| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <float.h> |
| 6 | #include <string.h> |
| 7 | |
| 8 | // This work is based on: |
| 9 | // Fabian Giesen. Decoding Morton codes. 2009 |
| 10 | namespace meshopt |
| 11 | { |
| 12 | |
| 13 | // "Insert" two 0 bits after each of the 10 low bits of x |
| 14 | inline unsigned int part1By2(unsigned int x) |
| 15 | { |
| 16 | x &= 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210 |
| 17 | x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210 |
| 18 | x = (x ^ (x << 8)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210 |
| 19 | x = (x ^ (x << 4)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10 |
| 20 | x = (x ^ (x << 2)) & 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0 |
| 21 | return x; |
| 22 | } |
| 23 | |
| 24 | static void computeOrder(unsigned int* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride) |
| 25 | { |
| 26 | size_t vertex_stride_float = vertex_positions_stride / sizeof(float); |
| 27 | |
| 28 | float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; |
| 29 | float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; |
| 30 | |
| 31 | for (size_t i = 0; i < vertex_count; ++i) |
| 32 | { |
| 33 | const float* v = vertex_positions_data + i * vertex_stride_float; |
| 34 | |
| 35 | for (int j = 0; j < 3; ++j) |
| 36 | { |
| 37 | float vj = v[j]; |
| 38 | |
| 39 | minv[j] = minv[j] > vj ? vj : minv[j]; |
| 40 | maxv[j] = maxv[j] < vj ? vj : maxv[j]; |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | float extent = 0.f; |
| 45 | |
| 46 | extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); |
| 47 | extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); |
| 48 | extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); |
| 49 | |
| 50 | float scale = extent == 0 ? 0.f : 1.f / extent; |
| 51 | |
| 52 | // generate Morton order based on the position inside a unit cube |
| 53 | for (size_t i = 0; i < vertex_count; ++i) |
| 54 | { |
| 55 | const float* v = vertex_positions_data + i * vertex_stride_float; |
| 56 | |
| 57 | int x = int((v[0] - minv[0]) * scale * 1023.f + 0.5f); |
| 58 | int y = int((v[1] - minv[1]) * scale * 1023.f + 0.5f); |
| 59 | int z = int((v[2] - minv[2]) * scale * 1023.f + 0.5f); |
| 60 | |
| 61 | result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2); |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | static void computeHistogram(unsigned int (&hist)[1024][3], const unsigned int* data, size_t count) |
| 66 | { |
| 67 | memset(hist, 0, sizeof(hist)); |
| 68 | |
| 69 | // compute 3 10-bit histograms in parallel |
| 70 | for (size_t i = 0; i < count; ++i) |
| 71 | { |
| 72 | unsigned int id = data[i]; |
| 73 | |
| 74 | hist[(id >> 0) & 1023][0]++; |
| 75 | hist[(id >> 10) & 1023][1]++; |
| 76 | hist[(id >> 20) & 1023][2]++; |
| 77 | } |
| 78 | |
| 79 | unsigned int sumx = 0, sumy = 0, sumz = 0; |
| 80 | |
| 81 | // replace histogram data with prefix histogram sums in-place |
| 82 | for (int i = 0; i < 1024; ++i) |
| 83 | { |
| 84 | unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2]; |
| 85 | |
| 86 | hist[i][0] = sumx; |
| 87 | hist[i][1] = sumy; |
| 88 | hist[i][2] = sumz; |
| 89 | |
| 90 | sumx += hx; |
| 91 | sumy += hy; |
| 92 | sumz += hz; |
| 93 | } |
| 94 | |
| 95 | assert(sumx == count && sumy == count && sumz == count); |
| 96 | } |
| 97 | |
| 98 | static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned int* keys, size_t count, unsigned int (&hist)[1024][3], int pass) |
| 99 | { |
| 100 | int bitoff = pass * 10; |
| 101 | |
| 102 | for (size_t i = 0; i < count; ++i) |
| 103 | { |
| 104 | unsigned int id = (keys[source[i]] >> bitoff) & 1023; |
| 105 | |
| 106 | destination[hist[id][pass]++] = source[i]; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | } // namespace meshopt |
| 111 | |
| 112 | void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
| 113 | { |
| 114 | using namespace meshopt; |
| 115 | |
| 116 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 117 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 118 | |
| 119 | meshopt_Allocator allocator; |
| 120 | |
| 121 | unsigned int* keys = allocator.allocate<unsigned int>(vertex_count); |
| 122 | computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride); |
| 123 | |
| 124 | unsigned int hist[1024][3]; |
| 125 | computeHistogram(hist, keys, vertex_count); |
| 126 | |
| 127 | unsigned int* scratch = allocator.allocate<unsigned int>(vertex_count); |
| 128 | |
| 129 | for (size_t i = 0; i < vertex_count; ++i) |
| 130 | destination[i] = unsigned(i); |
| 131 | |
| 132 | // 3-pass radix sort computes the resulting order into scratch |
| 133 | radixPass(scratch, destination, keys, vertex_count, hist, 0); |
| 134 | radixPass(destination, scratch, keys, vertex_count, hist, 1); |
| 135 | radixPass(scratch, destination, keys, vertex_count, hist, 2); |
| 136 | |
| 137 | // since our remap table is mapping old=>new, we need to reverse it |
| 138 | for (size_t i = 0; i < vertex_count; ++i) |
| 139 | destination[scratch[i]] = unsigned(i); |
| 140 | } |
| 141 | |
| 142 | void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
| 143 | { |
| 144 | using namespace meshopt; |
| 145 | |
| 146 | assert(index_count % 3 == 0); |
| 147 | assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); |
| 148 | assert(vertex_positions_stride % sizeof(float) == 0); |
| 149 | |
| 150 | (void)vertex_count; |
| 151 | |
| 152 | size_t face_count = index_count / 3; |
| 153 | size_t vertex_stride_float = vertex_positions_stride / sizeof(float); |
| 154 | |
| 155 | meshopt_Allocator allocator; |
| 156 | |
| 157 | float* centroids = allocator.allocate<float>(face_count * 3); |
| 158 | |
| 159 | for (size_t i = 0; i < face_count; ++i) |
| 160 | { |
| 161 | unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; |
| 162 | assert(a < vertex_count && b < vertex_count && c < vertex_count); |
| 163 | |
| 164 | const float* va = vertex_positions + a * vertex_stride_float; |
| 165 | const float* vb = vertex_positions + b * vertex_stride_float; |
| 166 | const float* vc = vertex_positions + c * vertex_stride_float; |
| 167 | |
| 168 | centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f; |
| 169 | centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f; |
| 170 | centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f; |
| 171 | } |
| 172 | |
| 173 | unsigned int* remap = allocator.allocate<unsigned int>(face_count); |
| 174 | |
| 175 | meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3); |
| 176 | |
| 177 | // support in-order remap |
| 178 | if (destination == indices) |
| 179 | { |
| 180 | unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count); |
| 181 | memcpy(indices_copy, indices, index_count * sizeof(unsigned int)); |
| 182 | indices = indices_copy; |
| 183 | } |
| 184 | |
| 185 | for (size_t i = 0; i < face_count; ++i) |
| 186 | { |
| 187 | unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; |
| 188 | unsigned int r = remap[i]; |
| 189 | |
| 190 | destination[r * 3 + 0] = a; |
| 191 | destination[r * 3 + 1] = b; |
| 192 | destination[r * 3 + 2] = c; |
| 193 | } |
| 194 | } |
| 195 | |