| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <string.h> |
| 6 | |
| 7 | // The block below auto-detects SIMD ISA that can be used on the target platform |
| 8 | #ifndef MESHOPTIMIZER_NO_SIMD |
| 9 | |
| 10 | // The SIMD implementation requires SSSE3, which can be enabled unconditionally through compiler settings |
| 11 | #if defined(__AVX__) || defined(__SSSE3__) |
| 12 | #define SIMD_SSE |
| 13 | #endif |
| 14 | |
| 15 | // An experimental implementation using AVX512 instructions; it's only enabled when AVX512 is enabled through compiler settings |
| 16 | #if defined(__AVX512VBMI2__) && defined(__AVX512VBMI__) && defined(__AVX512VL__) && defined(__POPCNT__) |
| 17 | #undef SIMD_SSE |
| 18 | #define SIMD_AVX |
| 19 | #endif |
| 20 | |
| 21 | // MSVC supports compiling SSSE3 code regardless of compile options; we use a cpuid-based scalar fallback |
| 22 | #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64)) |
| 23 | #define SIMD_SSE |
| 24 | #define SIMD_FALLBACK |
| 25 | #endif |
| 26 | |
| 27 | // GCC 4.9+ and clang 3.8+ support targeting SIMD ISA from individual functions; we use a cpuid-based scalar fallback |
| 28 | #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && ((defined(__clang__) && __clang_major__ * 100 + __clang_minor__ >= 308) || (defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ >= 409)) && (defined(__i386__) || defined(__x86_64__)) |
| 29 | #define SIMD_SSE |
| 30 | #define SIMD_FALLBACK |
| 31 | #define SIMD_TARGET __attribute__((target("ssse3"))) |
| 32 | #endif |
| 33 | |
| 34 | // GCC/clang define these when NEON support is available |
| 35 | #if defined(__ARM_NEON__) || defined(__ARM_NEON) |
| 36 | #define SIMD_NEON |
| 37 | #endif |
| 38 | |
| 39 | // On MSVC, we assume that ARM builds always target NEON-capable devices |
| 40 | #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64)) |
| 41 | #define SIMD_NEON |
| 42 | #endif |
| 43 | |
| 44 | // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD |
| 45 | #if defined(__wasm_simd128__) |
| 46 | #define SIMD_WASM |
| 47 | #endif |
| 48 | |
| 49 | #ifndef SIMD_TARGET |
| 50 | #define SIMD_TARGET |
| 51 | #endif |
| 52 | |
| 53 | // When targeting AArch64/x64, optimize for latency to allow decoding of individual 16-byte groups to overlap |
| 54 | // We don't do this for 32-bit systems because we need 64-bit math for this and this will hurt in-order CPUs |
| 55 | #if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__) || defined(_M_ARM64) |
| 56 | #define SIMD_LATENCYOPT |
| 57 | #endif |
| 58 | |
| 59 | #endif // !MESHOPTIMIZER_NO_SIMD |
| 60 | |
| 61 | #ifdef SIMD_SSE |
| 62 | #include <tmmintrin.h> |
| 63 | #endif |
| 64 | |
| 65 | #if defined(SIMD_SSE) && defined(SIMD_FALLBACK) |
| 66 | #ifdef _MSC_VER |
| 67 | #include <intrin.h> // __cpuid |
| 68 | #else |
| 69 | #include <cpuid.h> // __cpuid |
| 70 | #endif |
| 71 | #endif |
| 72 | |
| 73 | #ifdef SIMD_AVX |
| 74 | #include <immintrin.h> |
| 75 | #endif |
| 76 | |
| 77 | #ifdef SIMD_NEON |
| 78 | #if defined(_MSC_VER) && defined(_M_ARM64) |
| 79 | #include <arm64_neon.h> |
| 80 | #else |
| 81 | #include <arm_neon.h> |
| 82 | #endif |
| 83 | #endif |
| 84 | |
| 85 | #ifdef SIMD_WASM |
| 86 | #undef __DEPRECATED |
| 87 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 88 | #include <wasm_simd128.h> |
| 89 | #endif |
| 90 | |
| 91 | #ifdef SIMD_WASM |
| 92 | #define wasmx_splat_v32x4(v, i) wasm_v32x4_shuffle(v, v, i, i, i, i) |
| 93 | #define wasmx_unpacklo_v8x16(a, b) wasm_v8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23) |
| 94 | #define wasmx_unpackhi_v8x16(a, b) wasm_v8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31) |
| 95 | #define wasmx_unpacklo_v16x8(a, b) wasm_v16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11) |
| 96 | #define wasmx_unpackhi_v16x8(a, b) wasm_v16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15) |
| 97 | #define wasmx_unpacklo_v64x2(a, b) wasm_v64x2_shuffle(a, b, 0, 2) |
| 98 | #define wasmx_unpackhi_v64x2(a, b) wasm_v64x2_shuffle(a, b, 1, 3) |
| 99 | #endif |
| 100 | |
| 101 | namespace meshopt |
| 102 | { |
| 103 | |
| 104 | const unsigned char = 0xa0; |
| 105 | |
| 106 | static int gEncodeVertexVersion = 0; |
| 107 | |
| 108 | const size_t kVertexBlockSizeBytes = 8192; |
| 109 | const size_t kVertexBlockMaxSize = 256; |
| 110 | const size_t kByteGroupSize = 16; |
| 111 | const size_t kByteGroupDecodeLimit = 24; |
| 112 | const size_t kTailMaxSize = 32; |
| 113 | |
| 114 | static size_t getVertexBlockSize(size_t vertex_size) |
| 115 | { |
| 116 | // make sure the entire block fits into the scratch buffer |
| 117 | size_t result = kVertexBlockSizeBytes / vertex_size; |
| 118 | |
| 119 | // align to byte group size; we encode each byte as a byte group |
| 120 | // if vertex block is misaligned, it results in wasted bytes, so just truncate the block size |
| 121 | result &= ~(kByteGroupSize - 1); |
| 122 | |
| 123 | return (result < kVertexBlockMaxSize) ? result : kVertexBlockMaxSize; |
| 124 | } |
| 125 | |
| 126 | inline unsigned char zigzag8(unsigned char v) |
| 127 | { |
| 128 | return ((signed char)(v) >> 7) ^ (v << 1); |
| 129 | } |
| 130 | |
| 131 | inline unsigned char unzigzag8(unsigned char v) |
| 132 | { |
| 133 | return -(v & 1) ^ (v >> 1); |
| 134 | } |
| 135 | |
| 136 | static bool encodeBytesGroupZero(const unsigned char* buffer) |
| 137 | { |
| 138 | for (size_t i = 0; i < kByteGroupSize; ++i) |
| 139 | if (buffer[i]) |
| 140 | return false; |
| 141 | |
| 142 | return true; |
| 143 | } |
| 144 | |
| 145 | static size_t encodeBytesGroupMeasure(const unsigned char* buffer, int bits) |
| 146 | { |
| 147 | assert(bits >= 1 && bits <= 8); |
| 148 | |
| 149 | if (bits == 1) |
| 150 | return encodeBytesGroupZero(buffer) ? 0 : size_t(-1); |
| 151 | |
| 152 | if (bits == 8) |
| 153 | return kByteGroupSize; |
| 154 | |
| 155 | size_t result = kByteGroupSize * bits / 8; |
| 156 | |
| 157 | unsigned char sentinel = (1 << bits) - 1; |
| 158 | |
| 159 | for (size_t i = 0; i < kByteGroupSize; ++i) |
| 160 | result += buffer[i] >= sentinel; |
| 161 | |
| 162 | return result; |
| 163 | } |
| 164 | |
| 165 | static unsigned char* encodeBytesGroup(unsigned char* data, const unsigned char* buffer, int bits) |
| 166 | { |
| 167 | assert(bits >= 1 && bits <= 8); |
| 168 | |
| 169 | if (bits == 1) |
| 170 | return data; |
| 171 | |
| 172 | if (bits == 8) |
| 173 | { |
| 174 | memcpy(data, buffer, kByteGroupSize); |
| 175 | return data + kByteGroupSize; |
| 176 | } |
| 177 | |
| 178 | size_t byte_size = 8 / bits; |
| 179 | assert(kByteGroupSize % byte_size == 0); |
| 180 | |
| 181 | // fixed portion: bits bits for each value |
| 182 | // variable portion: full byte for each out-of-range value (using 1...1 as sentinel) |
| 183 | unsigned char sentinel = (1 << bits) - 1; |
| 184 | |
| 185 | for (size_t i = 0; i < kByteGroupSize; i += byte_size) |
| 186 | { |
| 187 | unsigned char byte = 0; |
| 188 | |
| 189 | for (size_t k = 0; k < byte_size; ++k) |
| 190 | { |
| 191 | unsigned char enc = (buffer[i + k] >= sentinel) ? sentinel : buffer[i + k]; |
| 192 | |
| 193 | byte <<= bits; |
| 194 | byte |= enc; |
| 195 | } |
| 196 | |
| 197 | *data++ = byte; |
| 198 | } |
| 199 | |
| 200 | for (size_t i = 0; i < kByteGroupSize; ++i) |
| 201 | { |
| 202 | if (buffer[i] >= sentinel) |
| 203 | { |
| 204 | *data++ = buffer[i]; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | return data; |
| 209 | } |
| 210 | |
| 211 | static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end, const unsigned char* buffer, size_t buffer_size) |
| 212 | { |
| 213 | assert(buffer_size % kByteGroupSize == 0); |
| 214 | |
| 215 | unsigned char* = data; |
| 216 | |
| 217 | // round number of groups to 4 to get number of header bytes |
| 218 | size_t = (buffer_size / kByteGroupSize + 3) / 4; |
| 219 | |
| 220 | if (size_t(data_end - data) < header_size) |
| 221 | return 0; |
| 222 | |
| 223 | data += header_size; |
| 224 | |
| 225 | memset(header, 0, header_size); |
| 226 | |
| 227 | for (size_t i = 0; i < buffer_size; i += kByteGroupSize) |
| 228 | { |
| 229 | if (size_t(data_end - data) < kByteGroupDecodeLimit) |
| 230 | return 0; |
| 231 | |
| 232 | int best_bits = 8; |
| 233 | size_t best_size = encodeBytesGroupMeasure(buffer + i, 8); |
| 234 | |
| 235 | for (int bits = 1; bits < 8; bits *= 2) |
| 236 | { |
| 237 | size_t size = encodeBytesGroupMeasure(buffer + i, bits); |
| 238 | |
| 239 | if (size < best_size) |
| 240 | { |
| 241 | best_bits = bits; |
| 242 | best_size = size; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | int bitslog2 = (best_bits == 1) ? 0 : (best_bits == 2) ? 1 : (best_bits == 4) ? 2 : 3; |
| 247 | assert((1 << bitslog2) == best_bits); |
| 248 | |
| 249 | size_t = i / kByteGroupSize; |
| 250 | |
| 251 | header[header_offset / 4] |= bitslog2 << ((header_offset % 4) * 2); |
| 252 | |
| 253 | unsigned char* next = encodeBytesGroup(data, buffer + i, best_bits); |
| 254 | |
| 255 | assert(data + best_size == next); |
| 256 | data = next; |
| 257 | } |
| 258 | |
| 259 | return data; |
| 260 | } |
| 261 | |
| 262 | static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data_end, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256]) |
| 263 | { |
| 264 | assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize); |
| 265 | |
| 266 | unsigned char buffer[kVertexBlockMaxSize]; |
| 267 | assert(sizeof(buffer) % kByteGroupSize == 0); |
| 268 | |
| 269 | // we sometimes encode elements we didn't fill when rounding to kByteGroupSize |
| 270 | memset(buffer, 0, sizeof(buffer)); |
| 271 | |
| 272 | for (size_t k = 0; k < vertex_size; ++k) |
| 273 | { |
| 274 | size_t vertex_offset = k; |
| 275 | |
| 276 | unsigned char p = last_vertex[k]; |
| 277 | |
| 278 | for (size_t i = 0; i < vertex_count; ++i) |
| 279 | { |
| 280 | buffer[i] = zigzag8(vertex_data[vertex_offset] - p); |
| 281 | |
| 282 | p = vertex_data[vertex_offset]; |
| 283 | |
| 284 | vertex_offset += vertex_size; |
| 285 | } |
| 286 | |
| 287 | data = encodeBytes(data, data_end, buffer, (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1)); |
| 288 | if (!data) |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size); |
| 293 | |
| 294 | return data; |
| 295 | } |
| 296 | |
| 297 | #if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX)) |
| 298 | static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bitslog2) |
| 299 | { |
| 300 | #define READ() byte = *data++ |
| 301 | #define NEXT(bits) enc = byte >> (8 - bits), byte <<= bits, encv = *data_var, *buffer++ = (enc == (1 << bits) - 1) ? encv : enc, data_var += (enc == (1 << bits) - 1) |
| 302 | |
| 303 | unsigned char byte, enc, encv; |
| 304 | const unsigned char* data_var; |
| 305 | |
| 306 | switch (bitslog2) |
| 307 | { |
| 308 | case 0: |
| 309 | memset(buffer, 0, kByteGroupSize); |
| 310 | return data; |
| 311 | case 1: |
| 312 | data_var = data + 4; |
| 313 | |
| 314 | // 4 groups with 4 2-bit values in each byte |
| 315 | READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); |
| 316 | READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); |
| 317 | READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); |
| 318 | READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); |
| 319 | |
| 320 | return data_var; |
| 321 | case 2: |
| 322 | data_var = data + 8; |
| 323 | |
| 324 | // 8 groups with 2 4-bit values in each byte |
| 325 | READ(), NEXT(4), NEXT(4); |
| 326 | READ(), NEXT(4), NEXT(4); |
| 327 | READ(), NEXT(4), NEXT(4); |
| 328 | READ(), NEXT(4), NEXT(4); |
| 329 | READ(), NEXT(4), NEXT(4); |
| 330 | READ(), NEXT(4), NEXT(4); |
| 331 | READ(), NEXT(4), NEXT(4); |
| 332 | READ(), NEXT(4), NEXT(4); |
| 333 | |
| 334 | return data_var; |
| 335 | case 3: |
| 336 | memcpy(buffer, data, kByteGroupSize); |
| 337 | return data + kByteGroupSize; |
| 338 | default: |
| 339 | assert(!"Unexpected bit length" ); // unreachable since bitslog2 is a 2-bit value |
| 340 | return data; |
| 341 | } |
| 342 | |
| 343 | #undef READ |
| 344 | #undef NEXT |
| 345 | } |
| 346 | |
| 347 | static const unsigned char* decodeBytes(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size) |
| 348 | { |
| 349 | assert(buffer_size % kByteGroupSize == 0); |
| 350 | |
| 351 | const unsigned char* = data; |
| 352 | |
| 353 | // round number of groups to 4 to get number of header bytes |
| 354 | size_t = (buffer_size / kByteGroupSize + 3) / 4; |
| 355 | |
| 356 | if (size_t(data_end - data) < header_size) |
| 357 | return 0; |
| 358 | |
| 359 | data += header_size; |
| 360 | |
| 361 | for (size_t i = 0; i < buffer_size; i += kByteGroupSize) |
| 362 | { |
| 363 | if (size_t(data_end - data) < kByteGroupDecodeLimit) |
| 364 | return 0; |
| 365 | |
| 366 | size_t = i / kByteGroupSize; |
| 367 | |
| 368 | int bitslog2 = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3; |
| 369 | |
| 370 | data = decodeBytesGroup(data, buffer + i, bitslog2); |
| 371 | } |
| 372 | |
| 373 | return data; |
| 374 | } |
| 375 | |
| 376 | static const unsigned char* decodeVertexBlock(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256]) |
| 377 | { |
| 378 | assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize); |
| 379 | |
| 380 | unsigned char buffer[kVertexBlockMaxSize]; |
| 381 | unsigned char transposed[kVertexBlockSizeBytes]; |
| 382 | |
| 383 | size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1); |
| 384 | |
| 385 | for (size_t k = 0; k < vertex_size; ++k) |
| 386 | { |
| 387 | data = decodeBytes(data, data_end, buffer, vertex_count_aligned); |
| 388 | if (!data) |
| 389 | return 0; |
| 390 | |
| 391 | size_t vertex_offset = k; |
| 392 | |
| 393 | unsigned char p = last_vertex[k]; |
| 394 | |
| 395 | for (size_t i = 0; i < vertex_count; ++i) |
| 396 | { |
| 397 | unsigned char v = unzigzag8(buffer[i]) + p; |
| 398 | |
| 399 | transposed[vertex_offset] = v; |
| 400 | p = v; |
| 401 | |
| 402 | vertex_offset += vertex_size; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | memcpy(vertex_data, transposed, vertex_count * vertex_size); |
| 407 | |
| 408 | memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size); |
| 409 | |
| 410 | return data; |
| 411 | } |
| 412 | #endif |
| 413 | |
| 414 | #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 415 | static unsigned char kDecodeBytesGroupShuffle[256][8]; |
| 416 | static unsigned char kDecodeBytesGroupCount[256]; |
| 417 | |
| 418 | #ifdef __wasm__ |
| 419 | __attribute__((cold)) // this saves 500 bytes in the output binary - we don't need to vectorize this loop! |
| 420 | #endif |
| 421 | static bool |
| 422 | decodeBytesGroupBuildTables() |
| 423 | { |
| 424 | for (int mask = 0; mask < 256; ++mask) |
| 425 | { |
| 426 | unsigned char shuffle[8]; |
| 427 | unsigned char count = 0; |
| 428 | |
| 429 | for (int i = 0; i < 8; ++i) |
| 430 | { |
| 431 | int maski = (mask >> i) & 1; |
| 432 | shuffle[i] = maski ? count : 0x80; |
| 433 | count += (unsigned char)(maski); |
| 434 | } |
| 435 | |
| 436 | memcpy(kDecodeBytesGroupShuffle[mask], shuffle, 8); |
| 437 | kDecodeBytesGroupCount[mask] = count; |
| 438 | } |
| 439 | |
| 440 | return true; |
| 441 | } |
| 442 | |
| 443 | static bool gDecodeBytesGroupInitialized = decodeBytesGroupBuildTables(); |
| 444 | #endif |
| 445 | |
| 446 | #ifdef SIMD_SSE |
| 447 | SIMD_TARGET |
| 448 | static __m128i decodeShuffleMask(unsigned char mask0, unsigned char mask1) |
| 449 | { |
| 450 | __m128i sm0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask0])); |
| 451 | __m128i sm1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask1])); |
| 452 | __m128i sm1off = _mm_set1_epi8(kDecodeBytesGroupCount[mask0]); |
| 453 | |
| 454 | __m128i sm1r = _mm_add_epi8(sm1, sm1off); |
| 455 | |
| 456 | return _mm_unpacklo_epi64(sm0, sm1r); |
| 457 | } |
| 458 | |
| 459 | SIMD_TARGET |
| 460 | static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2) |
| 461 | { |
| 462 | switch (bitslog2) |
| 463 | { |
| 464 | case 0: |
| 465 | { |
| 466 | __m128i result = _mm_setzero_si128(); |
| 467 | |
| 468 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 469 | |
| 470 | return data; |
| 471 | } |
| 472 | |
| 473 | case 1: |
| 474 | { |
| 475 | #ifdef __GNUC__ |
| 476 | typedef int __attribute__((aligned(1))) unaligned_int; |
| 477 | #else |
| 478 | typedef int unaligned_int; |
| 479 | #endif |
| 480 | |
| 481 | #ifdef SIMD_LATENCYOPT |
| 482 | unsigned int data32; |
| 483 | memcpy(&data32, data, 4); |
| 484 | data32 &= data32 >> 1; |
| 485 | |
| 486 | // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32 |
| 487 | unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff); |
| 488 | |
| 489 | // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 |
| 490 | int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); |
| 491 | #endif |
| 492 | |
| 493 | __m128i sel2 = _mm_cvtsi32_si128(*reinterpret_cast<const unaligned_int*>(data)); |
| 494 | __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 4)); |
| 495 | |
| 496 | __m128i sel22 = _mm_unpacklo_epi8(_mm_srli_epi16(sel2, 4), sel2); |
| 497 | __m128i sel2222 = _mm_unpacklo_epi8(_mm_srli_epi16(sel22, 2), sel22); |
| 498 | __m128i sel = _mm_and_si128(sel2222, _mm_set1_epi8(3)); |
| 499 | |
| 500 | __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(3)); |
| 501 | int mask16 = _mm_movemask_epi8(mask); |
| 502 | unsigned char mask0 = (unsigned char)(mask16 & 255); |
| 503 | unsigned char mask1 = (unsigned char)(mask16 >> 8); |
| 504 | |
| 505 | __m128i shuf = decodeShuffleMask(mask0, mask1); |
| 506 | |
| 507 | __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel)); |
| 508 | |
| 509 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 510 | |
| 511 | #ifdef SIMD_LATENCYOPT |
| 512 | return data + 4 + datacnt; |
| 513 | #else |
| 514 | return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; |
| 515 | #endif |
| 516 | } |
| 517 | |
| 518 | case 2: |
| 519 | { |
| 520 | #ifdef SIMD_LATENCYOPT |
| 521 | unsigned long long data64; |
| 522 | memcpy(&data64, data, 8); |
| 523 | data64 &= data64 >> 1; |
| 524 | data64 &= data64 >> 2; |
| 525 | |
| 526 | // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 |
| 527 | int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); |
| 528 | #endif |
| 529 | |
| 530 | __m128i sel4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data)); |
| 531 | __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 8)); |
| 532 | |
| 533 | __m128i sel44 = _mm_unpacklo_epi8(_mm_srli_epi16(sel4, 4), sel4); |
| 534 | __m128i sel = _mm_and_si128(sel44, _mm_set1_epi8(15)); |
| 535 | |
| 536 | __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(15)); |
| 537 | int mask16 = _mm_movemask_epi8(mask); |
| 538 | unsigned char mask0 = (unsigned char)(mask16 & 255); |
| 539 | unsigned char mask1 = (unsigned char)(mask16 >> 8); |
| 540 | |
| 541 | __m128i shuf = decodeShuffleMask(mask0, mask1); |
| 542 | |
| 543 | __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel)); |
| 544 | |
| 545 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 546 | |
| 547 | #ifdef SIMD_LATENCYOPT |
| 548 | return data + 8 + datacnt; |
| 549 | #else |
| 550 | return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; |
| 551 | #endif |
| 552 | } |
| 553 | |
| 554 | case 3: |
| 555 | { |
| 556 | __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data)); |
| 557 | |
| 558 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 559 | |
| 560 | return data + 16; |
| 561 | } |
| 562 | |
| 563 | default: |
| 564 | assert(!"Unexpected bit length" ); // unreachable since bitslog2 is a 2-bit value |
| 565 | return data; |
| 566 | } |
| 567 | } |
| 568 | #endif |
| 569 | |
| 570 | #ifdef SIMD_AVX |
| 571 | static const __m128i decodeBytesGroupConfig[] = { |
| 572 | _mm_set1_epi8(3), |
| 573 | _mm_set1_epi8(15), |
| 574 | _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24), |
| 575 | _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56), |
| 576 | }; |
| 577 | |
| 578 | static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2) |
| 579 | { |
| 580 | switch (bitslog2) |
| 581 | { |
| 582 | case 0: |
| 583 | { |
| 584 | __m128i result = _mm_setzero_si128(); |
| 585 | |
| 586 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 587 | |
| 588 | return data; |
| 589 | } |
| 590 | |
| 591 | case 1: |
| 592 | case 2: |
| 593 | { |
| 594 | const unsigned char* skip = data + (bitslog2 << 2); |
| 595 | |
| 596 | __m128i selb = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data)); |
| 597 | __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(skip)); |
| 598 | |
| 599 | __m128i sent = decodeBytesGroupConfig[bitslog2 - 1]; |
| 600 | __m128i ctrl = decodeBytesGroupConfig[bitslog2 + 1]; |
| 601 | |
| 602 | __m128i selw = _mm_shuffle_epi32(selb, 0x44); |
| 603 | __m128i sel = _mm_and_si128(sent, _mm_multishift_epi64_epi8(ctrl, selw)); |
| 604 | __mmask16 mask16 = _mm_cmp_epi8_mask(sel, sent, _MM_CMPINT_EQ); |
| 605 | |
| 606 | __m128i result = _mm_mask_expand_epi8(sel, mask16, rest); |
| 607 | |
| 608 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 609 | |
| 610 | return skip + _mm_popcnt_u32(mask16); |
| 611 | } |
| 612 | |
| 613 | case 3: |
| 614 | { |
| 615 | __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data)); |
| 616 | |
| 617 | _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); |
| 618 | |
| 619 | return data + 16; |
| 620 | } |
| 621 | |
| 622 | default: |
| 623 | assert(!"Unexpected bit length" ); // unreachable since bitslog2 is a 2-bit value |
| 624 | return data; |
| 625 | } |
| 626 | } |
| 627 | #endif |
| 628 | |
| 629 | #ifdef SIMD_NEON |
| 630 | static uint8x16_t shuffleBytes(unsigned char mask0, unsigned char mask1, uint8x8_t rest0, uint8x8_t rest1) |
| 631 | { |
| 632 | uint8x8_t sm0 = vld1_u8(kDecodeBytesGroupShuffle[mask0]); |
| 633 | uint8x8_t sm1 = vld1_u8(kDecodeBytesGroupShuffle[mask1]); |
| 634 | |
| 635 | uint8x8_t r0 = vtbl1_u8(rest0, sm0); |
| 636 | uint8x8_t r1 = vtbl1_u8(rest1, sm1); |
| 637 | |
| 638 | return vcombine_u8(r0, r1); |
| 639 | } |
| 640 | |
| 641 | static void neonMoveMask(uint8x16_t mask, unsigned char& mask0, unsigned char& mask1) |
| 642 | { |
| 643 | // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00 |
| 644 | const uint64_t magic = 0x000103070f1f3f80ull; |
| 645 | |
| 646 | uint64x2_t mask2 = vreinterpretq_u64_u8(mask); |
| 647 | |
| 648 | mask0 = uint8_t((vgetq_lane_u64(mask2, 0) * magic) >> 56); |
| 649 | mask1 = uint8_t((vgetq_lane_u64(mask2, 1) * magic) >> 56); |
| 650 | } |
| 651 | |
| 652 | static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2) |
| 653 | { |
| 654 | switch (bitslog2) |
| 655 | { |
| 656 | case 0: |
| 657 | { |
| 658 | uint8x16_t result = vdupq_n_u8(0); |
| 659 | |
| 660 | vst1q_u8(buffer, result); |
| 661 | |
| 662 | return data; |
| 663 | } |
| 664 | |
| 665 | case 1: |
| 666 | { |
| 667 | #ifdef SIMD_LATENCYOPT |
| 668 | unsigned int data32; |
| 669 | memcpy(&data32, data, 4); |
| 670 | data32 &= data32 >> 1; |
| 671 | |
| 672 | // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32 |
| 673 | unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff); |
| 674 | |
| 675 | // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 |
| 676 | int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); |
| 677 | #endif |
| 678 | |
| 679 | uint8x8_t sel2 = vld1_u8(data); |
| 680 | uint8x8_t sel22 = vzip_u8(vshr_n_u8(sel2, 4), sel2).val[0]; |
| 681 | uint8x8x2_t sel2222 = vzip_u8(vshr_n_u8(sel22, 2), sel22); |
| 682 | uint8x16_t sel = vandq_u8(vcombine_u8(sel2222.val[0], sel2222.val[1]), vdupq_n_u8(3)); |
| 683 | |
| 684 | uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(3)); |
| 685 | unsigned char mask0, mask1; |
| 686 | neonMoveMask(mask, mask0, mask1); |
| 687 | |
| 688 | uint8x8_t rest0 = vld1_u8(data + 4); |
| 689 | uint8x8_t rest1 = vld1_u8(data + 4 + kDecodeBytesGroupCount[mask0]); |
| 690 | |
| 691 | uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel); |
| 692 | |
| 693 | vst1q_u8(buffer, result); |
| 694 | |
| 695 | #ifdef SIMD_LATENCYOPT |
| 696 | return data + 4 + datacnt; |
| 697 | #else |
| 698 | return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; |
| 699 | #endif |
| 700 | } |
| 701 | |
| 702 | case 2: |
| 703 | { |
| 704 | #ifdef SIMD_LATENCYOPT |
| 705 | unsigned long long data64; |
| 706 | memcpy(&data64, data, 8); |
| 707 | data64 &= data64 >> 1; |
| 708 | data64 &= data64 >> 2; |
| 709 | |
| 710 | // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 |
| 711 | int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); |
| 712 | #endif |
| 713 | |
| 714 | uint8x8_t sel4 = vld1_u8(data); |
| 715 | uint8x8x2_t sel44 = vzip_u8(vshr_n_u8(sel4, 4), vand_u8(sel4, vdup_n_u8(15))); |
| 716 | uint8x16_t sel = vcombine_u8(sel44.val[0], sel44.val[1]); |
| 717 | |
| 718 | uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(15)); |
| 719 | unsigned char mask0, mask1; |
| 720 | neonMoveMask(mask, mask0, mask1); |
| 721 | |
| 722 | uint8x8_t rest0 = vld1_u8(data + 8); |
| 723 | uint8x8_t rest1 = vld1_u8(data + 8 + kDecodeBytesGroupCount[mask0]); |
| 724 | |
| 725 | uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel); |
| 726 | |
| 727 | vst1q_u8(buffer, result); |
| 728 | |
| 729 | #ifdef SIMD_LATENCYOPT |
| 730 | return data + 8 + datacnt; |
| 731 | #else |
| 732 | return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; |
| 733 | #endif |
| 734 | } |
| 735 | |
| 736 | case 3: |
| 737 | { |
| 738 | uint8x16_t result = vld1q_u8(data); |
| 739 | |
| 740 | vst1q_u8(buffer, result); |
| 741 | |
| 742 | return data + 16; |
| 743 | } |
| 744 | |
| 745 | default: |
| 746 | assert(!"Unexpected bit length" ); // unreachable since bitslog2 is a 2-bit value |
| 747 | return data; |
| 748 | } |
| 749 | } |
| 750 | #endif |
| 751 | |
| 752 | #ifdef SIMD_WASM |
| 753 | SIMD_TARGET |
| 754 | static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1) |
| 755 | { |
| 756 | v128_t sm0 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask0]); |
| 757 | v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]); |
| 758 | |
| 759 | v128_t sm1off = wasm_v128_load(&kDecodeBytesGroupCount[mask0]); |
| 760 | sm1off = wasm_v8x16_shuffle(sm1off, sm1off, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); |
| 761 | |
| 762 | v128_t sm1r = wasm_i8x16_add(sm1, sm1off); |
| 763 | |
| 764 | return wasmx_unpacklo_v64x2(sm0, sm1r); |
| 765 | } |
| 766 | |
| 767 | SIMD_TARGET |
| 768 | static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1) |
| 769 | { |
| 770 | // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00 |
| 771 | const uint64_t magic = 0x000103070f1f3f80ull; |
| 772 | |
| 773 | mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56); |
| 774 | mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56); |
| 775 | } |
| 776 | |
| 777 | SIMD_TARGET |
| 778 | static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2) |
| 779 | { |
| 780 | unsigned char byte, enc, encv; |
| 781 | const unsigned char* data_var; |
| 782 | |
| 783 | switch (bitslog2) |
| 784 | { |
| 785 | case 0: |
| 786 | { |
| 787 | v128_t result = wasm_i8x16_splat(0); |
| 788 | |
| 789 | wasm_v128_store(buffer, result); |
| 790 | |
| 791 | return data; |
| 792 | } |
| 793 | |
| 794 | case 1: |
| 795 | { |
| 796 | v128_t sel2 = wasm_v128_load(data); |
| 797 | v128_t rest = wasm_v128_load(data + 4); |
| 798 | |
| 799 | v128_t sel22 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel2, 4), sel2); |
| 800 | v128_t sel2222 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel22, 2), sel22); |
| 801 | v128_t sel = wasm_v128_and(sel2222, wasm_i8x16_splat(3)); |
| 802 | |
| 803 | v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(3)); |
| 804 | |
| 805 | unsigned char mask0, mask1; |
| 806 | wasmMoveMask(mask, mask0, mask1); |
| 807 | |
| 808 | v128_t shuf = decodeShuffleMask(mask0, mask1); |
| 809 | |
| 810 | v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask); |
| 811 | |
| 812 | wasm_v128_store(buffer, result); |
| 813 | |
| 814 | return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; |
| 815 | } |
| 816 | |
| 817 | case 2: |
| 818 | { |
| 819 | v128_t sel4 = wasm_v128_load(data); |
| 820 | v128_t rest = wasm_v128_load(data + 8); |
| 821 | |
| 822 | v128_t sel44 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel4, 4), sel4); |
| 823 | v128_t sel = wasm_v128_and(sel44, wasm_i8x16_splat(15)); |
| 824 | |
| 825 | v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(15)); |
| 826 | |
| 827 | unsigned char mask0, mask1; |
| 828 | wasmMoveMask(mask, mask0, mask1); |
| 829 | |
| 830 | v128_t shuf = decodeShuffleMask(mask0, mask1); |
| 831 | |
| 832 | v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask); |
| 833 | |
| 834 | wasm_v128_store(buffer, result); |
| 835 | |
| 836 | return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; |
| 837 | } |
| 838 | |
| 839 | case 3: |
| 840 | { |
| 841 | v128_t result = wasm_v128_load(data); |
| 842 | |
| 843 | wasm_v128_store(buffer, result); |
| 844 | |
| 845 | return data + 16; |
| 846 | } |
| 847 | |
| 848 | default: |
| 849 | assert(!"Unexpected bit length" ); // unreachable since bitslog2 is a 2-bit value |
| 850 | return data; |
| 851 | } |
| 852 | } |
| 853 | #endif |
| 854 | |
| 855 | #if defined(SIMD_SSE) || defined(SIMD_AVX) |
| 856 | SIMD_TARGET |
| 857 | static void transpose8(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3) |
| 858 | { |
| 859 | __m128i t0 = _mm_unpacklo_epi8(x0, x1); |
| 860 | __m128i t1 = _mm_unpackhi_epi8(x0, x1); |
| 861 | __m128i t2 = _mm_unpacklo_epi8(x2, x3); |
| 862 | __m128i t3 = _mm_unpackhi_epi8(x2, x3); |
| 863 | |
| 864 | x0 = _mm_unpacklo_epi16(t0, t2); |
| 865 | x1 = _mm_unpackhi_epi16(t0, t2); |
| 866 | x2 = _mm_unpacklo_epi16(t1, t3); |
| 867 | x3 = _mm_unpackhi_epi16(t1, t3); |
| 868 | } |
| 869 | |
| 870 | SIMD_TARGET |
| 871 | static __m128i unzigzag8(__m128i v) |
| 872 | { |
| 873 | __m128i xl = _mm_sub_epi8(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi8(1))); |
| 874 | __m128i xr = _mm_and_si128(_mm_srli_epi16(v, 1), _mm_set1_epi8(127)); |
| 875 | |
| 876 | return _mm_xor_si128(xl, xr); |
| 877 | } |
| 878 | #endif |
| 879 | |
| 880 | #ifdef SIMD_NEON |
| 881 | static void transpose8(uint8x16_t& x0, uint8x16_t& x1, uint8x16_t& x2, uint8x16_t& x3) |
| 882 | { |
| 883 | uint8x16x2_t t01 = vzipq_u8(x0, x1); |
| 884 | uint8x16x2_t t23 = vzipq_u8(x2, x3); |
| 885 | |
| 886 | uint16x8x2_t x01 = vzipq_u16(vreinterpretq_u16_u8(t01.val[0]), vreinterpretq_u16_u8(t23.val[0])); |
| 887 | uint16x8x2_t x23 = vzipq_u16(vreinterpretq_u16_u8(t01.val[1]), vreinterpretq_u16_u8(t23.val[1])); |
| 888 | |
| 889 | x0 = vreinterpretq_u8_u16(x01.val[0]); |
| 890 | x1 = vreinterpretq_u8_u16(x01.val[1]); |
| 891 | x2 = vreinterpretq_u8_u16(x23.val[0]); |
| 892 | x3 = vreinterpretq_u8_u16(x23.val[1]); |
| 893 | } |
| 894 | |
| 895 | static uint8x16_t unzigzag8(uint8x16_t v) |
| 896 | { |
| 897 | uint8x16_t xl = vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(vandq_u8(v, vdupq_n_u8(1))))); |
| 898 | uint8x16_t xr = vshrq_n_u8(v, 1); |
| 899 | |
| 900 | return veorq_u8(xl, xr); |
| 901 | } |
| 902 | #endif |
| 903 | |
| 904 | #ifdef SIMD_WASM |
| 905 | SIMD_TARGET |
| 906 | static void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3) |
| 907 | { |
| 908 | v128_t t0 = wasmx_unpacklo_v8x16(x0, x1); |
| 909 | v128_t t1 = wasmx_unpackhi_v8x16(x0, x1); |
| 910 | v128_t t2 = wasmx_unpacklo_v8x16(x2, x3); |
| 911 | v128_t t3 = wasmx_unpackhi_v8x16(x2, x3); |
| 912 | |
| 913 | x0 = wasmx_unpacklo_v16x8(t0, t2); |
| 914 | x1 = wasmx_unpackhi_v16x8(t0, t2); |
| 915 | x2 = wasmx_unpacklo_v16x8(t1, t3); |
| 916 | x3 = wasmx_unpackhi_v16x8(t1, t3); |
| 917 | } |
| 918 | |
| 919 | SIMD_TARGET |
| 920 | static v128_t unzigzag8(v128_t v) |
| 921 | { |
| 922 | v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1))); |
| 923 | v128_t xr = wasm_u8x16_shr(v, 1); |
| 924 | |
| 925 | return wasm_v128_xor(xl, xr); |
| 926 | } |
| 927 | #endif |
| 928 | |
| 929 | #if defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 930 | SIMD_TARGET |
| 931 | static const unsigned char* decodeBytesSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size) |
| 932 | { |
| 933 | assert(buffer_size % kByteGroupSize == 0); |
| 934 | assert(kByteGroupSize == 16); |
| 935 | |
| 936 | const unsigned char* = data; |
| 937 | |
| 938 | // round number of groups to 4 to get number of header bytes |
| 939 | size_t = (buffer_size / kByteGroupSize + 3) / 4; |
| 940 | |
| 941 | if (size_t(data_end - data) < header_size) |
| 942 | return 0; |
| 943 | |
| 944 | data += header_size; |
| 945 | |
| 946 | size_t i = 0; |
| 947 | |
| 948 | // fast-path: process 4 groups at a time, do a shared bounds check - each group reads <=24b |
| 949 | for (; i + kByteGroupSize * 4 <= buffer_size && size_t(data_end - data) >= kByteGroupDecodeLimit * 4; i += kByteGroupSize * 4) |
| 950 | { |
| 951 | size_t = i / kByteGroupSize; |
| 952 | unsigned char = header[header_offset / 4]; |
| 953 | |
| 954 | data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 0, (header_byte >> 0) & 3); |
| 955 | data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 1, (header_byte >> 2) & 3); |
| 956 | data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 2, (header_byte >> 4) & 3); |
| 957 | data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 3, (header_byte >> 6) & 3); |
| 958 | } |
| 959 | |
| 960 | // slow-path: process remaining groups |
| 961 | for (; i < buffer_size; i += kByteGroupSize) |
| 962 | { |
| 963 | if (size_t(data_end - data) < kByteGroupDecodeLimit) |
| 964 | return 0; |
| 965 | |
| 966 | size_t = i / kByteGroupSize; |
| 967 | |
| 968 | int bitslog2 = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3; |
| 969 | |
| 970 | data = decodeBytesGroupSimd(data, buffer + i, bitslog2); |
| 971 | } |
| 972 | |
| 973 | return data; |
| 974 | } |
| 975 | |
| 976 | SIMD_TARGET |
| 977 | static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256]) |
| 978 | { |
| 979 | assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize); |
| 980 | |
| 981 | unsigned char buffer[kVertexBlockMaxSize * 4]; |
| 982 | unsigned char transposed[kVertexBlockSizeBytes]; |
| 983 | |
| 984 | size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1); |
| 985 | |
| 986 | for (size_t k = 0; k < vertex_size; k += 4) |
| 987 | { |
| 988 | for (size_t j = 0; j < 4; ++j) |
| 989 | { |
| 990 | data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned); |
| 991 | if (!data) |
| 992 | return 0; |
| 993 | } |
| 994 | |
| 995 | #if defined(SIMD_SSE) || defined(SIMD_AVX) |
| 996 | #define TEMP __m128i |
| 997 | #define PREP() __m128i pi = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(last_vertex + k)) |
| 998 | #define LOAD(i) __m128i r##i = _mm_loadu_si128(reinterpret_cast<const __m128i*>(buffer + j + i * vertex_count_aligned)) |
| 999 | #define GRP4(i) t0 = _mm_shuffle_epi32(r##i, 0), t1 = _mm_shuffle_epi32(r##i, 1), t2 = _mm_shuffle_epi32(r##i, 2), t3 = _mm_shuffle_epi32(r##i, 3) |
| 1000 | #define FIXD(i) t##i = pi = _mm_add_epi8(pi, t##i) |
| 1001 | #define SAVE(i) *reinterpret_cast<int*>(savep) = _mm_cvtsi128_si32(t##i), savep += vertex_size |
| 1002 | #endif |
| 1003 | |
| 1004 | #ifdef SIMD_NEON |
| 1005 | #define TEMP uint8x8_t |
| 1006 | #define PREP() uint8x8_t pi = vreinterpret_u8_u32(vld1_lane_u32(reinterpret_cast<uint32_t*>(last_vertex + k), vdup_n_u32(0), 0)) |
| 1007 | #define LOAD(i) uint8x16_t r##i = vld1q_u8(buffer + j + i * vertex_count_aligned) |
| 1008 | #define GRP4(i) t0 = vget_low_u8(r##i), t1 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t0), 1)), t2 = vget_high_u8(r##i), t3 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t2), 1)) |
| 1009 | #define FIXD(i) t##i = pi = vadd_u8(pi, t##i) |
| 1010 | #define SAVE(i) vst1_lane_u32(reinterpret_cast<uint32_t*>(savep), vreinterpret_u32_u8(t##i), 0), savep += vertex_size |
| 1011 | #endif |
| 1012 | |
| 1013 | #ifdef SIMD_WASM |
| 1014 | #define TEMP v128_t |
| 1015 | #define PREP() v128_t pi = wasm_v128_load(last_vertex + k) |
| 1016 | #define LOAD(i) v128_t r##i = wasm_v128_load(buffer + j + i * vertex_count_aligned) |
| 1017 | #define GRP4(i) t0 = wasmx_splat_v32x4(r##i, 0), t1 = wasmx_splat_v32x4(r##i, 1), t2 = wasmx_splat_v32x4(r##i, 2), t3 = wasmx_splat_v32x4(r##i, 3) |
| 1018 | #define FIXD(i) t##i = pi = wasm_i8x16_add(pi, t##i) |
| 1019 | #define SAVE(i) *reinterpret_cast<int*>(savep) = wasm_i32x4_extract_lane(t##i, 0), savep += vertex_size |
| 1020 | #endif |
| 1021 | |
| 1022 | PREP(); |
| 1023 | |
| 1024 | unsigned char* savep = transposed + k; |
| 1025 | |
| 1026 | for (size_t j = 0; j < vertex_count_aligned; j += 16) |
| 1027 | { |
| 1028 | LOAD(0); |
| 1029 | LOAD(1); |
| 1030 | LOAD(2); |
| 1031 | LOAD(3); |
| 1032 | |
| 1033 | r0 = unzigzag8(r0); |
| 1034 | r1 = unzigzag8(r1); |
| 1035 | r2 = unzigzag8(r2); |
| 1036 | r3 = unzigzag8(r3); |
| 1037 | |
| 1038 | transpose8(r0, r1, r2, r3); |
| 1039 | |
| 1040 | TEMP t0, t1, t2, t3; |
| 1041 | |
| 1042 | GRP4(0); |
| 1043 | FIXD(0), FIXD(1), FIXD(2), FIXD(3); |
| 1044 | SAVE(0), SAVE(1), SAVE(2), SAVE(3); |
| 1045 | |
| 1046 | GRP4(1); |
| 1047 | FIXD(0), FIXD(1), FIXD(2), FIXD(3); |
| 1048 | SAVE(0), SAVE(1), SAVE(2), SAVE(3); |
| 1049 | |
| 1050 | GRP4(2); |
| 1051 | FIXD(0), FIXD(1), FIXD(2), FIXD(3); |
| 1052 | SAVE(0), SAVE(1), SAVE(2), SAVE(3); |
| 1053 | |
| 1054 | GRP4(3); |
| 1055 | FIXD(0), FIXD(1), FIXD(2), FIXD(3); |
| 1056 | SAVE(0), SAVE(1), SAVE(2), SAVE(3); |
| 1057 | |
| 1058 | #undef TEMP |
| 1059 | #undef PREP |
| 1060 | #undef LOAD |
| 1061 | #undef GRP4 |
| 1062 | #undef FIXD |
| 1063 | #undef SAVE |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | memcpy(vertex_data, transposed, vertex_count * vertex_size); |
| 1068 | |
| 1069 | memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size); |
| 1070 | |
| 1071 | return data; |
| 1072 | } |
| 1073 | #endif |
| 1074 | |
| 1075 | #if defined(SIMD_SSE) && defined(SIMD_FALLBACK) |
| 1076 | static unsigned int getCpuFeatures() |
| 1077 | { |
| 1078 | int cpuinfo[4] = {}; |
| 1079 | #ifdef _MSC_VER |
| 1080 | __cpuid(cpuinfo, 1); |
| 1081 | #else |
| 1082 | __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]); |
| 1083 | #endif |
| 1084 | return cpuinfo[2]; |
| 1085 | } |
| 1086 | |
| 1087 | static unsigned int cpuid = getCpuFeatures(); |
| 1088 | #endif |
| 1089 | |
| 1090 | } // namespace meshopt |
| 1091 | |
| 1092 | size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size) |
| 1093 | { |
| 1094 | using namespace meshopt; |
| 1095 | |
| 1096 | assert(vertex_size > 0 && vertex_size <= 256); |
| 1097 | assert(vertex_size % 4 == 0); |
| 1098 | |
| 1099 | const unsigned char* vertex_data = static_cast<const unsigned char*>(vertices); |
| 1100 | |
| 1101 | unsigned char* data = buffer; |
| 1102 | unsigned char* data_end = buffer + buffer_size; |
| 1103 | |
| 1104 | if (size_t(data_end - data) < 1 + vertex_size) |
| 1105 | return 0; |
| 1106 | |
| 1107 | int version = gEncodeVertexVersion; |
| 1108 | |
| 1109 | *data++ = (unsigned char)(kVertexHeader | version); |
| 1110 | |
| 1111 | unsigned char first_vertex[256] = {}; |
| 1112 | if (vertex_count > 0) |
| 1113 | memcpy(first_vertex, vertex_data, vertex_size); |
| 1114 | |
| 1115 | unsigned char last_vertex[256] = {}; |
| 1116 | memcpy(last_vertex, first_vertex, vertex_size); |
| 1117 | |
| 1118 | size_t vertex_block_size = getVertexBlockSize(vertex_size); |
| 1119 | |
| 1120 | size_t vertex_offset = 0; |
| 1121 | |
| 1122 | while (vertex_offset < vertex_count) |
| 1123 | { |
| 1124 | size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset; |
| 1125 | |
| 1126 | data = encodeVertexBlock(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex); |
| 1127 | if (!data) |
| 1128 | return 0; |
| 1129 | |
| 1130 | vertex_offset += block_size; |
| 1131 | } |
| 1132 | |
| 1133 | size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size; |
| 1134 | |
| 1135 | if (size_t(data_end - data) < tail_size) |
| 1136 | return 0; |
| 1137 | |
| 1138 | // write first vertex to the end of the stream and pad it to 32 bytes; this is important to simplify bounds checks in decoder |
| 1139 | if (vertex_size < kTailMaxSize) |
| 1140 | { |
| 1141 | memset(data, 0, kTailMaxSize - vertex_size); |
| 1142 | data += kTailMaxSize - vertex_size; |
| 1143 | } |
| 1144 | |
| 1145 | memcpy(data, first_vertex, vertex_size); |
| 1146 | data += vertex_size; |
| 1147 | |
| 1148 | assert(data >= buffer + tail_size); |
| 1149 | assert(data <= buffer + buffer_size); |
| 1150 | |
| 1151 | return data - buffer; |
| 1152 | } |
| 1153 | |
| 1154 | size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size) |
| 1155 | { |
| 1156 | using namespace meshopt; |
| 1157 | |
| 1158 | assert(vertex_size > 0 && vertex_size <= 256); |
| 1159 | assert(vertex_size % 4 == 0); |
| 1160 | |
| 1161 | size_t vertex_block_size = getVertexBlockSize(vertex_size); |
| 1162 | size_t vertex_block_count = (vertex_count + vertex_block_size - 1) / vertex_block_size; |
| 1163 | |
| 1164 | size_t = (vertex_block_size / kByteGroupSize + 3) / 4; |
| 1165 | size_t vertex_block_data_size = vertex_block_size; |
| 1166 | |
| 1167 | size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size; |
| 1168 | |
| 1169 | return 1 + vertex_block_count * vertex_size * (vertex_block_header_size + vertex_block_data_size) + tail_size; |
| 1170 | } |
| 1171 | |
| 1172 | void meshopt_encodeVertexVersion(int version) |
| 1173 | { |
| 1174 | assert(unsigned(version) <= 0); |
| 1175 | |
| 1176 | meshopt::gEncodeVertexVersion = version; |
| 1177 | } |
| 1178 | |
| 1179 | int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size) |
| 1180 | { |
| 1181 | using namespace meshopt; |
| 1182 | |
| 1183 | assert(vertex_size > 0 && vertex_size <= 256); |
| 1184 | assert(vertex_size % 4 == 0); |
| 1185 | |
| 1186 | const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256]) = 0; |
| 1187 | |
| 1188 | #if defined(SIMD_SSE) && defined(SIMD_FALLBACK) |
| 1189 | decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock; |
| 1190 | #elif defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 1191 | decode = decodeVertexBlockSimd; |
| 1192 | #else |
| 1193 | decode = decodeVertexBlock; |
| 1194 | #endif |
| 1195 | |
| 1196 | #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 1197 | assert(gDecodeBytesGroupInitialized); |
| 1198 | (void)gDecodeBytesGroupInitialized; |
| 1199 | #endif |
| 1200 | |
| 1201 | unsigned char* vertex_data = static_cast<unsigned char*>(destination); |
| 1202 | |
| 1203 | const unsigned char* data = buffer; |
| 1204 | const unsigned char* data_end = buffer + buffer_size; |
| 1205 | |
| 1206 | if (size_t(data_end - data) < 1 + vertex_size) |
| 1207 | return -2; |
| 1208 | |
| 1209 | unsigned char = *data++; |
| 1210 | |
| 1211 | if ((data_header & 0xf0) != kVertexHeader) |
| 1212 | return -1; |
| 1213 | |
| 1214 | int version = data_header & 0x0f; |
| 1215 | if (version > 0) |
| 1216 | return -1; |
| 1217 | |
| 1218 | unsigned char last_vertex[256]; |
| 1219 | memcpy(last_vertex, data_end - vertex_size, vertex_size); |
| 1220 | |
| 1221 | size_t vertex_block_size = getVertexBlockSize(vertex_size); |
| 1222 | |
| 1223 | size_t vertex_offset = 0; |
| 1224 | |
| 1225 | while (vertex_offset < vertex_count) |
| 1226 | { |
| 1227 | size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset; |
| 1228 | |
| 1229 | data = decode(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex); |
| 1230 | if (!data) |
| 1231 | return -2; |
| 1232 | |
| 1233 | vertex_offset += block_size; |
| 1234 | } |
| 1235 | |
| 1236 | size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size; |
| 1237 | |
| 1238 | if (size_t(data_end - data) != tail_size) |
| 1239 | return -3; |
| 1240 | |
| 1241 | return 0; |
| 1242 | } |
| 1243 | |
| 1244 | #undef SIMD_NEON |
| 1245 | #undef SIMD_SSE |
| 1246 | #undef SIMD_AVX |
| 1247 | #undef SIMD_WASM |
| 1248 | #undef SIMD_FALLBACK |
| 1249 | #undef SIMD_TARGET |
| 1250 | |