| 1 | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details |
| 2 | #include "meshoptimizer.h" |
| 3 | |
| 4 | #include <math.h> |
| 5 | #include <string.h> |
| 6 | |
| 7 | // The block below auto-detects SIMD ISA that can be used on the target platform |
| 8 | #ifndef MESHOPTIMIZER_NO_SIMD |
| 9 | |
| 10 | // The SIMD implementation requires SSE2, which can be enabled unconditionally through compiler settings |
| 11 | #if defined(__SSE2__) |
| 12 | #define SIMD_SSE |
| 13 | #endif |
| 14 | |
| 15 | // MSVC supports compiling SSE2 code regardless of compile options; we assume all 32-bit CPUs support SSE2 |
| 16 | #if !defined(SIMD_SSE) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64)) |
| 17 | #define SIMD_SSE |
| 18 | #endif |
| 19 | |
| 20 | // GCC/clang define these when NEON support is available |
| 21 | #if defined(__ARM_NEON__) || defined(__ARM_NEON) |
| 22 | #define SIMD_NEON |
| 23 | #endif |
| 24 | |
| 25 | // On MSVC, we assume that ARM builds always target NEON-capable devices |
| 26 | #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64)) |
| 27 | #define SIMD_NEON |
| 28 | #endif |
| 29 | |
| 30 | // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD |
| 31 | #if defined(__wasm_simd128__) |
| 32 | #define SIMD_WASM |
| 33 | #endif |
| 34 | |
| 35 | #endif // !MESHOPTIMIZER_NO_SIMD |
| 36 | |
| 37 | #ifdef SIMD_SSE |
| 38 | #include <emmintrin.h> |
| 39 | #include <stdint.h> |
| 40 | #endif |
| 41 | |
| 42 | #ifdef _MSC_VER |
| 43 | #include <intrin.h> |
| 44 | #endif |
| 45 | |
| 46 | #ifdef SIMD_NEON |
| 47 | #if defined(_MSC_VER) && defined(_M_ARM64) |
| 48 | #include <arm64_neon.h> |
| 49 | #else |
| 50 | #include <arm_neon.h> |
| 51 | #endif |
| 52 | #endif |
| 53 | |
| 54 | #ifdef SIMD_WASM |
| 55 | #undef __DEPRECATED |
| 56 | #include <wasm_simd128.h> |
| 57 | #endif |
| 58 | |
| 59 | #ifdef SIMD_WASM |
| 60 | #define wasmx_unpacklo_v16x8(a, b) wasm_v16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11) |
| 61 | #define wasmx_unpackhi_v16x8(a, b) wasm_v16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15) |
| 62 | #define wasmx_unziplo_v32x4(a, b) wasm_v32x4_shuffle(a, b, 0, 2, 4, 6) |
| 63 | #define wasmx_unziphi_v32x4(a, b) wasm_v32x4_shuffle(a, b, 1, 3, 5, 7) |
| 64 | #endif |
| 65 | |
| 66 | namespace meshopt |
| 67 | { |
| 68 | |
| 69 | #if !defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_WASM) |
| 70 | template <typename T> |
| 71 | static void decodeFilterOct(T* data, size_t count) |
| 72 | { |
| 73 | const float max = float((1 << (sizeof(T) * 8 - 1)) - 1); |
| 74 | |
| 75 | for (size_t i = 0; i < count; ++i) |
| 76 | { |
| 77 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 78 | float x = float(data[i * 4 + 0]); |
| 79 | float y = float(data[i * 4 + 1]); |
| 80 | float z = float(data[i * 4 + 2]) - fabsf(x) - fabsf(y); |
| 81 | |
| 82 | // fixup octahedral coordinates for z<0 |
| 83 | float t = (z >= 0.f) ? 0.f : z; |
| 84 | |
| 85 | x += (x >= 0.f) ? t : -t; |
| 86 | y += (y >= 0.f) ? t : -t; |
| 87 | |
| 88 | // compute normal length & scale |
| 89 | float l = sqrtf(x * x + y * y + z * z); |
| 90 | float s = max / l; |
| 91 | |
| 92 | // rounded signed float->int |
| 93 | int xf = int(x * s + (x >= 0.f ? 0.5f : -0.5f)); |
| 94 | int yf = int(y * s + (y >= 0.f ? 0.5f : -0.5f)); |
| 95 | int zf = int(z * s + (z >= 0.f ? 0.5f : -0.5f)); |
| 96 | |
| 97 | data[i * 4 + 0] = T(xf); |
| 98 | data[i * 4 + 1] = T(yf); |
| 99 | data[i * 4 + 2] = T(zf); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | static void decodeFilterQuat(short* data, size_t count) |
| 104 | { |
| 105 | const float scale = 1.f / sqrtf(2.f); |
| 106 | |
| 107 | for (size_t i = 0; i < count; ++i) |
| 108 | { |
| 109 | // recover scale from the high byte of the component |
| 110 | int sf = data[i * 4 + 3] | 3; |
| 111 | float ss = scale / float(sf); |
| 112 | |
| 113 | // convert x/y/z to [-1..1] (scaled...) |
| 114 | float x = float(data[i * 4 + 0]) * ss; |
| 115 | float y = float(data[i * 4 + 1]) * ss; |
| 116 | float z = float(data[i * 4 + 2]) * ss; |
| 117 | |
| 118 | // reconstruct w as a square root; we clamp to 0.f to avoid NaN due to precision errors |
| 119 | float ww = 1.f - x * x - y * y - z * z; |
| 120 | float w = sqrtf(ww >= 0.f ? ww : 0.f); |
| 121 | |
| 122 | // rounded signed float->int |
| 123 | int xf = int(x * 32767.f + (x >= 0.f ? 0.5f : -0.5f)); |
| 124 | int yf = int(y * 32767.f + (y >= 0.f ? 0.5f : -0.5f)); |
| 125 | int zf = int(z * 32767.f + (z >= 0.f ? 0.5f : -0.5f)); |
| 126 | int wf = int(w * 32767.f + 0.5f); |
| 127 | |
| 128 | int qc = data[i * 4 + 3] & 3; |
| 129 | |
| 130 | // output order is dictated by input index |
| 131 | data[i * 4 + ((qc + 1) & 3)] = short(xf); |
| 132 | data[i * 4 + ((qc + 2) & 3)] = short(yf); |
| 133 | data[i * 4 + ((qc + 3) & 3)] = short(zf); |
| 134 | data[i * 4 + ((qc + 0) & 3)] = short(wf); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | static void decodeFilterExp(unsigned int* data, size_t count) |
| 139 | { |
| 140 | for (size_t i = 0; i < count; ++i) |
| 141 | { |
| 142 | unsigned int v = data[i]; |
| 143 | |
| 144 | // decode mantissa and exponent |
| 145 | int m = int(v << 8) >> 8; |
| 146 | int e = int(v) >> 24; |
| 147 | |
| 148 | union |
| 149 | { |
| 150 | float f; |
| 151 | unsigned int ui; |
| 152 | } u; |
| 153 | |
| 154 | // optimized version of ldexp(float(m), e) |
| 155 | u.ui = unsigned(e + 127) << 23; |
| 156 | u.f = u.f * float(m); |
| 157 | |
| 158 | data[i] = u.ui; |
| 159 | } |
| 160 | } |
| 161 | #endif |
| 162 | |
| 163 | #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 164 | template <typename T> |
| 165 | static void dispatchSimd(void (*process)(T*, size_t), T* data, size_t count, size_t stride) |
| 166 | { |
| 167 | assert(stride <= 4); |
| 168 | |
| 169 | size_t count4 = count & ~size_t(3); |
| 170 | process(data, count4); |
| 171 | |
| 172 | if (count4 < count) |
| 173 | { |
| 174 | T tail[4 * 4] = {}; // max stride 4, max count 4 |
| 175 | size_t tail_size = (count - count4) * stride * sizeof(T); |
| 176 | assert(tail_size <= sizeof(tail)); |
| 177 | |
| 178 | memcpy(tail, data + count4 * stride, tail_size); |
| 179 | process(tail, count - count4); |
| 180 | memcpy(data + count4 * stride, tail, tail_size); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | inline uint64_t rotateleft64(uint64_t v, int x) |
| 185 | { |
| 186 | #if defined(_MSC_VER) && !defined(__clang__) |
| 187 | return _rotl64(v, x); |
| 188 | // Apple's Clang 8 is actually vanilla Clang 3.9, there we need to look for |
| 189 | // version 11 instead: https://en.wikipedia.org/wiki/Xcode#Toolchain_versions |
| 190 | #elif defined(__clang__) && ((!defined(__apple_build_version__) && __clang_major__ >= 8) || __clang_major__ >= 11) |
| 191 | return __builtin_rotateleft64(v, x); |
| 192 | #else |
| 193 | return (v << (x & 63)) | (v >> ((64 - x) & 63)); |
| 194 | #endif |
| 195 | } |
| 196 | #endif |
| 197 | |
| 198 | #ifdef SIMD_SSE |
| 199 | static void decodeFilterOctSimd(signed char* data, size_t count) |
| 200 | { |
| 201 | const __m128 sign = _mm_set1_ps(-0.f); |
| 202 | |
| 203 | for (size_t i = 0; i < count; i += 4) |
| 204 | { |
| 205 | __m128i n4 = _mm_loadu_si128(reinterpret_cast<__m128i*>(&data[i * 4])); |
| 206 | |
| 207 | // sign-extends each of x,y in [x y ? ?] with arithmetic shifts |
| 208 | __m128i xf = _mm_srai_epi32(_mm_slli_epi32(n4, 24), 24); |
| 209 | __m128i yf = _mm_srai_epi32(_mm_slli_epi32(n4, 16), 24); |
| 210 | |
| 211 | // unpack z; note that z is unsigned so we technically don't need to sign extend it |
| 212 | __m128i zf = _mm_srai_epi32(_mm_slli_epi32(n4, 8), 24); |
| 213 | |
| 214 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 215 | __m128 x = _mm_cvtepi32_ps(xf); |
| 216 | __m128 y = _mm_cvtepi32_ps(yf); |
| 217 | __m128 z = _mm_sub_ps(_mm_cvtepi32_ps(zf), _mm_add_ps(_mm_andnot_ps(sign, x), _mm_andnot_ps(sign, y))); |
| 218 | |
| 219 | // fixup octahedral coordinates for z<0 |
| 220 | __m128 t = _mm_min_ps(z, _mm_setzero_ps()); |
| 221 | |
| 222 | x = _mm_add_ps(x, _mm_xor_ps(t, _mm_and_ps(x, sign))); |
| 223 | y = _mm_add_ps(y, _mm_xor_ps(t, _mm_and_ps(y, sign))); |
| 224 | |
| 225 | // compute normal length & scale |
| 226 | __m128 ll = _mm_add_ps(_mm_mul_ps(x, x), _mm_add_ps(_mm_mul_ps(y, y), _mm_mul_ps(z, z))); |
| 227 | __m128 s = _mm_mul_ps(_mm_set1_ps(127.f), _mm_rsqrt_ps(ll)); |
| 228 | |
| 229 | // rounded signed float->int |
| 230 | __m128i xr = _mm_cvtps_epi32(_mm_mul_ps(x, s)); |
| 231 | __m128i yr = _mm_cvtps_epi32(_mm_mul_ps(y, s)); |
| 232 | __m128i zr = _mm_cvtps_epi32(_mm_mul_ps(z, s)); |
| 233 | |
| 234 | // combine xr/yr/zr into final value |
| 235 | __m128i res = _mm_and_si128(n4, _mm_set1_epi32(0xff000000)); |
| 236 | res = _mm_or_si128(res, _mm_and_si128(xr, _mm_set1_epi32(0xff))); |
| 237 | res = _mm_or_si128(res, _mm_slli_epi32(_mm_and_si128(yr, _mm_set1_epi32(0xff)), 8)); |
| 238 | res = _mm_or_si128(res, _mm_slli_epi32(_mm_and_si128(zr, _mm_set1_epi32(0xff)), 16)); |
| 239 | |
| 240 | _mm_storeu_si128(reinterpret_cast<__m128i*>(&data[i * 4]), res); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | static void decodeFilterOctSimd(short* data, size_t count) |
| 245 | { |
| 246 | const __m128 sign = _mm_set1_ps(-0.f); |
| 247 | |
| 248 | for (size_t i = 0; i < count; i += 4) |
| 249 | { |
| 250 | __m128 n4_0 = _mm_loadu_ps(reinterpret_cast<float*>(&data[(i + 0) * 4])); |
| 251 | __m128 n4_1 = _mm_loadu_ps(reinterpret_cast<float*>(&data[(i + 2) * 4])); |
| 252 | |
| 253 | // gather both x/y 16-bit pairs in each 32-bit lane |
| 254 | __m128i n4 = _mm_castps_si128(_mm_shuffle_ps(n4_0, n4_1, _MM_SHUFFLE(2, 0, 2, 0))); |
| 255 | |
| 256 | // sign-extends each of x,y in [x y] with arithmetic shifts |
| 257 | __m128i xf = _mm_srai_epi32(_mm_slli_epi32(n4, 16), 16); |
| 258 | __m128i yf = _mm_srai_epi32(n4, 16); |
| 259 | |
| 260 | // unpack z; note that z is unsigned so we don't need to sign extend it |
| 261 | __m128i z4 = _mm_castps_si128(_mm_shuffle_ps(n4_0, n4_1, _MM_SHUFFLE(3, 1, 3, 1))); |
| 262 | __m128i zf = _mm_and_si128(z4, _mm_set1_epi32(0x7fff)); |
| 263 | |
| 264 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 265 | __m128 x = _mm_cvtepi32_ps(xf); |
| 266 | __m128 y = _mm_cvtepi32_ps(yf); |
| 267 | __m128 z = _mm_sub_ps(_mm_cvtepi32_ps(zf), _mm_add_ps(_mm_andnot_ps(sign, x), _mm_andnot_ps(sign, y))); |
| 268 | |
| 269 | // fixup octahedral coordinates for z<0 |
| 270 | __m128 t = _mm_min_ps(z, _mm_setzero_ps()); |
| 271 | |
| 272 | x = _mm_add_ps(x, _mm_xor_ps(t, _mm_and_ps(x, sign))); |
| 273 | y = _mm_add_ps(y, _mm_xor_ps(t, _mm_and_ps(y, sign))); |
| 274 | |
| 275 | // compute normal length & scale |
| 276 | __m128 ll = _mm_add_ps(_mm_mul_ps(x, x), _mm_add_ps(_mm_mul_ps(y, y), _mm_mul_ps(z, z))); |
| 277 | __m128 s = _mm_div_ps(_mm_set1_ps(32767.f), _mm_sqrt_ps(ll)); |
| 278 | |
| 279 | // rounded signed float->int |
| 280 | __m128i xr = _mm_cvtps_epi32(_mm_mul_ps(x, s)); |
| 281 | __m128i yr = _mm_cvtps_epi32(_mm_mul_ps(y, s)); |
| 282 | __m128i zr = _mm_cvtps_epi32(_mm_mul_ps(z, s)); |
| 283 | |
| 284 | // mix x/z and y/0 to make 16-bit unpack easier |
| 285 | __m128i xzr = _mm_or_si128(_mm_and_si128(xr, _mm_set1_epi32(0xffff)), _mm_slli_epi32(zr, 16)); |
| 286 | __m128i y0r = _mm_and_si128(yr, _mm_set1_epi32(0xffff)); |
| 287 | |
| 288 | // pack x/y/z using 16-bit unpacks; note that this has 0 where we should have .w |
| 289 | __m128i res_0 = _mm_unpacklo_epi16(xzr, y0r); |
| 290 | __m128i res_1 = _mm_unpackhi_epi16(xzr, y0r); |
| 291 | |
| 292 | // patch in .w |
| 293 | res_0 = _mm_or_si128(res_0, _mm_and_si128(_mm_castps_si128(n4_0), _mm_set1_epi64x(0xffff000000000000))); |
| 294 | res_1 = _mm_or_si128(res_1, _mm_and_si128(_mm_castps_si128(n4_1), _mm_set1_epi64x(0xffff000000000000))); |
| 295 | |
| 296 | _mm_storeu_si128(reinterpret_cast<__m128i*>(&data[(i + 0) * 4]), res_0); |
| 297 | _mm_storeu_si128(reinterpret_cast<__m128i*>(&data[(i + 2) * 4]), res_1); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | static void decodeFilterQuatSimd(short* data, size_t count) |
| 302 | { |
| 303 | const float scale = 1.f / sqrtf(2.f); |
| 304 | |
| 305 | for (size_t i = 0; i < count; i += 4) |
| 306 | { |
| 307 | __m128 q4_0 = _mm_loadu_ps(reinterpret_cast<float*>(&data[(i + 0) * 4])); |
| 308 | __m128 q4_1 = _mm_loadu_ps(reinterpret_cast<float*>(&data[(i + 2) * 4])); |
| 309 | |
| 310 | // gather both x/y 16-bit pairs in each 32-bit lane |
| 311 | __m128i q4_xy = _mm_castps_si128(_mm_shuffle_ps(q4_0, q4_1, _MM_SHUFFLE(2, 0, 2, 0))); |
| 312 | __m128i q4_zc = _mm_castps_si128(_mm_shuffle_ps(q4_0, q4_1, _MM_SHUFFLE(3, 1, 3, 1))); |
| 313 | |
| 314 | // sign-extends each of x,y in [x y] with arithmetic shifts |
| 315 | __m128i xf = _mm_srai_epi32(_mm_slli_epi32(q4_xy, 16), 16); |
| 316 | __m128i yf = _mm_srai_epi32(q4_xy, 16); |
| 317 | __m128i zf = _mm_srai_epi32(_mm_slli_epi32(q4_zc, 16), 16); |
| 318 | __m128i cf = _mm_srai_epi32(q4_zc, 16); |
| 319 | |
| 320 | // get a floating-point scaler using zc with bottom 2 bits set to 1 (which represents 1.f) |
| 321 | __m128i sf = _mm_or_si128(cf, _mm_set1_epi32(3)); |
| 322 | __m128 ss = _mm_div_ps(_mm_set1_ps(scale), _mm_cvtepi32_ps(sf)); |
| 323 | |
| 324 | // convert x/y/z to [-1..1] (scaled...) |
| 325 | __m128 x = _mm_mul_ps(_mm_cvtepi32_ps(xf), ss); |
| 326 | __m128 y = _mm_mul_ps(_mm_cvtepi32_ps(yf), ss); |
| 327 | __m128 z = _mm_mul_ps(_mm_cvtepi32_ps(zf), ss); |
| 328 | |
| 329 | // reconstruct w as a square root; we clamp to 0.f to avoid NaN due to precision errors |
| 330 | __m128 ww = _mm_sub_ps(_mm_set1_ps(1.f), _mm_add_ps(_mm_mul_ps(x, x), _mm_add_ps(_mm_mul_ps(y, y), _mm_mul_ps(z, z)))); |
| 331 | __m128 w = _mm_sqrt_ps(_mm_max_ps(ww, _mm_setzero_ps())); |
| 332 | |
| 333 | __m128 s = _mm_set1_ps(32767.f); |
| 334 | |
| 335 | // rounded signed float->int |
| 336 | __m128i xr = _mm_cvtps_epi32(_mm_mul_ps(x, s)); |
| 337 | __m128i yr = _mm_cvtps_epi32(_mm_mul_ps(y, s)); |
| 338 | __m128i zr = _mm_cvtps_epi32(_mm_mul_ps(z, s)); |
| 339 | __m128i wr = _mm_cvtps_epi32(_mm_mul_ps(w, s)); |
| 340 | |
| 341 | // mix x/z and w/y to make 16-bit unpack easier |
| 342 | __m128i xzr = _mm_or_si128(_mm_and_si128(xr, _mm_set1_epi32(0xffff)), _mm_slli_epi32(zr, 16)); |
| 343 | __m128i wyr = _mm_or_si128(_mm_and_si128(wr, _mm_set1_epi32(0xffff)), _mm_slli_epi32(yr, 16)); |
| 344 | |
| 345 | // pack x/y/z/w using 16-bit unpacks; we pack wxyz by default (for qc=0) |
| 346 | __m128i res_0 = _mm_unpacklo_epi16(wyr, xzr); |
| 347 | __m128i res_1 = _mm_unpackhi_epi16(wyr, xzr); |
| 348 | |
| 349 | // store results to stack so that we can rotate using scalar instructions |
| 350 | uint64_t res[4]; |
| 351 | _mm_storeu_si128(reinterpret_cast<__m128i*>(&res[0]), res_0); |
| 352 | _mm_storeu_si128(reinterpret_cast<__m128i*>(&res[2]), res_1); |
| 353 | |
| 354 | // rotate and store |
| 355 | uint64_t* out = reinterpret_cast<uint64_t*>(&data[i * 4]); |
| 356 | |
| 357 | out[0] = rotateleft64(res[0], data[(i + 0) * 4 + 3] << 4); |
| 358 | out[1] = rotateleft64(res[1], data[(i + 1) * 4 + 3] << 4); |
| 359 | out[2] = rotateleft64(res[2], data[(i + 2) * 4 + 3] << 4); |
| 360 | out[3] = rotateleft64(res[3], data[(i + 3) * 4 + 3] << 4); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | static void decodeFilterExpSimd(unsigned int* data, size_t count) |
| 365 | { |
| 366 | for (size_t i = 0; i < count; i += 4) |
| 367 | { |
| 368 | __m128i v = _mm_loadu_si128(reinterpret_cast<__m128i*>(&data[i])); |
| 369 | |
| 370 | // decode exponent into 2^x directly |
| 371 | __m128i ef = _mm_srai_epi32(v, 24); |
| 372 | __m128i es = _mm_slli_epi32(_mm_add_epi32(ef, _mm_set1_epi32(127)), 23); |
| 373 | |
| 374 | // decode 24-bit mantissa into floating-point value |
| 375 | __m128i mf = _mm_srai_epi32(_mm_slli_epi32(v, 8), 8); |
| 376 | __m128 m = _mm_cvtepi32_ps(mf); |
| 377 | |
| 378 | __m128 r = _mm_mul_ps(_mm_castsi128_ps(es), m); |
| 379 | |
| 380 | _mm_storeu_ps(reinterpret_cast<float*>(&data[i]), r); |
| 381 | } |
| 382 | } |
| 383 | #endif |
| 384 | |
| 385 | #if defined(SIMD_NEON) && !defined(__aarch64__) && !defined(_M_ARM64) |
| 386 | inline float32x4_t vsqrtq_f32(float32x4_t x) |
| 387 | { |
| 388 | float32x4_t r = vrsqrteq_f32(x); |
| 389 | r = vmulq_f32(r, vrsqrtsq_f32(vmulq_f32(r, x), r)); // refine rsqrt estimate |
| 390 | return vmulq_f32(r, x); |
| 391 | } |
| 392 | |
| 393 | inline float32x4_t vdivq_f32(float32x4_t x, float32x4_t y) |
| 394 | { |
| 395 | float32x4_t r = vrecpeq_f32(y); |
| 396 | r = vmulq_f32(r, vrecpsq_f32(y, r)); // refine rcp estimate |
| 397 | return vmulq_f32(x, r); |
| 398 | } |
| 399 | #endif |
| 400 | |
| 401 | #ifdef SIMD_NEON |
| 402 | static void decodeFilterOctSimd(signed char* data, size_t count) |
| 403 | { |
| 404 | const int32x4_t sign = vdupq_n_s32(0x80000000); |
| 405 | |
| 406 | for (size_t i = 0; i < count; i += 4) |
| 407 | { |
| 408 | int32x4_t n4 = vld1q_s32(reinterpret_cast<int32_t*>(&data[i * 4])); |
| 409 | |
| 410 | // sign-extends each of x,y in [x y ? ?] with arithmetic shifts |
| 411 | int32x4_t xf = vshrq_n_s32(vshlq_n_s32(n4, 24), 24); |
| 412 | int32x4_t yf = vshrq_n_s32(vshlq_n_s32(n4, 16), 24); |
| 413 | |
| 414 | // unpack z; note that z is unsigned so we technically don't need to sign extend it |
| 415 | int32x4_t zf = vshrq_n_s32(vshlq_n_s32(n4, 8), 24); |
| 416 | |
| 417 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 418 | float32x4_t x = vcvtq_f32_s32(xf); |
| 419 | float32x4_t y = vcvtq_f32_s32(yf); |
| 420 | float32x4_t z = vsubq_f32(vcvtq_f32_s32(zf), vaddq_f32(vabsq_f32(x), vabsq_f32(y))); |
| 421 | |
| 422 | // fixup octahedral coordinates for z<0 |
| 423 | float32x4_t t = vminq_f32(z, vdupq_n_f32(0.f)); |
| 424 | |
| 425 | x = vaddq_f32(x, vreinterpretq_f32_s32(veorq_s32(vreinterpretq_s32_f32(t), vandq_s32(vreinterpretq_s32_f32(x), sign)))); |
| 426 | y = vaddq_f32(y, vreinterpretq_f32_s32(veorq_s32(vreinterpretq_s32_f32(t), vandq_s32(vreinterpretq_s32_f32(y), sign)))); |
| 427 | |
| 428 | // compute normal length & scale |
| 429 | float32x4_t ll = vaddq_f32(vmulq_f32(x, x), vaddq_f32(vmulq_f32(y, y), vmulq_f32(z, z))); |
| 430 | float32x4_t rl = vrsqrteq_f32(ll); |
| 431 | float32x4_t s = vmulq_f32(vdupq_n_f32(127.f), rl); |
| 432 | |
| 433 | // fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value |
| 434 | // note: the result is offset by 0x4B40_0000, but we only need the low 16 bits so we can omit the subtraction |
| 435 | const float32x4_t fsnap = vdupq_n_f32(3 << 22); |
| 436 | |
| 437 | int32x4_t xr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(x, s), fsnap)); |
| 438 | int32x4_t yr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(y, s), fsnap)); |
| 439 | int32x4_t zr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(z, s), fsnap)); |
| 440 | |
| 441 | // combine xr/yr/zr into final value |
| 442 | int32x4_t res = vandq_s32(n4, vdupq_n_s32(0xff000000)); |
| 443 | res = vorrq_s32(res, vandq_s32(xr, vdupq_n_s32(0xff))); |
| 444 | res = vorrq_s32(res, vshlq_n_s32(vandq_s32(yr, vdupq_n_s32(0xff)), 8)); |
| 445 | res = vorrq_s32(res, vshlq_n_s32(vandq_s32(zr, vdupq_n_s32(0xff)), 16)); |
| 446 | |
| 447 | vst1q_s32(reinterpret_cast<int32_t*>(&data[i * 4]), res); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | static void decodeFilterOctSimd(short* data, size_t count) |
| 452 | { |
| 453 | const int32x4_t sign = vdupq_n_s32(0x80000000); |
| 454 | |
| 455 | for (size_t i = 0; i < count; i += 4) |
| 456 | { |
| 457 | int32x4_t n4_0 = vld1q_s32(reinterpret_cast<int32_t*>(&data[(i + 0) * 4])); |
| 458 | int32x4_t n4_1 = vld1q_s32(reinterpret_cast<int32_t*>(&data[(i + 2) * 4])); |
| 459 | |
| 460 | // gather both x/y 16-bit pairs in each 32-bit lane |
| 461 | int32x4_t n4 = vuzpq_s32(n4_0, n4_1).val[0]; |
| 462 | |
| 463 | // sign-extends each of x,y in [x y] with arithmetic shifts |
| 464 | int32x4_t xf = vshrq_n_s32(vshlq_n_s32(n4, 16), 16); |
| 465 | int32x4_t yf = vshrq_n_s32(n4, 16); |
| 466 | |
| 467 | // unpack z; note that z is unsigned so we don't need to sign extend it |
| 468 | int32x4_t z4 = vuzpq_s32(n4_0, n4_1).val[1]; |
| 469 | int32x4_t zf = vandq_s32(z4, vdupq_n_s32(0x7fff)); |
| 470 | |
| 471 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 472 | float32x4_t x = vcvtq_f32_s32(xf); |
| 473 | float32x4_t y = vcvtq_f32_s32(yf); |
| 474 | float32x4_t z = vsubq_f32(vcvtq_f32_s32(zf), vaddq_f32(vabsq_f32(x), vabsq_f32(y))); |
| 475 | |
| 476 | // fixup octahedral coordinates for z<0 |
| 477 | float32x4_t t = vminq_f32(z, vdupq_n_f32(0.f)); |
| 478 | |
| 479 | x = vaddq_f32(x, vreinterpretq_f32_s32(veorq_s32(vreinterpretq_s32_f32(t), vandq_s32(vreinterpretq_s32_f32(x), sign)))); |
| 480 | y = vaddq_f32(y, vreinterpretq_f32_s32(veorq_s32(vreinterpretq_s32_f32(t), vandq_s32(vreinterpretq_s32_f32(y), sign)))); |
| 481 | |
| 482 | // compute normal length & scale |
| 483 | float32x4_t ll = vaddq_f32(vmulq_f32(x, x), vaddq_f32(vmulq_f32(y, y), vmulq_f32(z, z))); |
| 484 | float32x4_t rl = vrsqrteq_f32(ll); |
| 485 | rl = vmulq_f32(rl, vrsqrtsq_f32(vmulq_f32(rl, ll), rl)); // refine rsqrt estimate |
| 486 | float32x4_t s = vmulq_f32(vdupq_n_f32(32767.f), rl); |
| 487 | |
| 488 | // fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value |
| 489 | // note: the result is offset by 0x4B40_0000, but we only need the low 16 bits so we can omit the subtraction |
| 490 | const float32x4_t fsnap = vdupq_n_f32(3 << 22); |
| 491 | |
| 492 | int32x4_t xr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(x, s), fsnap)); |
| 493 | int32x4_t yr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(y, s), fsnap)); |
| 494 | int32x4_t zr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(z, s), fsnap)); |
| 495 | |
| 496 | // mix x/z and y/0 to make 16-bit unpack easier |
| 497 | int32x4_t xzr = vorrq_s32(vandq_s32(xr, vdupq_n_s32(0xffff)), vshlq_n_s32(zr, 16)); |
| 498 | int32x4_t y0r = vandq_s32(yr, vdupq_n_s32(0xffff)); |
| 499 | |
| 500 | // pack x/y/z using 16-bit unpacks; note that this has 0 where we should have .w |
| 501 | int32x4_t res_0 = vreinterpretq_s32_s16(vzipq_s16(vreinterpretq_s16_s32(xzr), vreinterpretq_s16_s32(y0r)).val[0]); |
| 502 | int32x4_t res_1 = vreinterpretq_s32_s16(vzipq_s16(vreinterpretq_s16_s32(xzr), vreinterpretq_s16_s32(y0r)).val[1]); |
| 503 | |
| 504 | // patch in .w |
| 505 | res_0 = vbslq_s32(vreinterpretq_u32_u64(vdupq_n_u64(0xffff000000000000)), n4_0, res_0); |
| 506 | res_1 = vbslq_s32(vreinterpretq_u32_u64(vdupq_n_u64(0xffff000000000000)), n4_1, res_1); |
| 507 | |
| 508 | vst1q_s32(reinterpret_cast<int32_t*>(&data[(i + 0) * 4]), res_0); |
| 509 | vst1q_s32(reinterpret_cast<int32_t*>(&data[(i + 2) * 4]), res_1); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | static void decodeFilterQuatSimd(short* data, size_t count) |
| 514 | { |
| 515 | const float scale = 1.f / sqrtf(2.f); |
| 516 | |
| 517 | for (size_t i = 0; i < count; i += 4) |
| 518 | { |
| 519 | int32x4_t q4_0 = vld1q_s32(reinterpret_cast<int32_t*>(&data[(i + 0) * 4])); |
| 520 | int32x4_t q4_1 = vld1q_s32(reinterpret_cast<int32_t*>(&data[(i + 2) * 4])); |
| 521 | |
| 522 | // gather both x/y 16-bit pairs in each 32-bit lane |
| 523 | int32x4_t q4_xy = vuzpq_s32(q4_0, q4_1).val[0]; |
| 524 | int32x4_t q4_zc = vuzpq_s32(q4_0, q4_1).val[1]; |
| 525 | |
| 526 | // sign-extends each of x,y in [x y] with arithmetic shifts |
| 527 | int32x4_t xf = vshrq_n_s32(vshlq_n_s32(q4_xy, 16), 16); |
| 528 | int32x4_t yf = vshrq_n_s32(q4_xy, 16); |
| 529 | int32x4_t zf = vshrq_n_s32(vshlq_n_s32(q4_zc, 16), 16); |
| 530 | int32x4_t cf = vshrq_n_s32(q4_zc, 16); |
| 531 | |
| 532 | // get a floating-point scaler using zc with bottom 2 bits set to 1 (which represents 1.f) |
| 533 | int32x4_t sf = vorrq_s32(cf, vdupq_n_s32(3)); |
| 534 | float32x4_t ss = vdivq_f32(vdupq_n_f32(scale), vcvtq_f32_s32(sf)); |
| 535 | |
| 536 | // convert x/y/z to [-1..1] (scaled...) |
| 537 | float32x4_t x = vmulq_f32(vcvtq_f32_s32(xf), ss); |
| 538 | float32x4_t y = vmulq_f32(vcvtq_f32_s32(yf), ss); |
| 539 | float32x4_t z = vmulq_f32(vcvtq_f32_s32(zf), ss); |
| 540 | |
| 541 | // reconstruct w as a square root; we clamp to 0.f to avoid NaN due to precision errors |
| 542 | float32x4_t ww = vsubq_f32(vdupq_n_f32(1.f), vaddq_f32(vmulq_f32(x, x), vaddq_f32(vmulq_f32(y, y), vmulq_f32(z, z)))); |
| 543 | float32x4_t w = vsqrtq_f32(vmaxq_f32(ww, vdupq_n_f32(0.f))); |
| 544 | |
| 545 | float32x4_t s = vdupq_n_f32(32767.f); |
| 546 | |
| 547 | // fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value |
| 548 | // note: the result is offset by 0x4B40_0000, but we only need the low 16 bits so we can omit the subtraction |
| 549 | const float32x4_t fsnap = vdupq_n_f32(3 << 22); |
| 550 | |
| 551 | int32x4_t xr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(x, s), fsnap)); |
| 552 | int32x4_t yr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(y, s), fsnap)); |
| 553 | int32x4_t zr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(z, s), fsnap)); |
| 554 | int32x4_t wr = vreinterpretq_s32_f32(vaddq_f32(vmulq_f32(w, s), fsnap)); |
| 555 | |
| 556 | // mix x/z and w/y to make 16-bit unpack easier |
| 557 | int32x4_t xzr = vorrq_s32(vandq_s32(xr, vdupq_n_s32(0xffff)), vshlq_n_s32(zr, 16)); |
| 558 | int32x4_t wyr = vorrq_s32(vandq_s32(wr, vdupq_n_s32(0xffff)), vshlq_n_s32(yr, 16)); |
| 559 | |
| 560 | // pack x/y/z/w using 16-bit unpacks; we pack wxyz by default (for qc=0) |
| 561 | int32x4_t res_0 = vreinterpretq_s32_s16(vzipq_s16(vreinterpretq_s16_s32(wyr), vreinterpretq_s16_s32(xzr)).val[0]); |
| 562 | int32x4_t res_1 = vreinterpretq_s32_s16(vzipq_s16(vreinterpretq_s16_s32(wyr), vreinterpretq_s16_s32(xzr)).val[1]); |
| 563 | |
| 564 | // rotate and store |
| 565 | uint64_t* out = (uint64_t*)&data[i * 4]; |
| 566 | |
| 567 | out[0] = rotateleft64(vgetq_lane_u64(vreinterpretq_u64_s32(res_0), 0), vgetq_lane_s32(cf, 0) << 4); |
| 568 | out[1] = rotateleft64(vgetq_lane_u64(vreinterpretq_u64_s32(res_0), 1), vgetq_lane_s32(cf, 1) << 4); |
| 569 | out[2] = rotateleft64(vgetq_lane_u64(vreinterpretq_u64_s32(res_1), 0), vgetq_lane_s32(cf, 2) << 4); |
| 570 | out[3] = rotateleft64(vgetq_lane_u64(vreinterpretq_u64_s32(res_1), 1), vgetq_lane_s32(cf, 3) << 4); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | static void decodeFilterExpSimd(unsigned int* data, size_t count) |
| 575 | { |
| 576 | for (size_t i = 0; i < count; i += 4) |
| 577 | { |
| 578 | int32x4_t v = vld1q_s32(reinterpret_cast<int32_t*>(&data[i])); |
| 579 | |
| 580 | // decode exponent into 2^x directly |
| 581 | int32x4_t ef = vshrq_n_s32(v, 24); |
| 582 | int32x4_t es = vshlq_n_s32(vaddq_s32(ef, vdupq_n_s32(127)), 23); |
| 583 | |
| 584 | // decode 24-bit mantissa into floating-point value |
| 585 | int32x4_t mf = vshrq_n_s32(vshlq_n_s32(v, 8), 8); |
| 586 | float32x4_t m = vcvtq_f32_s32(mf); |
| 587 | |
| 588 | float32x4_t r = vmulq_f32(vreinterpretq_f32_s32(es), m); |
| 589 | |
| 590 | vst1q_f32(reinterpret_cast<float*>(&data[i]), r); |
| 591 | } |
| 592 | } |
| 593 | #endif |
| 594 | |
| 595 | #ifdef SIMD_WASM |
| 596 | static void decodeFilterOctSimd(signed char* data, size_t count) |
| 597 | { |
| 598 | const v128_t sign = wasm_f32x4_splat(-0.f); |
| 599 | |
| 600 | for (size_t i = 0; i < count; i += 4) |
| 601 | { |
| 602 | v128_t n4 = wasm_v128_load(&data[i * 4]); |
| 603 | |
| 604 | // sign-extends each of x,y in [x y ? ?] with arithmetic shifts |
| 605 | v128_t xf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 24), 24); |
| 606 | v128_t yf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 16), 24); |
| 607 | |
| 608 | // unpack z; note that z is unsigned so we technically don't need to sign extend it |
| 609 | v128_t zf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 8), 24); |
| 610 | |
| 611 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 612 | v128_t x = wasm_f32x4_convert_i32x4(xf); |
| 613 | v128_t y = wasm_f32x4_convert_i32x4(yf); |
| 614 | v128_t z = wasm_f32x4_sub(wasm_f32x4_convert_i32x4(zf), wasm_f32x4_add(wasm_f32x4_abs(x), wasm_f32x4_abs(y))); |
| 615 | |
| 616 | // fixup octahedral coordinates for z<0 |
| 617 | // note: i32x4_min with 0 is equvalent to f32x4_min |
| 618 | v128_t t = wasm_i32x4_min(z, wasm_i32x4_splat(0)); |
| 619 | |
| 620 | x = wasm_f32x4_add(x, wasm_v128_xor(t, wasm_v128_and(x, sign))); |
| 621 | y = wasm_f32x4_add(y, wasm_v128_xor(t, wasm_v128_and(y, sign))); |
| 622 | |
| 623 | // compute normal length & scale |
| 624 | v128_t ll = wasm_f32x4_add(wasm_f32x4_mul(x, x), wasm_f32x4_add(wasm_f32x4_mul(y, y), wasm_f32x4_mul(z, z))); |
| 625 | v128_t s = wasm_f32x4_div(wasm_f32x4_splat(127.f), wasm_f32x4_sqrt(ll)); |
| 626 | |
| 627 | // fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value |
| 628 | // note: the result is offset by 0x4B40_0000, but we only need the low 8 bits so we can omit the subtraction |
| 629 | const v128_t fsnap = wasm_f32x4_splat(3 << 22); |
| 630 | |
| 631 | v128_t xr = wasm_f32x4_add(wasm_f32x4_mul(x, s), fsnap); |
| 632 | v128_t yr = wasm_f32x4_add(wasm_f32x4_mul(y, s), fsnap); |
| 633 | v128_t zr = wasm_f32x4_add(wasm_f32x4_mul(z, s), fsnap); |
| 634 | |
| 635 | // combine xr/yr/zr into final value |
| 636 | v128_t res = wasm_v128_and(n4, wasm_i32x4_splat(0xff000000)); |
| 637 | res = wasm_v128_or(res, wasm_v128_and(xr, wasm_i32x4_splat(0xff))); |
| 638 | res = wasm_v128_or(res, wasm_i32x4_shl(wasm_v128_and(yr, wasm_i32x4_splat(0xff)), 8)); |
| 639 | res = wasm_v128_or(res, wasm_i32x4_shl(wasm_v128_and(zr, wasm_i32x4_splat(0xff)), 16)); |
| 640 | |
| 641 | wasm_v128_store(&data[i * 4], res); |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | static void decodeFilterOctSimd(short* data, size_t count) |
| 646 | { |
| 647 | const v128_t sign = wasm_f32x4_splat(-0.f); |
| 648 | const v128_t zmask = wasm_i32x4_splat(0x7fff); |
| 649 | |
| 650 | for (size_t i = 0; i < count; i += 4) |
| 651 | { |
| 652 | v128_t n4_0 = wasm_v128_load(&data[(i + 0) * 4]); |
| 653 | v128_t n4_1 = wasm_v128_load(&data[(i + 2) * 4]); |
| 654 | |
| 655 | // gather both x/y 16-bit pairs in each 32-bit lane |
| 656 | v128_t n4 = wasmx_unziplo_v32x4(n4_0, n4_1); |
| 657 | |
| 658 | // sign-extends each of x,y in [x y] with arithmetic shifts |
| 659 | v128_t xf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 16), 16); |
| 660 | v128_t yf = wasm_i32x4_shr(n4, 16); |
| 661 | |
| 662 | // unpack z; note that z is unsigned so we don't need to sign extend it |
| 663 | v128_t z4 = wasmx_unziphi_v32x4(n4_0, n4_1); |
| 664 | v128_t zf = wasm_v128_and(z4, zmask); |
| 665 | |
| 666 | // convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count |
| 667 | v128_t x = wasm_f32x4_convert_i32x4(xf); |
| 668 | v128_t y = wasm_f32x4_convert_i32x4(yf); |
| 669 | v128_t z = wasm_f32x4_sub(wasm_f32x4_convert_i32x4(zf), wasm_f32x4_add(wasm_f32x4_abs(x), wasm_f32x4_abs(y))); |
| 670 | |
| 671 | // fixup octahedral coordinates for z<0 |
| 672 | // note: i32x4_min with 0 is equvalent to f32x4_min |
| 673 | v128_t t = wasm_i32x4_min(z, wasm_i32x4_splat(0)); |
| 674 | |
| 675 | x = wasm_f32x4_add(x, wasm_v128_xor(t, wasm_v128_and(x, sign))); |
| 676 | y = wasm_f32x4_add(y, wasm_v128_xor(t, wasm_v128_and(y, sign))); |
| 677 | |
| 678 | // compute normal length & scale |
| 679 | v128_t ll = wasm_f32x4_add(wasm_f32x4_mul(x, x), wasm_f32x4_add(wasm_f32x4_mul(y, y), wasm_f32x4_mul(z, z))); |
| 680 | v128_t s = wasm_f32x4_div(wasm_f32x4_splat(32767.f), wasm_f32x4_sqrt(ll)); |
| 681 | |
| 682 | // fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value |
| 683 | // note: the result is offset by 0x4B40_0000, but we only need the low 16 bits so we can omit the subtraction |
| 684 | const v128_t fsnap = wasm_f32x4_splat(3 << 22); |
| 685 | |
| 686 | v128_t xr = wasm_f32x4_add(wasm_f32x4_mul(x, s), fsnap); |
| 687 | v128_t yr = wasm_f32x4_add(wasm_f32x4_mul(y, s), fsnap); |
| 688 | v128_t zr = wasm_f32x4_add(wasm_f32x4_mul(z, s), fsnap); |
| 689 | |
| 690 | // mix x/z and y/0 to make 16-bit unpack easier |
| 691 | v128_t xzr = wasm_v128_or(wasm_v128_and(xr, wasm_i32x4_splat(0xffff)), wasm_i32x4_shl(zr, 16)); |
| 692 | v128_t y0r = wasm_v128_and(yr, wasm_i32x4_splat(0xffff)); |
| 693 | |
| 694 | // pack x/y/z using 16-bit unpacks; note that this has 0 where we should have .w |
| 695 | v128_t res_0 = wasmx_unpacklo_v16x8(xzr, y0r); |
| 696 | v128_t res_1 = wasmx_unpackhi_v16x8(xzr, y0r); |
| 697 | |
| 698 | // patch in .w |
| 699 | res_0 = wasm_v128_or(res_0, wasm_v128_and(n4_0, wasm_i64x2_splat(0xffff000000000000))); |
| 700 | res_1 = wasm_v128_or(res_1, wasm_v128_and(n4_1, wasm_i64x2_splat(0xffff000000000000))); |
| 701 | |
| 702 | wasm_v128_store(&data[(i + 0) * 4], res_0); |
| 703 | wasm_v128_store(&data[(i + 2) * 4], res_1); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | static void decodeFilterQuatSimd(short* data, size_t count) |
| 708 | { |
| 709 | const float scale = 1.f / sqrtf(2.f); |
| 710 | |
| 711 | for (size_t i = 0; i < count; i += 4) |
| 712 | { |
| 713 | v128_t q4_0 = wasm_v128_load(&data[(i + 0) * 4]); |
| 714 | v128_t q4_1 = wasm_v128_load(&data[(i + 2) * 4]); |
| 715 | |
| 716 | // gather both x/y 16-bit pairs in each 32-bit lane |
| 717 | v128_t q4_xy = wasmx_unziplo_v32x4(q4_0, q4_1); |
| 718 | v128_t q4_zc = wasmx_unziphi_v32x4(q4_0, q4_1); |
| 719 | |
| 720 | // sign-extends each of x,y in [x y] with arithmetic shifts |
| 721 | v128_t xf = wasm_i32x4_shr(wasm_i32x4_shl(q4_xy, 16), 16); |
| 722 | v128_t yf = wasm_i32x4_shr(q4_xy, 16); |
| 723 | v128_t zf = wasm_i32x4_shr(wasm_i32x4_shl(q4_zc, 16), 16); |
| 724 | v128_t cf = wasm_i32x4_shr(q4_zc, 16); |
| 725 | |
| 726 | // get a floating-point scaler using zc with bottom 2 bits set to 1 (which represents 1.f) |
| 727 | v128_t sf = wasm_v128_or(cf, wasm_i32x4_splat(3)); |
| 728 | v128_t ss = wasm_f32x4_div(wasm_f32x4_splat(scale), wasm_f32x4_convert_i32x4(sf)); |
| 729 | |
| 730 | // convert x/y/z to [-1..1] (scaled...) |
| 731 | v128_t x = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(xf), ss); |
| 732 | v128_t y = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(yf), ss); |
| 733 | v128_t z = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(zf), ss); |
| 734 | |
| 735 | // reconstruct w as a square root; we clamp to 0.f to avoid NaN due to precision errors |
| 736 | // note: i32x4_max with 0 is equivalent to f32x4_max |
| 737 | v128_t ww = wasm_f32x4_sub(wasm_f32x4_splat(1.f), wasm_f32x4_add(wasm_f32x4_mul(x, x), wasm_f32x4_add(wasm_f32x4_mul(y, y), wasm_f32x4_mul(z, z)))); |
| 738 | v128_t w = wasm_f32x4_sqrt(wasm_i32x4_max(ww, wasm_i32x4_splat(0))); |
| 739 | |
| 740 | v128_t s = wasm_f32x4_splat(32767.f); |
| 741 | |
| 742 | // fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value |
| 743 | // note: the result is offset by 0x4B40_0000, but we only need the low 16 bits so we can omit the subtraction |
| 744 | const v128_t fsnap = wasm_f32x4_splat(3 << 22); |
| 745 | |
| 746 | v128_t xr = wasm_f32x4_add(wasm_f32x4_mul(x, s), fsnap); |
| 747 | v128_t yr = wasm_f32x4_add(wasm_f32x4_mul(y, s), fsnap); |
| 748 | v128_t zr = wasm_f32x4_add(wasm_f32x4_mul(z, s), fsnap); |
| 749 | v128_t wr = wasm_f32x4_add(wasm_f32x4_mul(w, s), fsnap); |
| 750 | |
| 751 | // mix x/z and w/y to make 16-bit unpack easier |
| 752 | v128_t xzr = wasm_v128_or(wasm_v128_and(xr, wasm_i32x4_splat(0xffff)), wasm_i32x4_shl(zr, 16)); |
| 753 | v128_t wyr = wasm_v128_or(wasm_v128_and(wr, wasm_i32x4_splat(0xffff)), wasm_i32x4_shl(yr, 16)); |
| 754 | |
| 755 | // pack x/y/z/w using 16-bit unpacks; we pack wxyz by default (for qc=0) |
| 756 | v128_t res_0 = wasmx_unpacklo_v16x8(wyr, xzr); |
| 757 | v128_t res_1 = wasmx_unpackhi_v16x8(wyr, xzr); |
| 758 | |
| 759 | // compute component index shifted left by 4 (and moved into i32x4 slot) |
| 760 | // TODO: volatile here works around LLVM mis-optimizing code; https://github.com/emscripten-core/emscripten/issues/11449 |
| 761 | volatile v128_t cm = wasm_i32x4_shl(cf, 4); |
| 762 | |
| 763 | // rotate and store |
| 764 | uint64_t* out = reinterpret_cast<uint64_t*>(&data[i * 4]); |
| 765 | |
| 766 | out[0] = rotateleft64(wasm_i64x2_extract_lane(res_0, 0), wasm_i32x4_extract_lane(cm, 0)); |
| 767 | out[1] = rotateleft64(wasm_i64x2_extract_lane(res_0, 1), wasm_i32x4_extract_lane(cm, 1)); |
| 768 | out[2] = rotateleft64(wasm_i64x2_extract_lane(res_1, 0), wasm_i32x4_extract_lane(cm, 2)); |
| 769 | out[3] = rotateleft64(wasm_i64x2_extract_lane(res_1, 1), wasm_i32x4_extract_lane(cm, 3)); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | static void decodeFilterExpSimd(unsigned int* data, size_t count) |
| 774 | { |
| 775 | for (size_t i = 0; i < count; i += 4) |
| 776 | { |
| 777 | v128_t v = wasm_v128_load(&data[i]); |
| 778 | |
| 779 | // decode exponent into 2^x directly |
| 780 | v128_t ef = wasm_i32x4_shr(v, 24); |
| 781 | v128_t es = wasm_i32x4_shl(wasm_i32x4_add(ef, wasm_i32x4_splat(127)), 23); |
| 782 | |
| 783 | // decode 24-bit mantissa into floating-point value |
| 784 | v128_t mf = wasm_i32x4_shr(wasm_i32x4_shl(v, 8), 8); |
| 785 | v128_t m = wasm_f32x4_convert_i32x4(mf); |
| 786 | |
| 787 | v128_t r = wasm_f32x4_mul(es, m); |
| 788 | |
| 789 | wasm_v128_store(&data[i], r); |
| 790 | } |
| 791 | } |
| 792 | #endif |
| 793 | |
| 794 | } // namespace meshopt |
| 795 | |
| 796 | void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride) |
| 797 | { |
| 798 | using namespace meshopt; |
| 799 | |
| 800 | assert(stride == 4 || stride == 8); |
| 801 | |
| 802 | #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 803 | if (stride == 4) |
| 804 | dispatchSimd(decodeFilterOctSimd, static_cast<signed char*>(buffer), count, 4); |
| 805 | else |
| 806 | dispatchSimd(decodeFilterOctSimd, static_cast<short*>(buffer), count, 4); |
| 807 | #else |
| 808 | if (stride == 4) |
| 809 | decodeFilterOct(static_cast<signed char*>(buffer), count); |
| 810 | else |
| 811 | decodeFilterOct(static_cast<short*>(buffer), count); |
| 812 | #endif |
| 813 | } |
| 814 | |
| 815 | void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride) |
| 816 | { |
| 817 | using namespace meshopt; |
| 818 | |
| 819 | assert(stride == 8); |
| 820 | (void)stride; |
| 821 | |
| 822 | #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 823 | dispatchSimd(decodeFilterQuatSimd, static_cast<short*>(buffer), count, 4); |
| 824 | #else |
| 825 | decodeFilterQuat(static_cast<short*>(buffer), count); |
| 826 | #endif |
| 827 | } |
| 828 | |
| 829 | void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride) |
| 830 | { |
| 831 | using namespace meshopt; |
| 832 | |
| 833 | assert(stride > 0 && stride % 4 == 0); |
| 834 | |
| 835 | #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) |
| 836 | dispatchSimd(decodeFilterExpSimd, static_cast<unsigned int*>(buffer), count * (stride / 4), 1); |
| 837 | #else |
| 838 | decodeFilterExp(static_cast<unsigned int*>(buffer), count * (stride / 4)); |
| 839 | #endif |
| 840 | } |
| 841 | |
| 842 | void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data) |
| 843 | { |
| 844 | assert(stride == 4 || stride == 8); |
| 845 | assert(bits >= 1 && bits <= 16); |
| 846 | |
| 847 | signed char* d8 = static_cast<signed char*>(destination); |
| 848 | short* d16 = static_cast<short*>(destination); |
| 849 | |
| 850 | int bytebits = int(stride * 2); |
| 851 | |
| 852 | for (size_t i = 0; i < count; ++i) |
| 853 | { |
| 854 | const float* n = &data[i * 4]; |
| 855 | |
| 856 | // octahedral encoding of a unit vector |
| 857 | float nx = n[0], ny = n[1], nz = n[2], nw = n[3]; |
| 858 | float nl = fabsf(nx) + fabsf(ny) + fabsf(nz); |
| 859 | float ns = nl == 0.f ? 0.f : 1.f / nl; |
| 860 | |
| 861 | nx *= ns; |
| 862 | ny *= ns; |
| 863 | |
| 864 | float u = (nz >= 0.f) ? nx : (1 - fabsf(ny)) * (nx >= 0.f ? 1.f : -1.f); |
| 865 | float v = (nz >= 0.f) ? ny : (1 - fabsf(nx)) * (ny >= 0.f ? 1.f : -1.f); |
| 866 | |
| 867 | int fu = meshopt_quantizeSnorm(u, bits); |
| 868 | int fv = meshopt_quantizeSnorm(v, bits); |
| 869 | int fo = meshopt_quantizeSnorm(1.f, bits); |
| 870 | int fw = meshopt_quantizeSnorm(nw, bytebits); |
| 871 | |
| 872 | if (stride == 4) |
| 873 | { |
| 874 | d8[i * 4 + 0] = (signed char)(fu); |
| 875 | d8[i * 4 + 1] = (signed char)(fv); |
| 876 | d8[i * 4 + 2] = (signed char)(fo); |
| 877 | d8[i * 4 + 3] = (signed char)(fw); |
| 878 | } |
| 879 | else |
| 880 | { |
| 881 | d16[i * 4 + 0] = short(fu); |
| 882 | d16[i * 4 + 1] = short(fv); |
| 883 | d16[i * 4 + 2] = short(fo); |
| 884 | d16[i * 4 + 3] = short(fw); |
| 885 | } |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | void meshopt_encodeFilterQuat(void* destination_, size_t count, size_t stride, int bits, const float* data) |
| 890 | { |
| 891 | assert(stride == 8); |
| 892 | assert(bits >= 4 && bits <= 16); |
| 893 | (void)stride; |
| 894 | |
| 895 | short* destination = static_cast<short*>(destination_); |
| 896 | |
| 897 | const float scaler = sqrtf(2.f); |
| 898 | |
| 899 | for (size_t i = 0; i < count; ++i) |
| 900 | { |
| 901 | const float* q = &data[i * 4]; |
| 902 | short* d = &destination[i * 4]; |
| 903 | |
| 904 | // establish maximum quaternion component |
| 905 | int qc = 0; |
| 906 | qc = fabsf(q[1]) > fabsf(q[qc]) ? 1 : qc; |
| 907 | qc = fabsf(q[2]) > fabsf(q[qc]) ? 2 : qc; |
| 908 | qc = fabsf(q[3]) > fabsf(q[qc]) ? 3 : qc; |
| 909 | |
| 910 | // we use double-cover properties to discard the sign |
| 911 | float sign = q[qc] < 0.f ? -1.f : 1.f; |
| 912 | |
| 913 | // note: we always encode a cyclical swizzle to be able to recover the order via rotation |
| 914 | d[0] = short(meshopt_quantizeSnorm(q[(qc + 1) & 3] * scaler * sign, bits)); |
| 915 | d[1] = short(meshopt_quantizeSnorm(q[(qc + 2) & 3] * scaler * sign, bits)); |
| 916 | d[2] = short(meshopt_quantizeSnorm(q[(qc + 3) & 3] * scaler * sign, bits)); |
| 917 | d[3] = short((meshopt_quantizeSnorm(1.f, bits) & ~3) | qc); |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | void meshopt_encodeFilterExp(void* destination_, size_t count, size_t stride, int bits, const float* data) |
| 922 | { |
| 923 | assert(stride > 0 && stride % 4 == 0); |
| 924 | assert(bits >= 1 && bits <= 24); |
| 925 | |
| 926 | unsigned int* destination = static_cast<unsigned int*>(destination_); |
| 927 | size_t stride_float = stride / sizeof(float); |
| 928 | |
| 929 | for (size_t i = 0; i < count; ++i) |
| 930 | { |
| 931 | const float* v = &data[i * stride_float]; |
| 932 | unsigned int* d = &destination[i * stride_float]; |
| 933 | |
| 934 | // use maximum exponent to encode values; this guarantees that mantissa is [-1, 1] |
| 935 | int exp = -100; |
| 936 | |
| 937 | for (size_t j = 0; j < stride_float; ++j) |
| 938 | { |
| 939 | int e; |
| 940 | frexp(v[j], &e); |
| 941 | |
| 942 | exp = (exp < e) ? e : exp; |
| 943 | } |
| 944 | |
| 945 | // note that we additionally scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude) |
| 946 | exp -= (bits - 1); |
| 947 | |
| 948 | // compute renormalized rounded mantissa for each component |
| 949 | int mmask = (1 << 24) - 1; |
| 950 | |
| 951 | for (size_t j = 0; j < stride_float; ++j) |
| 952 | { |
| 953 | int m = int(ldexp(v[j], -exp) + (v[j] >= 0 ? 0.5f : -0.5f)); |
| 954 | |
| 955 | d[j] = (m & mmask) | (unsigned(exp) << 24); |
| 956 | } |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | #undef SIMD_SSE |
| 961 | #undef SIMD_NEON |
| 962 | #undef SIMD_WASM |
| 963 | |