1 | // Copyright(c) 2021 Björn Ottosson |
2 | // |
3 | // Permission is hereby granted, free of charge, to any person obtaining a copy of |
4 | // this software and associated documentation files(the "Software"), to deal in |
5 | // the Software without restriction, including without limitation the rights to |
6 | // use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies |
7 | // of the Software, and to permit persons to whom the Software is furnished to do |
8 | // so, subject to the following conditions : |
9 | // The above copyright notice and this permission notice shall be included in all |
10 | // copies or substantial portions of the Software. |
11 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
12 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
13 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE |
14 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
15 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
16 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
17 | // SOFTWARE. |
18 | |
19 | #ifndef OK_COLOR_H |
20 | #define OK_COLOR_H |
21 | |
22 | #include <cmath> |
23 | #include <cfloat> |
24 | |
25 | class ok_color |
26 | { |
27 | public: |
28 | |
29 | struct Lab { float L; float a; float b; }; |
30 | struct RGB { float r; float g; float b; }; |
31 | struct HSV { float h; float s; float v; }; |
32 | struct HSL { float h; float s; float l; }; |
33 | struct LC { float L; float C; }; |
34 | |
35 | // Alternative representation of (L_cusp, C_cusp) |
36 | // Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp) |
37 | // The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L |
38 | struct ST { float S; float T; }; |
39 | |
40 | static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f; |
41 | |
42 | static float clamp(float x, float min, float max) |
43 | { |
44 | if (x < min) |
45 | return min; |
46 | if (x > max) |
47 | return max; |
48 | |
49 | return x; |
50 | } |
51 | |
52 | static float sgn(float x) |
53 | { |
54 | return (float)(0.f < x) - (float)(x < 0.f); |
55 | } |
56 | |
57 | static float srgb_transfer_function(float a) |
58 | { |
59 | return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f; |
60 | } |
61 | |
62 | static float srgb_transfer_function_inv(float a) |
63 | { |
64 | return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f; |
65 | } |
66 | |
67 | static Lab linear_srgb_to_oklab(RGB c) |
68 | { |
69 | float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b; |
70 | float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b; |
71 | float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b; |
72 | |
73 | float l_ = cbrtf(l); |
74 | float m_ = cbrtf(m); |
75 | float s_ = cbrtf(s); |
76 | |
77 | return { |
78 | 0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_, |
79 | 1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_, |
80 | 0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_, |
81 | }; |
82 | } |
83 | |
84 | static RGB oklab_to_linear_srgb(Lab c) |
85 | { |
86 | float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b; |
87 | float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b; |
88 | float s_ = c.L - 0.0894841775f * c.a - 1.2914855480f * c.b; |
89 | |
90 | float l = l_ * l_ * l_; |
91 | float m = m_ * m_ * m_; |
92 | float s = s_ * s_ * s_; |
93 | |
94 | return { |
95 | +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s, |
96 | -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s, |
97 | -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s, |
98 | }; |
99 | } |
100 | |
101 | // Finds the maximum saturation possible for a given hue that fits in sRGB |
102 | // Saturation here is defined as S = C/L |
103 | // a and b must be normalized so a^2 + b^2 == 1 |
104 | static float compute_max_saturation(float a, float b) |
105 | { |
106 | // Max saturation will be when one of r, g or b goes below zero. |
107 | |
108 | // Select different coefficients depending on which component goes below zero first |
109 | float k0, k1, k2, k3, k4, wl, wm, ws; |
110 | |
111 | if (-1.88170328f * a - 0.80936493f * b > 1) |
112 | { |
113 | // Red component |
114 | k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f; |
115 | wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f; |
116 | } |
117 | else if (1.81444104f * a - 1.19445276f * b > 1) |
118 | { |
119 | // Green component |
120 | k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f; |
121 | wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f; |
122 | } |
123 | else |
124 | { |
125 | // Blue component |
126 | k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f; |
127 | wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f; |
128 | } |
129 | |
130 | // Approximate max saturation using a polynomial: |
131 | float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b; |
132 | |
133 | // Do one step Halley's method to get closer |
134 | // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite |
135 | // this should be sufficient for most applications, otherwise do two/three steps |
136 | |
137 | float k_l = +0.3963377774f * a + 0.2158037573f * b; |
138 | float k_m = -0.1055613458f * a - 0.0638541728f * b; |
139 | float k_s = -0.0894841775f * a - 1.2914855480f * b; |
140 | |
141 | { |
142 | float l_ = 1.f + S * k_l; |
143 | float m_ = 1.f + S * k_m; |
144 | float s_ = 1.f + S * k_s; |
145 | |
146 | float l = l_ * l_ * l_; |
147 | float m = m_ * m_ * m_; |
148 | float s = s_ * s_ * s_; |
149 | |
150 | float l_dS = 3.f * k_l * l_ * l_; |
151 | float m_dS = 3.f * k_m * m_ * m_; |
152 | float s_dS = 3.f * k_s * s_ * s_; |
153 | |
154 | float l_dS2 = 6.f * k_l * k_l * l_; |
155 | float m_dS2 = 6.f * k_m * k_m * m_; |
156 | float s_dS2 = 6.f * k_s * k_s * s_; |
157 | |
158 | float f = wl * l + wm * m + ws * s; |
159 | float f1 = wl * l_dS + wm * m_dS + ws * s_dS; |
160 | float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2; |
161 | |
162 | S = S - f * f1 / (f1 * f1 - 0.5f * f * f2); |
163 | } |
164 | |
165 | return S; |
166 | } |
167 | |
168 | // finds L_cusp and C_cusp for a given hue |
169 | // a and b must be normalized so a^2 + b^2 == 1 |
170 | static LC find_cusp(float a, float b) |
171 | { |
172 | // First, find the maximum saturation (saturation S = C/L) |
173 | float S_cusp = compute_max_saturation(a, b); |
174 | |
175 | // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1: |
176 | RGB rgb_at_max = oklab_to_linear_srgb({ 1, S_cusp * a, S_cusp * b }); |
177 | float L_cusp = cbrtf(1.f / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b)); |
178 | float C_cusp = L_cusp * S_cusp; |
179 | |
180 | return { L_cusp , C_cusp }; |
181 | } |
182 | |
183 | // Finds intersection of the line defined by |
184 | // L = L0 * (1 - t) + t * L1; |
185 | // C = t * C1; |
186 | // a and b must be normalized so a^2 + b^2 == 1 |
187 | static float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp) |
188 | { |
189 | // Find the intersection for upper and lower half seprately |
190 | float t; |
191 | if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.f) |
192 | { |
193 | // Lower half |
194 | |
195 | t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1)); |
196 | } |
197 | else |
198 | { |
199 | // Upper half |
200 | |
201 | // First intersect with triangle |
202 | t = cusp.C * (L0 - 1.f) / (C1 * (cusp.L - 1.f) + cusp.C * (L0 - L1)); |
203 | |
204 | // Then one step Halley's method |
205 | { |
206 | float dL = L1 - L0; |
207 | float dC = C1; |
208 | |
209 | float k_l = +0.3963377774f * a + 0.2158037573f * b; |
210 | float k_m = -0.1055613458f * a - 0.0638541728f * b; |
211 | float k_s = -0.0894841775f * a - 1.2914855480f * b; |
212 | |
213 | float l_dt = dL + dC * k_l; |
214 | float m_dt = dL + dC * k_m; |
215 | float s_dt = dL + dC * k_s; |
216 | |
217 | |
218 | // If higher accuracy is required, 2 or 3 iterations of the following block can be used: |
219 | { |
220 | float L = L0 * (1.f - t) + t * L1; |
221 | float C = t * C1; |
222 | |
223 | float l_ = L + C * k_l; |
224 | float m_ = L + C * k_m; |
225 | float s_ = L + C * k_s; |
226 | |
227 | float l = l_ * l_ * l_; |
228 | float m = m_ * m_ * m_; |
229 | float s = s_ * s_ * s_; |
230 | |
231 | float ldt = 3 * l_dt * l_ * l_; |
232 | float mdt = 3 * m_dt * m_ * m_; |
233 | float sdt = 3 * s_dt * s_ * s_; |
234 | |
235 | float ldt2 = 6 * l_dt * l_dt * l_; |
236 | float mdt2 = 6 * m_dt * m_dt * m_; |
237 | float sdt2 = 6 * s_dt * s_dt * s_; |
238 | |
239 | float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1; |
240 | float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt; |
241 | float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2; |
242 | |
243 | float u_r = r1 / (r1 * r1 - 0.5f * r * r2); |
244 | float t_r = -r * u_r; |
245 | |
246 | float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1; |
247 | float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt; |
248 | float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2; |
249 | |
250 | float u_g = g1 / (g1 * g1 - 0.5f * g * g2); |
251 | float t_g = -g * u_g; |
252 | |
253 | b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1; |
254 | float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt; |
255 | float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2; |
256 | |
257 | float u_b = b1 / (b1 * b1 - 0.5f * b * b2); |
258 | float t_b = -b * u_b; |
259 | |
260 | t_r = u_r >= 0.f ? t_r : FLT_MAX; |
261 | t_g = u_g >= 0.f ? t_g : FLT_MAX; |
262 | t_b = u_b >= 0.f ? t_b : FLT_MAX; |
263 | |
264 | t += fmin(t_r, fmin(t_g, t_b)); |
265 | } |
266 | } |
267 | } |
268 | |
269 | return t; |
270 | } |
271 | |
272 | static float find_gamut_intersection(float a, float b, float L1, float C1, float L0) |
273 | { |
274 | // Find the cusp of the gamut triangle |
275 | LC cusp = find_cusp(a, b); |
276 | |
277 | return find_gamut_intersection(a, b, L1, C1, L0, cusp); |
278 | } |
279 | |
280 | static RGB gamut_clip_preserve_chroma(RGB rgb) |
281 | { |
282 | if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) |
283 | return rgb; |
284 | |
285 | Lab lab = linear_srgb_to_oklab(rgb); |
286 | |
287 | float L = lab.L; |
288 | float eps = 0.00001f; |
289 | float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b)); |
290 | float a_ = lab.a / C; |
291 | float b_ = lab.b / C; |
292 | |
293 | float L0 = clamp(L, 0, 1); |
294 | |
295 | float t = find_gamut_intersection(a_, b_, L, C, L0); |
296 | float L_clipped = L0 * (1 - t) + t * L; |
297 | float C_clipped = t * C; |
298 | |
299 | return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); |
300 | } |
301 | |
302 | static RGB gamut_clip_project_to_0_5(RGB rgb) |
303 | { |
304 | if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) |
305 | return rgb; |
306 | |
307 | Lab lab = linear_srgb_to_oklab(rgb); |
308 | |
309 | float L = lab.L; |
310 | float eps = 0.00001f; |
311 | float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b)); |
312 | float a_ = lab.a / C; |
313 | float b_ = lab.b / C; |
314 | |
315 | float L0 = 0.5; |
316 | |
317 | float t = find_gamut_intersection(a_, b_, L, C, L0); |
318 | float L_clipped = L0 * (1 - t) + t * L; |
319 | float C_clipped = t * C; |
320 | |
321 | return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); |
322 | } |
323 | |
324 | static RGB gamut_clip_project_to_L_cusp(RGB rgb) |
325 | { |
326 | if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) |
327 | return rgb; |
328 | |
329 | Lab lab = linear_srgb_to_oklab(rgb); |
330 | |
331 | float L = lab.L; |
332 | float eps = 0.00001f; |
333 | float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b)); |
334 | float a_ = lab.a / C; |
335 | float b_ = lab.b / C; |
336 | |
337 | // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once. |
338 | LC cusp = find_cusp(a_, b_); |
339 | |
340 | float L0 = cusp.L; |
341 | |
342 | float t = find_gamut_intersection(a_, b_, L, C, L0); |
343 | |
344 | float L_clipped = L0 * (1 - t) + t * L; |
345 | float C_clipped = t * C; |
346 | |
347 | return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); |
348 | } |
349 | |
350 | static RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f) |
351 | { |
352 | if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) |
353 | return rgb; |
354 | |
355 | Lab lab = linear_srgb_to_oklab(rgb); |
356 | |
357 | float L = lab.L; |
358 | float eps = 0.00001f; |
359 | float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b)); |
360 | float a_ = lab.a / C; |
361 | float b_ = lab.b / C; |
362 | |
363 | float Ld = L - 0.5f; |
364 | float e1 = 0.5f + fabs(Ld) + alpha * C; |
365 | float L0 = 0.5f * (1.f + sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * fabs(Ld)))); |
366 | |
367 | float t = find_gamut_intersection(a_, b_, L, C, L0); |
368 | float L_clipped = L0 * (1.f - t) + t * L; |
369 | float C_clipped = t * C; |
370 | |
371 | return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); |
372 | } |
373 | |
374 | static RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f) |
375 | { |
376 | if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) |
377 | return rgb; |
378 | |
379 | Lab lab = linear_srgb_to_oklab(rgb); |
380 | |
381 | float L = lab.L; |
382 | float eps = 0.00001f; |
383 | float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b)); |
384 | float a_ = lab.a / C; |
385 | float b_ = lab.b / C; |
386 | |
387 | // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once. |
388 | LC cusp = find_cusp(a_, b_); |
389 | |
390 | float Ld = L - cusp.L; |
391 | float k = 2.f * (Ld > 0 ? 1.f - cusp.L : cusp.L); |
392 | |
393 | float e1 = 0.5f * k + fabs(Ld) + alpha * C / k; |
394 | float L0 = cusp.L + 0.5f * (sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * k * fabs(Ld)))); |
395 | |
396 | float t = find_gamut_intersection(a_, b_, L, C, L0); |
397 | float L_clipped = L0 * (1.f - t) + t * L; |
398 | float C_clipped = t * C; |
399 | |
400 | return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); |
401 | } |
402 | |
403 | static float toe(float x) |
404 | { |
405 | constexpr float k_1 = 0.206f; |
406 | constexpr float k_2 = 0.03f; |
407 | constexpr float k_3 = (1.f + k_1) / (1.f + k_2); |
408 | return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x)); |
409 | } |
410 | |
411 | static float toe_inv(float x) |
412 | { |
413 | constexpr float k_1 = 0.206f; |
414 | constexpr float k_2 = 0.03f; |
415 | constexpr float k_3 = (1.f + k_1) / (1.f + k_2); |
416 | return (x * x + k_1 * x) / (k_3 * (x + k_2)); |
417 | } |
418 | |
419 | static ST to_ST(LC cusp) |
420 | { |
421 | float L = cusp.L; |
422 | float C = cusp.C; |
423 | return { C / L, C / (1 - L) }; |
424 | } |
425 | |
426 | // Returns a smooth approximation of the location of the cusp |
427 | // This polynomial was created by an optimization process |
428 | // It has been designed so that S_mid < S_max and T_mid < T_max |
429 | static ST get_ST_mid(float a_, float b_) |
430 | { |
431 | float S = 0.11516993f + 1.f / ( |
432 | +7.44778970f + 4.15901240f * b_ |
433 | + a_ * (-2.19557347f + 1.75198401f * b_ |
434 | + a_ * (-2.13704948f - 10.02301043f * b_ |
435 | + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_ |
436 | ))) |
437 | ); |
438 | |
439 | float T = 0.11239642f + 1.f / ( |
440 | +1.61320320f - 0.68124379f * b_ |
441 | + a_ * (+0.40370612f + 0.90148123f * b_ |
442 | + a_ * (-0.27087943f + 0.61223990f * b_ |
443 | + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_ |
444 | ))) |
445 | ); |
446 | |
447 | return { S, T }; |
448 | } |
449 | |
450 | struct Cs { float C_0; float C_mid; float C_max; }; |
451 | static Cs get_Cs(float L, float a_, float b_) |
452 | { |
453 | LC cusp = find_cusp(a_, b_); |
454 | |
455 | float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp); |
456 | ST ST_max = to_ST(cusp); |
457 | |
458 | // Scale factor to compensate for the curved part of gamut shape: |
459 | float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T); |
460 | |
461 | float C_mid; |
462 | { |
463 | ST ST_mid = get_ST_mid(a_, b_); |
464 | |
465 | // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma. |
466 | float C_a = L * ST_mid.S; |
467 | float C_b = (1.f - L) * ST_mid.T; |
468 | C_mid = 0.9f * k * sqrtf(sqrtf(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b)))); |
469 | } |
470 | |
471 | float C_0; |
472 | { |
473 | // for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST. |
474 | float C_a = L * 0.4f; |
475 | float C_b = (1.f - L) * 0.8f; |
476 | |
477 | // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma. |
478 | C_0 = sqrtf(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b))); |
479 | } |
480 | |
481 | return { C_0, C_mid, C_max }; |
482 | } |
483 | |
484 | static RGB okhsl_to_srgb(HSL hsl) |
485 | { |
486 | float h = hsl.h; |
487 | float s = hsl.s; |
488 | float l = hsl.l; |
489 | |
490 | if (l == 1.0f) |
491 | { |
492 | return { 1.f, 1.f, 1.f }; |
493 | } |
494 | |
495 | else if (l == 0.f) |
496 | { |
497 | return { 0.f, 0.f, 0.f }; |
498 | } |
499 | |
500 | float a_ = cosf(2.f * pi * h); |
501 | float b_ = sinf(2.f * pi * h); |
502 | float L = toe_inv(l); |
503 | |
504 | Cs cs = get_Cs(L, a_, b_); |
505 | float C_0 = cs.C_0; |
506 | float C_mid = cs.C_mid; |
507 | float C_max = cs.C_max; |
508 | |
509 | float mid = 0.8f; |
510 | float mid_inv = 1.25f; |
511 | |
512 | float C, t, k_0, k_1, k_2; |
513 | |
514 | if (s < mid) |
515 | { |
516 | t = mid_inv * s; |
517 | |
518 | k_1 = mid * C_0; |
519 | k_2 = (1.f - k_1 / C_mid); |
520 | |
521 | C = t * k_1 / (1.f - k_2 * t); |
522 | } |
523 | else |
524 | { |
525 | t = (s - mid)/ (1 - mid); |
526 | |
527 | k_0 = C_mid; |
528 | k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0; |
529 | k_2 = (1.f - (k_1) / (C_max - C_mid)); |
530 | |
531 | C = k_0 + t * k_1 / (1.f - k_2 * t); |
532 | } |
533 | |
534 | RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ }); |
535 | return { |
536 | srgb_transfer_function(rgb.r), |
537 | srgb_transfer_function(rgb.g), |
538 | srgb_transfer_function(rgb.b), |
539 | }; |
540 | } |
541 | |
542 | static HSL srgb_to_okhsl(RGB rgb) |
543 | { |
544 | Lab lab = linear_srgb_to_oklab({ |
545 | srgb_transfer_function_inv(rgb.r), |
546 | srgb_transfer_function_inv(rgb.g), |
547 | srgb_transfer_function_inv(rgb.b) |
548 | }); |
549 | |
550 | float C = sqrtf(lab.a * lab.a + lab.b * lab.b); |
551 | float a_ = lab.a / C; |
552 | float b_ = lab.b / C; |
553 | |
554 | float L = lab.L; |
555 | float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi; |
556 | |
557 | Cs cs = get_Cs(L, a_, b_); |
558 | float C_0 = cs.C_0; |
559 | float C_mid = cs.C_mid; |
560 | float C_max = cs.C_max; |
561 | |
562 | // Inverse of the interpolation in okhsl_to_srgb: |
563 | |
564 | float mid = 0.8f; |
565 | float mid_inv = 1.25f; |
566 | |
567 | float s; |
568 | if (C < C_mid) |
569 | { |
570 | float k_1 = mid * C_0; |
571 | float k_2 = (1.f - k_1 / C_mid); |
572 | |
573 | float t = C / (k_1 + k_2 * C); |
574 | s = t * mid; |
575 | } |
576 | else |
577 | { |
578 | float k_0 = C_mid; |
579 | float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0; |
580 | float k_2 = (1.f - (k_1) / (C_max - C_mid)); |
581 | |
582 | float t = (C - k_0) / (k_1 + k_2 * (C - k_0)); |
583 | s = mid + (1.f - mid) * t; |
584 | } |
585 | |
586 | float l = toe(L); |
587 | return { h, s, l }; |
588 | } |
589 | |
590 | |
591 | static RGB okhsv_to_srgb(HSV hsv) |
592 | { |
593 | float h = hsv.h; |
594 | float s = hsv.s; |
595 | float v = hsv.v; |
596 | |
597 | float a_ = cosf(2.f * pi * h); |
598 | float b_ = sinf(2.f * pi * h); |
599 | |
600 | LC cusp = find_cusp(a_, b_); |
601 | ST ST_max = to_ST(cusp); |
602 | float S_max = ST_max.S; |
603 | float T_max = ST_max.T; |
604 | float S_0 = 0.5f; |
605 | float k = 1 - S_0 / S_max; |
606 | |
607 | // first we compute L and V as if the gamut is a perfect triangle: |
608 | |
609 | // L, C when v==1: |
610 | float L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s); |
611 | float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s); |
612 | |
613 | float L = v * L_v; |
614 | float C = v * C_v; |
615 | |
616 | // then we compensate for both toe and the curved top part of the triangle: |
617 | float L_vt = toe_inv(L_v); |
618 | float C_vt = C_v * L_vt / L_v; |
619 | |
620 | float L_new = toe_inv(L); |
621 | C = C * L_new / L; |
622 | L = L_new; |
623 | |
624 | RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt }); |
625 | float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f))); |
626 | |
627 | L = L * scale_L; |
628 | C = C * scale_L; |
629 | |
630 | RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ }); |
631 | return { |
632 | srgb_transfer_function(rgb.r), |
633 | srgb_transfer_function(rgb.g), |
634 | srgb_transfer_function(rgb.b), |
635 | }; |
636 | } |
637 | |
638 | static HSV srgb_to_okhsv(RGB rgb) |
639 | { |
640 | Lab lab = linear_srgb_to_oklab({ |
641 | srgb_transfer_function_inv(rgb.r), |
642 | srgb_transfer_function_inv(rgb.g), |
643 | srgb_transfer_function_inv(rgb.b) |
644 | }); |
645 | |
646 | float C = sqrtf(lab.a * lab.a + lab.b * lab.b); |
647 | float a_ = lab.a / C; |
648 | float b_ = lab.b / C; |
649 | |
650 | float L = lab.L; |
651 | float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi; |
652 | |
653 | LC cusp = find_cusp(a_, b_); |
654 | ST ST_max = to_ST(cusp); |
655 | float S_max = ST_max.S; |
656 | float T_max = ST_max.T; |
657 | float S_0 = 0.5f; |
658 | float k = 1 - S_0 / S_max; |
659 | |
660 | // first we find L_v, C_v, L_vt and C_vt |
661 | |
662 | float t = T_max / (C + L * T_max); |
663 | float L_v = t * L; |
664 | float C_v = t * C; |
665 | |
666 | float L_vt = toe_inv(L_v); |
667 | float C_vt = C_v * L_vt / L_v; |
668 | |
669 | // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle: |
670 | RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt }); |
671 | float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f))); |
672 | |
673 | L = L / scale_L; |
674 | C = C / scale_L; |
675 | |
676 | C = C * toe(L) / L; |
677 | L = toe(L); |
678 | |
679 | // we can now compute v and s: |
680 | |
681 | float v = L / L_v; |
682 | float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v); |
683 | |
684 | return { h, s, v }; |
685 | } |
686 | |
687 | }; |
688 | #endif // OK_COLOR_H |
689 | |