| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <limits.h> |
| 6 | #include <string.h> |
| 7 | |
| 8 | // This work is based on: |
| 9 | // Francine Evans, Steven Skiena and Amitabh Varshney. Optimizing Triangle Strips for Fast Rendering. 1996 |
| 10 | namespace meshopt |
| 11 | { |
| 12 | |
| 13 | static unsigned int findStripFirst(const unsigned int buffer[][3], unsigned int buffer_size, const unsigned int* valence) |
| 14 | { |
| 15 | unsigned int index = 0; |
| 16 | unsigned int iv = ~0u; |
| 17 | |
| 18 | for (size_t i = 0; i < buffer_size; ++i) |
| 19 | { |
| 20 | unsigned int va = valence[buffer[i][0]], vb = valence[buffer[i][1]], vc = valence[buffer[i][2]]; |
| 21 | unsigned int v = (va < vb && va < vc) ? va : (vb < vc) ? vb : vc; |
| 22 | |
| 23 | if (v < iv) |
| 24 | { |
| 25 | index = unsigned(i); |
| 26 | iv = v; |
| 27 | } |
| 28 | } |
| 29 | |
| 30 | return index; |
| 31 | } |
| 32 | |
| 33 | static int findStripNext(const unsigned int buffer[][3], unsigned int buffer_size, unsigned int e0, unsigned int e1) |
| 34 | { |
| 35 | for (size_t i = 0; i < buffer_size; ++i) |
| 36 | { |
| 37 | unsigned int a = buffer[i][0], b = buffer[i][1], c = buffer[i][2]; |
| 38 | |
| 39 | if (e0 == a && e1 == b) |
| 40 | return (int(i) << 2) | 2; |
| 41 | else if (e0 == b && e1 == c) |
| 42 | return (int(i) << 2) | 0; |
| 43 | else if (e0 == c && e1 == a) |
| 44 | return (int(i) << 2) | 1; |
| 45 | } |
| 46 | |
| 47 | return -1; |
| 48 | } |
| 49 | |
| 50 | } // namespace meshopt |
| 51 | |
| 52 | size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index) |
| 53 | { |
| 54 | assert(destination != indices); |
| 55 | assert(index_count % 3 == 0); |
| 56 | |
| 57 | using namespace meshopt; |
| 58 | |
| 59 | meshopt_Allocator allocator; |
| 60 | |
| 61 | const size_t buffer_capacity = 8; |
| 62 | |
| 63 | unsigned int buffer[buffer_capacity][3] = {}; |
| 64 | unsigned int buffer_size = 0; |
| 65 | |
| 66 | size_t index_offset = 0; |
| 67 | |
| 68 | unsigned int strip[2] = {}; |
| 69 | unsigned int parity = 0; |
| 70 | |
| 71 | size_t strip_size = 0; |
| 72 | |
| 73 | // compute vertex valence; this is used to prioritize starting triangle for strips |
| 74 | unsigned int* valence = allocator.allocate<unsigned int>(vertex_count); |
| 75 | memset(valence, 0, vertex_count * sizeof(unsigned int)); |
| 76 | |
| 77 | for (size_t i = 0; i < index_count; ++i) |
| 78 | { |
| 79 | unsigned int index = indices[i]; |
| 80 | assert(index < vertex_count); |
| 81 | |
| 82 | valence[index]++; |
| 83 | } |
| 84 | |
| 85 | int next = -1; |
| 86 | |
| 87 | while (buffer_size > 0 || index_offset < index_count) |
| 88 | { |
| 89 | assert(next < 0 || (size_t(next >> 2) < buffer_size && (next & 3) < 3)); |
| 90 | |
| 91 | // fill triangle buffer |
| 92 | while (buffer_size < buffer_capacity && index_offset < index_count) |
| 93 | { |
| 94 | buffer[buffer_size][0] = indices[index_offset + 0]; |
| 95 | buffer[buffer_size][1] = indices[index_offset + 1]; |
| 96 | buffer[buffer_size][2] = indices[index_offset + 2]; |
| 97 | |
| 98 | buffer_size++; |
| 99 | index_offset += 3; |
| 100 | } |
| 101 | |
| 102 | assert(buffer_size > 0); |
| 103 | |
| 104 | if (next >= 0) |
| 105 | { |
| 106 | unsigned int i = next >> 2; |
| 107 | unsigned int a = buffer[i][0], b = buffer[i][1], c = buffer[i][2]; |
| 108 | unsigned int v = buffer[i][next & 3]; |
| 109 | |
| 110 | // ordered removal from the buffer |
| 111 | memmove(buffer[i], buffer[i + 1], (buffer_size - i - 1) * sizeof(buffer[0])); |
| 112 | buffer_size--; |
| 113 | |
| 114 | // update vertex valences for strip start heuristic |
| 115 | valence[a]--; |
| 116 | valence[b]--; |
| 117 | valence[c]--; |
| 118 | |
| 119 | // find next triangle (note that edge order flips on every iteration) |
| 120 | // in some cases we need to perform a swap to pick a different outgoing triangle edge |
| 121 | // for [a b c], the default strip edge is [b c], but we might want to use [a c] |
| 122 | int cont = findStripNext(buffer, buffer_size, parity ? strip[1] : v, parity ? v : strip[1]); |
| 123 | int swap = cont < 0 ? findStripNext(buffer, buffer_size, parity ? v : strip[0], parity ? strip[0] : v) : -1; |
| 124 | |
| 125 | if (cont < 0 && swap >= 0) |
| 126 | { |
| 127 | // [a b c] => [a b a c] |
| 128 | destination[strip_size++] = strip[0]; |
| 129 | destination[strip_size++] = v; |
| 130 | |
| 131 | // next strip has same winding |
| 132 | // ? a b => b a v |
| 133 | strip[1] = v; |
| 134 | |
| 135 | next = swap; |
| 136 | } |
| 137 | else |
| 138 | { |
| 139 | // emit the next vertex in the strip |
| 140 | destination[strip_size++] = v; |
| 141 | |
| 142 | // next strip has flipped winding |
| 143 | strip[0] = strip[1]; |
| 144 | strip[1] = v; |
| 145 | parity ^= 1; |
| 146 | |
| 147 | next = cont; |
| 148 | } |
| 149 | } |
| 150 | else |
| 151 | { |
| 152 | // if we didn't find anything, we need to find the next new triangle |
| 153 | // we use a heuristic to maximize the strip length |
| 154 | unsigned int i = findStripFirst(buffer, buffer_size, &valence[0]); |
| 155 | unsigned int a = buffer[i][0], b = buffer[i][1], c = buffer[i][2]; |
| 156 | |
| 157 | // ordered removal from the buffer |
| 158 | memmove(buffer[i], buffer[i + 1], (buffer_size - i - 1) * sizeof(buffer[0])); |
| 159 | buffer_size--; |
| 160 | |
| 161 | // update vertex valences for strip start heuristic |
| 162 | valence[a]--; |
| 163 | valence[b]--; |
| 164 | valence[c]--; |
| 165 | |
| 166 | // we need to pre-rotate the triangle so that we will find a match in the existing buffer on the next iteration |
| 167 | int ea = findStripNext(buffer, buffer_size, c, b); |
| 168 | int eb = findStripNext(buffer, buffer_size, a, c); |
| 169 | int ec = findStripNext(buffer, buffer_size, b, a); |
| 170 | |
| 171 | // in some cases we can have several matching edges; since we can pick any edge, we pick the one with the smallest |
| 172 | // triangle index in the buffer. this reduces the effect of stripification on ACMR and additionally - for unclear |
| 173 | // reasons - slightly improves the stripification efficiency |
| 174 | int mine = INT_MAX; |
| 175 | mine = (ea >= 0 && mine > ea) ? ea : mine; |
| 176 | mine = (eb >= 0 && mine > eb) ? eb : mine; |
| 177 | mine = (ec >= 0 && mine > ec) ? ec : mine; |
| 178 | |
| 179 | if (ea == mine) |
| 180 | { |
| 181 | // keep abc |
| 182 | next = ea; |
| 183 | } |
| 184 | else if (eb == mine) |
| 185 | { |
| 186 | // abc -> bca |
| 187 | unsigned int t = a; |
| 188 | a = b, b = c, c = t; |
| 189 | |
| 190 | next = eb; |
| 191 | } |
| 192 | else if (ec == mine) |
| 193 | { |
| 194 | // abc -> cab |
| 195 | unsigned int t = c; |
| 196 | c = b, b = a, a = t; |
| 197 | |
| 198 | next = ec; |
| 199 | } |
| 200 | |
| 201 | if (restart_index) |
| 202 | { |
| 203 | if (strip_size) |
| 204 | destination[strip_size++] = restart_index; |
| 205 | |
| 206 | destination[strip_size++] = a; |
| 207 | destination[strip_size++] = b; |
| 208 | destination[strip_size++] = c; |
| 209 | |
| 210 | // new strip always starts with the same edge winding |
| 211 | strip[0] = b; |
| 212 | strip[1] = c; |
| 213 | parity = 1; |
| 214 | } |
| 215 | else |
| 216 | { |
| 217 | if (strip_size) |
| 218 | { |
| 219 | // connect last strip using degenerate triangles |
| 220 | destination[strip_size++] = strip[1]; |
| 221 | destination[strip_size++] = a; |
| 222 | } |
| 223 | |
| 224 | // note that we may need to flip the emitted triangle based on parity |
| 225 | // we always end up with outgoing edge "cb" in the end |
| 226 | unsigned int e0 = parity ? c : b; |
| 227 | unsigned int e1 = parity ? b : c; |
| 228 | |
| 229 | destination[strip_size++] = a; |
| 230 | destination[strip_size++] = e0; |
| 231 | destination[strip_size++] = e1; |
| 232 | |
| 233 | strip[0] = e0; |
| 234 | strip[1] = e1; |
| 235 | parity ^= 1; |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | return strip_size; |
| 241 | } |
| 242 | |
| 243 | size_t meshopt_stripifyBound(size_t index_count) |
| 244 | { |
| 245 | assert(index_count % 3 == 0); |
| 246 | |
| 247 | // worst case without restarts is 2 degenerate indices and 3 indices per triangle |
| 248 | // worst case with restarts is 1 restart index and 3 indices per triangle |
| 249 | return (index_count / 3) * 5; |
| 250 | } |
| 251 | |
| 252 | size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index) |
| 253 | { |
| 254 | assert(destination != indices); |
| 255 | |
| 256 | size_t offset = 0; |
| 257 | size_t start = 0; |
| 258 | |
| 259 | for (size_t i = 0; i < index_count; ++i) |
| 260 | { |
| 261 | if (restart_index && indices[i] == restart_index) |
| 262 | { |
| 263 | start = i + 1; |
| 264 | } |
| 265 | else if (i - start >= 2) |
| 266 | { |
| 267 | unsigned int a = indices[i - 2], b = indices[i - 1], c = indices[i]; |
| 268 | |
| 269 | // flip winding for odd triangles |
| 270 | if ((i - start) & 1) |
| 271 | { |
| 272 | unsigned int t = a; |
| 273 | a = b, b = t; |
| 274 | } |
| 275 | |
| 276 | // although we use restart indices, strip swaps still produce degenerate triangles, so skip them |
| 277 | if (a != b && a != c && b != c) |
| 278 | { |
| 279 | destination[offset + 0] = a; |
| 280 | destination[offset + 1] = b; |
| 281 | destination[offset + 2] = c; |
| 282 | offset += 3; |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | return offset; |
| 288 | } |
| 289 | |
| 290 | size_t meshopt_unstripifyBound(size_t index_count) |
| 291 | { |
| 292 | assert(index_count == 0 || index_count >= 3); |
| 293 | |
| 294 | return (index_count == 0) ? 0 : (index_count - 2) * 3; |
| 295 | } |
| 296 | |