 | bool equal(unsigned int lhs, unsigned int rhs) const |
| 1214 | { |
| 1215 | return lhs == rhs; |
| 1216 | } |
| 1217 | }; |
| 1218 | |
| 1219 | struct TriangleHasher |
| 1220 | { |
| 1221 | const unsigned int* indices; |
| 1222 | |
| 1223 | size_t hash(unsigned int i) const |
| 1224 | { |
| 1225 | const unsigned int* tri = indices + i * 3; |
| 1226 | |
| 1227 | // Optimized Spatial Hashing for Collision Detection of Deformable Objects |
| 1228 | return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791); |
| 1229 | } |
| 1230 | |
| 1231 | bool equal(unsigned int lhs, unsigned int rhs) const |
| 1232 | { |
| 1233 | const unsigned int* lt = indices + lhs * 3; |
| 1234 | const unsigned int* rt = indices + rhs * 3; |
| 1235 | |
| 1236 | return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2]; |
| 1237 | } |
| 1238 | }; |
| 1239 | |
| 1240 | static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size) |
| 1241 | { |
| 1242 | assert(grid_size >= 1 && grid_size <= 1024); |
| 1243 | float cell_scale = float(grid_size - 1); |
| 1244 | |
| 1245 | for (size_t i = 0; i < vertex_count; ++i) |
| 1246 | { |
| 1247 | const Vector3& v = vertex_positions[i]; |
| 1248 | |
| 1249 | int xi = int(v.x * cell_scale + 0.5f); |
| 1250 | int yi = int(v.y * cell_scale + 0.5f); |
| 1251 | int zi = int(v.z * cell_scale + 0.5f); |
| 1252 | |
| 1253 | vertex_ids[i] = (xi << 20) | (yi << 10) | zi; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count) |
| 1258 | { |
| 1259 | size_t result = 0; |
| 1260 | |
| 1261 | for (size_t i = 0; i < index_count; i += 3) |
| 1262 | { |
| 1263 | unsigned int id0 = vertex_ids[indices[i + 0]]; |
| 1264 | unsigned int id1 = vertex_ids[indices[i + 1]]; |
| 1265 | unsigned int id2 = vertex_ids[indices[i + 2]]; |
| 1266 | |
| 1267 | result += (id0 != id1) & (id0 != id2) & (id1 != id2); |
| 1268 | } |
| 1269 | |
| 1270 | return result; |
| 1271 | } |
| 1272 | |
| 1273 | static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count) |
| 1274 | { |
| 1275 | CellHasher hasher = {vertex_ids}; |
| 1276 | |
| 1277 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 1278 | |
| 1279 | size_t result = 0; |
| 1280 | |
| 1281 | for (size_t i = 0; i < vertex_count; ++i) |
| 1282 | { |
| 1283 | unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u); |
| 1284 | |
| 1285 | if (*entry == ~0u) |
| 1286 | { |
| 1287 | *entry = unsigned(i); |
| 1288 | vertex_cells[i] = unsigned(result++); |
| 1289 | } |
| 1290 | else |
| 1291 | { |
| 1292 | vertex_cells[i] = vertex_cells[*entry]; |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | return result; |
| 1297 | } |
| 1298 | |
| 1299 | static size_t countVertexCells(unsigned int* table, size_t table_size, const unsigned int* vertex_ids, size_t vertex_count) |
| 1300 | { |
| 1301 | IdHasher hasher; |
| 1302 | |
| 1303 | memset(table, -1, table_size * sizeof(unsigned int)); |
| 1304 | |
| 1305 | size_t result = 0; |
| 1306 | |
| 1307 | for (size_t i = 0; i < vertex_count; ++i) |
| 1308 | { |
| 1309 | unsigned int id = vertex_ids[i]; |
| 1310 | unsigned int* entry = hashLookup2(table, table_size, hasher, id, ~0u); |
| 1311 | |
| 1312 | result += (*entry == ~0u); |
| 1313 | *entry = id; |
| 1314 | } |
| 1315 | |
| 1316 | return result; |
| 1317 | } |
| 1318 | |
| 1319 | static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells) |
| 1320 | { |
| 1321 | for (size_t i = 0; i < index_count; i += 3) |
| 1322 | { |
| 1323 | unsigned int i0 = indices[i + 0]; |
| 1324 | unsigned int i1 = indices[i + 1]; |
| 1325 | unsigned int i2 = indices[i + 2]; |
| 1326 | |
| 1327 | unsigned int c0 = vertex_cells[i0]; |
| 1328 | unsigned int c1 = vertex_cells[i1]; |
| 1329 | unsigned int c2 = vertex_cells[i2]; |
| 1330 | |
| 1331 | bool single_cell = (c0 == c1) & (c0 == c2); |
| 1332 | |
| 1333 | Quadric Q; |
| 1334 | quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f); |
| 1335 | |
| 1336 | if (single_cell) |
| 1337 | { |
| 1338 | quadricAdd(cell_quadrics[c0], Q); |
| 1339 | } |
| 1340 | else |
| 1341 | { |
| 1342 | quadricAdd(cell_quadrics[c0], Q); |
| 1343 | quadricAdd(cell_quadrics[c1], Q); |
| 1344 | quadricAdd(cell_quadrics[c2], Q); |
| 1345 | } |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | static void fillCellQuadrics(Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count, const unsigned int* vertex_cells) |
| 1350 | { |
| 1351 | for (size_t i = 0; i < vertex_count; ++i) |
| 1352 | { |
| 1353 | unsigned int c = vertex_cells[i]; |
| 1354 | const Vector3& v = vertex_positions[i]; |
| 1355 | |
| 1356 | Quadric Q; |
| 1357 | quadricFromPoint(Q, v.x, v.y, v.z, 1.f); |
| 1358 | |
| 1359 | quadricAdd(cell_quadrics[c], Q); |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count) |
| 1364 | { |
| 1365 | memset(cell_remap, -1, cell_count * sizeof(unsigned int)); |
| 1366 | |
| 1367 | for (size_t i = 0; i < vertex_count; ++i) |
| 1368 | { |
| 1369 | unsigned int cell = vertex_cells[i]; |
| 1370 | float error = quadricError(cell_quadrics[cell], vertex_positions[i]); |
| 1371 | |
| 1372 | if (cell_remap[cell] == ~0u || cell_errors[cell] > error) |
| 1373 | { |
| 1374 | cell_remap[cell] = unsigned(i); |
| 1375 | cell_errors[cell] = error; |
| 1376 | } |
| 1377 | } |
| 1378 | } |
| 1379 | |
| 1380 | static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap) |
| 1381 | { |
| 1382 | TriangleHasher hasher = {destination}; |
| 1383 | |
| 1384 | memset(tritable, -1, tritable_size * sizeof(unsigned int)); |
| 1385 | |
| 1386 | size_t result = 0; |
| 1387 | |
| 1388 | for (size_t i = 0; i < index_count; i += 3) |
| 1389 | { |
| 1390 | unsigned int c0 = vertex_cells[indices[i + 0]]; |
| 1391 | unsigned int c1 = vertex_cells[indices[i + 1]]; |
| 1392 | unsigned int c2 = vertex_cells[indices[i + 2]]; |
| 1393 | |
| 1394 | if (c0 != c1 && c0 != c2 && c1 != c2) |
| 1395 | { |
| 1396 | unsigned int a = cell_remap[c0]; |
| 1397 | unsigned int b = cell_remap[c1]; |
| 1398 | unsigned int c = cell_remap[c2]; |
| 1399 | |
| 1400 | if (b < a && b < c) |
| 1401 | { |
| 1402 | unsigned int t = a; |
| 1403 | a = b, b = c, c = t; |
| 1404 | } |
| 1405 | else if (c < a && c < b) |
| 1406 | { |
| 1407 | unsigned int t = c; |
| 1408 | c = b, b = a, a = t; |
| 1409 | } |
| 1410 | |
| 1411 | destination[result * 3 + 0] = a; |
| 1412 | destination[result * 3 + 1] = b; |
| 1413 | destination[result * 3 + 2] = c; |
| 1414 | |
| 1415 | unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u); |
| 1416 | |
| 1417 | if (*entry == ~0u) |
| 1418 | *entry = unsigned(result++); |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | return result * 3; |
| 1423 | } |
| 1424 | |
| 1425 | static float interpolate(float y, float x0, float y0, float x1, float y1, float x2, float y2) |
| 1426 | { |
| 1427 | // three point interpolation from "revenge of interpolation search" paper |
| 1428 | float num = (y1 - y) * (x1 - x2) * (x1 - x0) * (y2 - y0); |
| 1429 | float den = (y2 - y) * (x1 - x2) * (y0 - y1) + (y0 - y) * (x1 - x0) * (y1 - y2); |
| 1430 | return x1 + num / den; |
| 1431 | } |
| 1432 | |
| 1433 | } // namespace meshopt |
| 1434 | |
| 1435 | #ifndef NDEBUG |
| 1436 | // Note: this is only exposed for debug visualization purposes; do *not* use these in debug builds |
| 1437 | MESHOPTIMIZER_API unsigned char* meshopt_simplifyDebugKind = 0; |
| 1438 | MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoop = 0; |
| 1439 | MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoopBack = 0; |
| 1440 | #endif |
| 1441 | |
| 1442 | size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error) |
| 1443 | { |
| 1444 | return meshopt_simplifyWithAttributes(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, target_index_count, target_error, options, out_result_error, 0, 0, 0); |
| 1445 | } |
| 1446 | |
| 1447 | size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error, const float* attributes, const float* attribute_weights, size_t attribute_count) |
| 1448 | { |
| 1449 | using namespace meshopt; |
| 1450 | |
| 1451 | assert(index_count % 3 == 0); |
| 1452 | assert(vertex_stride >= 12 && vertex_stride <= 256); |
| 1453 | assert(vertex_stride % sizeof(float) == 0); |
| 1454 | assert(target_index_count <= index_count); |
| 1455 | assert((options & ~(meshopt_SimplifyLockBorder)) == 0); |
| 1456 | assert(attribute_count <= ATTRIBUTES); |
| 1457 | |
| 1458 | meshopt_Allocator allocator; |
| 1459 | |
| 1460 | unsigned int* result = destination; |
| 1461 | |
| 1462 | // build adjacency information |
| 1463 | EdgeAdjacency adjacency = {}; |
| 1464 | prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator); |
| 1465 | updateEdgeAdjacency(adjacency, indices, index_count, vertex_count, NULL); |
| 1466 | |
| 1467 | // build position remap that maps each vertex to the one with identical position |
| 1468 | unsigned int* remap = allocator.allocate<unsigned int>(vertex_count); |
| 1469 | unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count); |
| 1470 | buildPositionRemap(remap, wedge, vertex_data, vertex_count, vertex_stride, allocator); |
| 1471 | |
| 1472 | // classify vertices; vertex kind determines collapse rules, see kCanCollapse |
| 1473 | unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count); |
| 1474 | unsigned int* loop = allocator.allocate<unsigned int>(vertex_count); |
| 1475 | unsigned int* loopback = allocator.allocate<unsigned int>(vertex_count); |
| 1476 | classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge, options); |
| 1477 | |
| 1478 | #if TRACE |
| 1479 | size_t unique_positions = 0; |
| 1480 | for (size_t i = 0; i < vertex_count; ++i) |
| 1481 | unique_positions += remap[i] == i; |
| 1482 | |
| 1483 | printf("position remap: %d vertices => %d positions\n" , int(vertex_count), int(unique_positions)); |
| 1484 | |
| 1485 | size_t kinds[Kind_Count] = {}; |
| 1486 | for (size_t i = 0; i < vertex_count; ++i) |
| 1487 | kinds[vertex_kind[i]] += remap[i] == i; |
| 1488 | |
| 1489 | printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n" , |
| 1490 | int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked])); |
| 1491 | #endif |
| 1492 | |
| 1493 | Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count); |
| 1494 | rescalePositions(vertex_positions, vertex_data, vertex_count, vertex_stride); |
| 1495 | |
| 1496 | #if ATTRIBUTES |
| 1497 | for (size_t i = 0; i < vertex_count; ++i) |
| 1498 | { |
| 1499 | memset(vertex_positions[i].a, 0, sizeof(vertex_positions[i].a)); |
| 1500 | |
| 1501 | for (size_t k = 0; k < attribute_count; ++k) |
| 1502 | { |
| 1503 | float a = attributes[i * attribute_count + k]; |
| 1504 | |
| 1505 | vertex_positions[i].a[k] = a * attribute_weights[k]; |
| 1506 | } |
| 1507 | } |
| 1508 | #endif |
| 1509 | |
| 1510 | Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count); |
| 1511 | memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric)); |
| 1512 | Quadric* vertex_no_attrib_quadrics = allocator.allocate<Quadric>(vertex_count); |
| 1513 | memset(vertex_no_attrib_quadrics, 0, vertex_count * sizeof(Quadric)); |
| 1514 | |
| 1515 | fillFaceQuadrics(vertex_quadrics, vertex_no_attrib_quadrics, indices, index_count, vertex_positions, remap); |
| 1516 | fillEdgeQuadrics(vertex_quadrics, vertex_no_attrib_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback); |
| 1517 | |
| 1518 | if (result != indices) |
| 1519 | memcpy(result, indices, index_count * sizeof(unsigned int)); |
| 1520 | |
| 1521 | #if TRACE |
| 1522 | size_t pass_count = 0; |
| 1523 | #endif |
| 1524 | |
| 1525 | Collapse* edge_collapses = allocator.allocate<Collapse>(index_count); |
| 1526 | unsigned int* collapse_order = allocator.allocate<unsigned int>(index_count); |
| 1527 | unsigned int* collapse_remap = allocator.allocate<unsigned int>(vertex_count); |
| 1528 | unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count); |
| 1529 | |
| 1530 | size_t result_count = index_count; |
| 1531 | float result_error = 0; |
| 1532 | |
| 1533 | // target_error input is linear; we need to adjust it to match quadricError units |
| 1534 | float error_limit = target_error * target_error; |
| 1535 | |
| 1536 | while (result_count > target_index_count) |
| 1537 | { |
| 1538 | // note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress |
| 1539 | updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap); |
| 1540 | |
| 1541 | size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop); |
| 1542 | |
| 1543 | // no edges can be collapsed any more due to topology restrictions |
| 1544 | if (edge_collapse_count == 0) |
| 1545 | break; |
| 1546 | |
| 1547 | rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, vertex_no_attrib_quadrics, remap); |
| 1548 | |
| 1549 | #if TRACE > 1 |
| 1550 | dumpEdgeCollapses(edge_collapses, edge_collapse_count, vertex_kind); |
| 1551 | #endif |
| 1552 | |
| 1553 | sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count); |
| 1554 | |
| 1555 | size_t triangle_collapse_goal = (result_count - target_index_count) / 3; |
| 1556 | |
| 1557 | for (size_t i = 0; i < vertex_count; ++i) |
| 1558 | collapse_remap[i] = unsigned(i); |
| 1559 | |
| 1560 | memset(collapse_locked, 0, vertex_count); |
| 1561 | |
| 1562 | #if TRACE |
| 1563 | printf("pass %d: " , int(pass_count++)); |
| 1564 | #endif |
| 1565 | |
| 1566 | size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, vertex_no_attrib_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error); |
| 1567 | |
| 1568 | // no edges can be collapsed any more due to hitting the error limit or triangle collapse limit |
| 1569 | if (collapses == 0) |
| 1570 | break; |
| 1571 | |
| 1572 | remapEdgeLoops(loop, vertex_count, collapse_remap); |
| 1573 | remapEdgeLoops(loopback, vertex_count, collapse_remap); |
| 1574 | |
| 1575 | size_t new_count = remapIndexBuffer(result, result_count, collapse_remap); |
| 1576 | assert(new_count < result_count); |
| 1577 | |
| 1578 | result_count = new_count; |
| 1579 | } |
| 1580 | |
| 1581 | #if TRACE |
| 1582 | printf("result: %d triangles, error: %e; total %d passes\n" , int(result_count), sqrtf(result_error), int(pass_count)); |
| 1583 | #endif |
| 1584 | |
| 1585 | #if TRACE > 1 |
| 1586 | dumpLockedCollapses(result, result_count, vertex_kind); |
| 1587 | #endif |
| 1588 | |
| 1589 | #ifndef NDEBUG |
| 1590 | if (meshopt_simplifyDebugKind) |
| 1591 | memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count); |
| 1592 | |
| 1593 | if (meshopt_simplifyDebugLoop) |
| 1594 | memcpy(meshopt_simplifyDebugLoop, loop, vertex_count * sizeof(unsigned int)); |
| 1595 | |
| 1596 | if (meshopt_simplifyDebugLoopBack) |
| 1597 | memcpy(meshopt_simplifyDebugLoopBack, loopback, vertex_count * sizeof(unsigned int)); |
| 1598 | #endif |
| 1599 | |
| 1600 | // result_error is quadratic; we need to remap it back to linear |
| 1601 | if (out_result_error) |
| 1602 | { |
| 1603 | *out_result_error = sqrtf(result_error); |
| 1604 | } |
| 1605 | |
| 1606 | return result_count; |
| 1607 | } |
| 1608 | |
| 1609 | size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error) |
| 1610 | { |
| 1611 | using namespace meshopt; |
| 1612 | |
| 1613 | assert(index_count % 3 == 0); |
| 1614 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 1615 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 1616 | assert(target_index_count <= index_count); |
| 1617 | |
| 1618 | // we expect to get ~2 triangles/vertex in the output |
| 1619 | size_t target_cell_count = target_index_count / 6; |
| 1620 | |
| 1621 | meshopt_Allocator allocator; |
| 1622 | |
| 1623 | Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count); |
| 1624 | rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); |
| 1625 | |
| 1626 | // find the optimal grid size using guided binary search |
| 1627 | #if TRACE |
| 1628 | printf("source: %d vertices, %d triangles\n" , int(vertex_count), int(index_count / 3)); |
| 1629 | printf("target: %d cells, %d triangles\n" , int(target_cell_count), int(target_index_count / 3)); |
| 1630 | #endif |
| 1631 | |
| 1632 | unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count); |
| 1633 | |
| 1634 | const int kInterpolationPasses = 5; |
| 1635 | |
| 1636 | // invariant: # of triangles in min_grid <= target_count |
| 1637 | int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : target_error)); |
| 1638 | int max_grid = 1025; |
| 1639 | size_t min_triangles = 0; |
| 1640 | size_t max_triangles = index_count / 3; |
| 1641 | |
| 1642 | // when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid |
| 1643 | if (min_grid > 1) |
| 1644 | { |
| 1645 | computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid); |
| 1646 | min_triangles = countTriangles(vertex_ids, indices, index_count); |
| 1647 | } |
| 1648 | |
| 1649 | // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... |
| 1650 | int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f); |
| 1651 | |
| 1652 | for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass) |
| 1653 | { |
| 1654 | if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1) |
| 1655 | break; |
| 1656 | |
| 1657 | // we clamp the prediction of the grid size to make sure that the search converges |
| 1658 | int grid_size = next_grid_size; |
| 1659 | grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size; |
| 1660 | |
| 1661 | computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size); |
| 1662 | size_t triangles = countTriangles(vertex_ids, indices, index_count); |
| 1663 | |
| 1664 | #if TRACE |
| 1665 | printf("pass %d (%s): grid size %d, triangles %d, %s\n" , |
| 1666 | pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary" , |
| 1667 | grid_size, int(triangles), |
| 1668 | (triangles <= target_index_count / 3) ? "under" : "over" ); |
| 1669 | #endif |
| 1670 | |
| 1671 | float tip = interpolate(float(target_index_count / 3), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles)); |
| 1672 | |
| 1673 | if (triangles <= target_index_count / 3) |
| 1674 | { |
| 1675 | min_grid = grid_size; |
| 1676 | min_triangles = triangles; |
| 1677 | } |
| 1678 | else |
| 1679 | { |
| 1680 | max_grid = grid_size; |
| 1681 | max_triangles = triangles; |
| 1682 | } |
| 1683 | |
| 1684 | // we start by using interpolation search - it usually converges faster |
| 1685 | // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) |
| 1686 | next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2; |
| 1687 | } |
| 1688 | |
| 1689 | if (min_triangles == 0) |
| 1690 | { |
| 1691 | if (out_result_error) |
| 1692 | *out_result_error = 1.f; |
| 1693 | |
| 1694 | return 0; |
| 1695 | } |
| 1696 | |
| 1697 | // build vertex->cell association by mapping all vertices with the same quantized position to the same cell |
| 1698 | size_t table_size = hashBuckets2(vertex_count); |
| 1699 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 1700 | |
| 1701 | unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count); |
| 1702 | |
| 1703 | computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid); |
| 1704 | size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count); |
| 1705 | |
| 1706 | // build a quadric for each target cell |
| 1707 | Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count); |
| 1708 | memset(cell_quadrics, 0, cell_count * sizeof(Quadric)); |
| 1709 | |
| 1710 | fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells); |
| 1711 | |
| 1712 | // for each target cell, find the vertex with the minimal error |
| 1713 | unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count); |
| 1714 | float* cell_errors = allocator.allocate<float>(cell_count); |
| 1715 | |
| 1716 | fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count); |
| 1717 | |
| 1718 | // compute error |
| 1719 | float result_error = 0.f; |
| 1720 | |
| 1721 | for (size_t i = 0; i < cell_count; ++i) |
| 1722 | result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error; |
| 1723 | |
| 1724 | // collapse triangles! |
| 1725 | // note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :( |
| 1726 | size_t tritable_size = hashBuckets2(min_triangles); |
| 1727 | unsigned int* tritable = allocator.allocate<unsigned int>(tritable_size); |
| 1728 | |
| 1729 | size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap); |
| 1730 | |
| 1731 | #if TRACE |
| 1732 | printf("result: %d cells, %d triangles (%d unfiltered), error %e\n" , int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error)); |
| 1733 | #endif |
| 1734 | |
| 1735 | if (out_result_error) |
| 1736 | *out_result_error = sqrtf(result_error); |
| 1737 | |
| 1738 | return write; |
| 1739 | } |
| 1740 | |
| 1741 | size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count) |
| 1742 | { |
| 1743 | using namespace meshopt; |
| 1744 | |
| 1745 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 1746 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 1747 | assert(target_vertex_count <= vertex_count); |
| 1748 | |
| 1749 | size_t target_cell_count = target_vertex_count; |
| 1750 | |
| 1751 | if (target_cell_count == 0) |
| 1752 | return 0; |
| 1753 | |
| 1754 | meshopt_Allocator allocator; |
| 1755 | |
| 1756 | Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count); |
| 1757 | rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); |
| 1758 | |
| 1759 | // find the optimal grid size using guided binary search |
| 1760 | #if TRACE |
| 1761 | printf("source: %d vertices\n" , int(vertex_count)); |
| 1762 | printf("target: %d cells\n" , int(target_cell_count)); |
| 1763 | #endif |
| 1764 | |
| 1765 | unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count); |
| 1766 | |
| 1767 | size_t table_size = hashBuckets2(vertex_count); |
| 1768 | unsigned int* table = allocator.allocate<unsigned int>(table_size); |
| 1769 | |
| 1770 | const int kInterpolationPasses = 5; |
| 1771 | |
| 1772 | // invariant: # of vertices in min_grid <= target_count |
| 1773 | int min_grid = 0; |
| 1774 | int max_grid = 1025; |
| 1775 | size_t min_vertices = 0; |
| 1776 | size_t max_vertices = vertex_count; |
| 1777 | |
| 1778 | // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... |
| 1779 | int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f); |
| 1780 | |
| 1781 | for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass) |
| 1782 | { |
| 1783 | assert(min_vertices < target_vertex_count); |
| 1784 | assert(max_grid - min_grid > 1); |
| 1785 | |
| 1786 | // we clamp the prediction of the grid size to make sure that the search converges |
| 1787 | int grid_size = next_grid_size; |
| 1788 | grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size; |
| 1789 | |
| 1790 | computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size); |
| 1791 | size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count); |
| 1792 | |
| 1793 | #if TRACE |
| 1794 | printf("pass %d (%s): grid size %d, vertices %d, %s\n" , |
| 1795 | pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary" , |
| 1796 | grid_size, int(vertices), |
| 1797 | (vertices <= target_vertex_count) ? "under" : "over" ); |
| 1798 | #endif |
| 1799 | |
| 1800 | float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices)); |
| 1801 | |
| 1802 | if (vertices <= target_vertex_count) |
| 1803 | { |
| 1804 | min_grid = grid_size; |
| 1805 | min_vertices = vertices; |
| 1806 | } |
| 1807 | else |
| 1808 | { |
| 1809 | max_grid = grid_size; |
| 1810 | max_vertices = vertices; |
| 1811 | } |
| 1812 | |
| 1813 | if (vertices == target_vertex_count || max_grid - min_grid <= 1) |
| 1814 | break; |
| 1815 | |
| 1816 | // we start by using interpolation search - it usually converges faster |
| 1817 | // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) |
| 1818 | next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2; |
| 1819 | } |
| 1820 | |
| 1821 | if (min_vertices == 0) |
| 1822 | return 0; |
| 1823 | |
| 1824 | // build vertex->cell association by mapping all vertices with the same quantized position to the same cell |
| 1825 | unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count); |
| 1826 | |
| 1827 | computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid); |
| 1828 | size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count); |
| 1829 | |
| 1830 | // build a quadric for each target cell |
| 1831 | Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count); |
| 1832 | memset(cell_quadrics, 0, cell_count * sizeof(Quadric)); |
| 1833 | |
| 1834 | fillCellQuadrics(cell_quadrics, vertex_positions, vertex_count, vertex_cells); |
| 1835 | |
| 1836 | // for each target cell, find the vertex with the minimal error |
| 1837 | unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count); |
| 1838 | float* cell_errors = allocator.allocate<float>(cell_count); |
| 1839 | |
| 1840 | fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count); |
| 1841 | |
| 1842 | // copy results to the output |
| 1843 | assert(cell_count <= target_vertex_count); |
| 1844 | memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count); |
| 1845 | |
| 1846 | #if TRACE |
| 1847 | printf("result: %d cells\n" , int(cell_count)); |
| 1848 | #endif |
| 1849 | |
| 1850 | return cell_count; |
| 1851 | } |
| 1852 | |
| 1853 | float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
| 1854 | { |
| 1855 | using namespace meshopt; |
| 1856 | |
| 1857 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 1858 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 1859 | |
| 1860 | float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride); |
| 1861 | |
| 1862 | return extent; |
| 1863 | } |
| 1864 | |