| 1 | // Copyright(c) 2021 Björn Ottosson |
| 2 | // |
| 3 | // Permission is hereby granted, free of charge, to any person obtaining a copy of |
| 4 | // this software and associated documentation files(the "Software"), to deal in |
| 5 | // the Software without restriction, including without limitation the rights to |
| 6 | // use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies |
| 7 | // of the Software, and to permit persons to whom the Software is furnished to do |
| 8 | // so, subject to the following conditions : |
| 9 | // The above copyright notice and this permission notice shall be included in all |
| 10 | // copies or substantial portions of the Software. |
| 11 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 12 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 13 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE |
| 14 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 15 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 16 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 17 | // SOFTWARE. |
| 18 | |
| 19 | #ifndef OK_COLOR_SHADER_H |
| 20 | #define OK_COLOR_SHADER_H |
| 21 | |
| 22 | #include "core/string/ustring.h" |
| 23 | |
| 24 | static String OK_COLOR_SHADER = R"(shader_type canvas_item; |
| 25 | |
| 26 | const float M_PI = 3.1415926535897932384626433832795; |
| 27 | |
| 28 | float cbrt( float x ) |
| 29 | { |
| 30 | return sign(x)*pow(abs(x),1.0f/3.0f); |
| 31 | } |
| 32 | |
| 33 | float srgb_transfer_function(float a) |
| 34 | { |
| 35 | return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f; |
| 36 | } |
| 37 | |
| 38 | float srgb_transfer_function_inv(float a) |
| 39 | { |
| 40 | return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f; |
| 41 | } |
| 42 | |
| 43 | vec3 linear_srgb_to_oklab(vec3 c) |
| 44 | { |
| 45 | float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b; |
| 46 | float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b; |
| 47 | float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b; |
| 48 | |
| 49 | float l_ = cbrt(l); |
| 50 | float m_ = cbrt(m); |
| 51 | float s_ = cbrt(s); |
| 52 | |
| 53 | return vec3( |
| 54 | 0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_, |
| 55 | 1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_, |
| 56 | 0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_ |
| 57 | ); |
| 58 | } |
| 59 | |
| 60 | vec3 oklab_to_linear_srgb(vec3 c) |
| 61 | { |
| 62 | float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z; |
| 63 | float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z; |
| 64 | float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z; |
| 65 | |
| 66 | float l = l_ * l_ * l_; |
| 67 | float m = m_ * m_ * m_; |
| 68 | float s = s_ * s_ * s_; |
| 69 | |
| 70 | return vec3( |
| 71 | +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s, |
| 72 | -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s, |
| 73 | -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s |
| 74 | ); |
| 75 | } |
| 76 | |
| 77 | // Finds the maximum saturation possible for a given hue that fits in sRGB |
| 78 | // Saturation here is defined as S = C/L |
| 79 | // a and b must be normalized so a^2 + b^2 == 1 |
| 80 | float compute_max_saturation(float a, float b) |
| 81 | { |
| 82 | // Max saturation will be when one of r, g or b goes below zero. |
| 83 | |
| 84 | // Select different coefficients depending on which component goes below zero first |
| 85 | float k0, k1, k2, k3, k4, wl, wm, ws; |
| 86 | |
| 87 | if (-1.88170328f * a - 0.80936493f * b > 1.f) |
| 88 | { |
| 89 | // Red component |
| 90 | k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f; |
| 91 | wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f; |
| 92 | } |
| 93 | else if (1.81444104f * a - 1.19445276f * b > 1.f) |
| 94 | { |
| 95 | // Green component |
| 96 | k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f; |
| 97 | wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f; |
| 98 | } |
| 99 | else |
| 100 | { |
| 101 | // Blue component |
| 102 | k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f; |
| 103 | wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f; |
| 104 | } |
| 105 | |
| 106 | // Approximate max saturation using a polynomial: |
| 107 | float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b; |
| 108 | |
| 109 | // Do one step Halley's method to get closer |
| 110 | // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite |
| 111 | // this should be sufficient for most applications, otherwise do two/three steps |
| 112 | |
| 113 | float k_l = +0.3963377774f * a + 0.2158037573f * b; |
| 114 | float k_m = -0.1055613458f * a - 0.0638541728f * b; |
| 115 | float k_s = -0.0894841775f * a - 1.2914855480f * b; |
| 116 | |
| 117 | { |
| 118 | float l_ = 1.f + S * k_l; |
| 119 | float m_ = 1.f + S * k_m; |
| 120 | float s_ = 1.f + S * k_s; |
| 121 | |
| 122 | float l = l_ * l_ * l_; |
| 123 | float m = m_ * m_ * m_; |
| 124 | float s = s_ * s_ * s_; |
| 125 | |
| 126 | float l_dS = 3.f * k_l * l_ * l_; |
| 127 | float m_dS = 3.f * k_m * m_ * m_; |
| 128 | float s_dS = 3.f * k_s * s_ * s_; |
| 129 | |
| 130 | float l_dS2 = 6.f * k_l * k_l * l_; |
| 131 | float m_dS2 = 6.f * k_m * k_m * m_; |
| 132 | float s_dS2 = 6.f * k_s * k_s * s_; |
| 133 | |
| 134 | float f = wl * l + wm * m + ws * s; |
| 135 | float f1 = wl * l_dS + wm * m_dS + ws * s_dS; |
| 136 | float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2; |
| 137 | |
| 138 | S = S - f * f1 / (f1 * f1 - 0.5f * f * f2); |
| 139 | } |
| 140 | |
| 141 | return S; |
| 142 | } |
| 143 | |
| 144 | // finds L_cusp and C_cusp for a given hue |
| 145 | // a and b must be normalized so a^2 + b^2 == 1 |
| 146 | vec2 find_cusp(float a, float b) |
| 147 | { |
| 148 | // First, find the maximum saturation (saturation S = C/L) |
| 149 | float S_cusp = compute_max_saturation(a, b); |
| 150 | |
| 151 | // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1: |
| 152 | vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b )); |
| 153 | float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b)); |
| 154 | float C_cusp = L_cusp * S_cusp; |
| 155 | |
| 156 | return vec2( L_cusp , C_cusp ); |
| 157 | } )" |
| 158 | R"(// Finds intersection of the line defined by |
| 159 | // L = L0 * (1 - t) + t * L1; |
| 160 | // C = t * C1; |
| 161 | // a and b must be normalized so a^2 + b^2 == 1 |
| 162 | float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp) |
| 163 | { |
| 164 | // Find the intersection for upper and lower half seprately |
| 165 | float t; |
| 166 | if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f) |
| 167 | { |
| 168 | // Lower half |
| 169 | |
| 170 | t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1)); |
| 171 | } |
| 172 | else |
| 173 | { |
| 174 | // Upper half |
| 175 | |
| 176 | // First intersect with triangle |
| 177 | t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1)); |
| 178 | |
| 179 | // Then one step Halley's method |
| 180 | { |
| 181 | float dL = L1 - L0; |
| 182 | float dC = C1; |
| 183 | |
| 184 | float k_l = +0.3963377774f * a + 0.2158037573f * b; |
| 185 | float k_m = -0.1055613458f * a - 0.0638541728f * b; |
| 186 | float k_s = -0.0894841775f * a - 1.2914855480f * b; |
| 187 | |
| 188 | float l_dt = dL + dC * k_l; |
| 189 | float m_dt = dL + dC * k_m; |
| 190 | float s_dt = dL + dC * k_s; |
| 191 | |
| 192 | |
| 193 | // If higher accuracy is required, 2 or 3 iterations of the following block can be used: |
| 194 | { |
| 195 | float L = L0 * (1.f - t) + t * L1; |
| 196 | float C = t * C1; |
| 197 | |
| 198 | float l_ = L + C * k_l; |
| 199 | float m_ = L + C * k_m; |
| 200 | float s_ = L + C * k_s; |
| 201 | |
| 202 | float l = l_ * l_ * l_; |
| 203 | float m = m_ * m_ * m_; |
| 204 | float s = s_ * s_ * s_; |
| 205 | |
| 206 | float ldt = 3.f * l_dt * l_ * l_; |
| 207 | float mdt = 3.f * m_dt * m_ * m_; |
| 208 | float sdt = 3.f * s_dt * s_ * s_; |
| 209 | |
| 210 | float ldt2 = 6.f * l_dt * l_dt * l_; |
| 211 | float mdt2 = 6.f * m_dt * m_dt * m_; |
| 212 | float sdt2 = 6.f * s_dt * s_dt * s_; |
| 213 | |
| 214 | float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f; |
| 215 | float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt; |
| 216 | float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2; |
| 217 | |
| 218 | float u_r = r1 / (r1 * r1 - 0.5f * r * r2); |
| 219 | float t_r = -r * u_r; |
| 220 | |
| 221 | float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f; |
| 222 | float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt; |
| 223 | float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2; |
| 224 | |
| 225 | float u_g = g1 / (g1 * g1 - 0.5f * g * g2); |
| 226 | float t_g = -g * u_g; |
| 227 | |
| 228 | float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f; |
| 229 | float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt; |
| 230 | float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2; |
| 231 | |
| 232 | float u_b = b1 / (b1 * b1 - 0.5f * b * b2); |
| 233 | float t_b = -b * u_b; |
| 234 | |
| 235 | t_r = u_r >= 0.f ? t_r : 10000.f; |
| 236 | t_g = u_g >= 0.f ? t_g : 10000.f; |
| 237 | t_b = u_b >= 0.f ? t_b : 10000.f; |
| 238 | |
| 239 | t += min(t_r, min(t_g, t_b)); |
| 240 | } |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | return t; |
| 245 | } |
| 246 | |
| 247 | float find_gamut_intersection_5(float a, float b, float L1, float C1, float L0) |
| 248 | { |
| 249 | // Find the cusp of the gamut triangle |
| 250 | vec2 cusp = find_cusp(a, b); |
| 251 | |
| 252 | return find_gamut_intersection(a, b, L1, C1, L0, cusp); |
| 253 | })" |
| 254 | R"( |
| 255 | |
| 256 | vec3 gamut_clip_preserve_chroma(vec3 rgb) |
| 257 | { |
| 258 | if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f) |
| 259 | return rgb; |
| 260 | |
| 261 | vec3 lab = linear_srgb_to_oklab(rgb); |
| 262 | |
| 263 | float L = lab.x; |
| 264 | float eps = 0.00001f; |
| 265 | float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z)); |
| 266 | float a_ = lab.y / C; |
| 267 | float b_ = lab.z / C; |
| 268 | |
| 269 | float L0 = clamp(L, 0.f, 1.f); |
| 270 | |
| 271 | float t = find_gamut_intersection_5(a_, b_, L, C, L0); |
| 272 | float L_clipped = L0 * (1.f - t) + t * L; |
| 273 | float C_clipped = t * C; |
| 274 | |
| 275 | return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ )); |
| 276 | } |
| 277 | |
| 278 | vec3 gamut_clip_project_to_0_5(vec3 rgb) |
| 279 | { |
| 280 | if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f) |
| 281 | return rgb; |
| 282 | |
| 283 | vec3 lab = linear_srgb_to_oklab(rgb); |
| 284 | |
| 285 | float L = lab.x; |
| 286 | float eps = 0.00001f; |
| 287 | float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z)); |
| 288 | float a_ = lab.y / C; |
| 289 | float b_ = lab.z / C; |
| 290 | |
| 291 | float L0 = 0.5; |
| 292 | |
| 293 | float t = find_gamut_intersection_5(a_, b_, L, C, L0); |
| 294 | float L_clipped = L0 * (1.f - t) + t * L; |
| 295 | float C_clipped = t * C; |
| 296 | |
| 297 | return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ )); |
| 298 | } |
| 299 | |
| 300 | vec3 gamut_clip_project_to_L_cusp(vec3 rgb) |
| 301 | { |
| 302 | if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f) |
| 303 | return rgb; |
| 304 | |
| 305 | vec3 lab = linear_srgb_to_oklab(rgb); |
| 306 | |
| 307 | float L = lab.x; |
| 308 | float eps = 0.00001f; |
| 309 | float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z)); |
| 310 | float a_ = lab.y / C; |
| 311 | float b_ = lab.z / C; |
| 312 | |
| 313 | // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once. |
| 314 | vec2 cusp = find_cusp(a_, b_); |
| 315 | |
| 316 | float L0 = cusp.x; |
| 317 | |
| 318 | float t = find_gamut_intersection_5(a_, b_, L, C, L0); |
| 319 | |
| 320 | float L_clipped = L0 * (1.f - t) + t * L; |
| 321 | float C_clipped = t * C; |
| 322 | |
| 323 | return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ )); |
| 324 | } |
| 325 | |
| 326 | vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha) |
| 327 | { |
| 328 | if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f) |
| 329 | return rgb; |
| 330 | |
| 331 | vec3 lab = linear_srgb_to_oklab(rgb); |
| 332 | |
| 333 | float L = lab.x; |
| 334 | float eps = 0.00001f; |
| 335 | float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z)); |
| 336 | float a_ = lab.y / C; |
| 337 | float b_ = lab.z / C; |
| 338 | |
| 339 | float Ld = L - 0.5f; |
| 340 | float e1 = 0.5f + abs(Ld) + alpha * C; |
| 341 | float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld)))); |
| 342 | |
| 343 | float t = find_gamut_intersection_5(a_, b_, L, C, L0); |
| 344 | float L_clipped = L0 * (1.f - t) + t * L; |
| 345 | float C_clipped = t * C; |
| 346 | |
| 347 | return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ )); |
| 348 | } |
| 349 | |
| 350 | vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha) |
| 351 | { |
| 352 | if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f) |
| 353 | return rgb; |
| 354 | |
| 355 | vec3 lab = linear_srgb_to_oklab(rgb); |
| 356 | |
| 357 | float L = lab.x; |
| 358 | float eps = 0.00001f; |
| 359 | float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z)); |
| 360 | float a_ = lab.y / C; |
| 361 | float b_ = lab.z / C; |
| 362 | |
| 363 | // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once. |
| 364 | vec2 cusp = find_cusp(a_, b_); |
| 365 | |
| 366 | float Ld = L - cusp.x; |
| 367 | float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x); |
| 368 | |
| 369 | float e1 = 0.5f * k + abs(Ld) + alpha * C / k; |
| 370 | float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld)))); |
| 371 | |
| 372 | float t = find_gamut_intersection_5(a_, b_, L, C, L0); |
| 373 | float L_clipped = L0 * (1.f - t) + t * L; |
| 374 | float C_clipped = t * C; |
| 375 | |
| 376 | return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ )); |
| 377 | } |
| 378 | |
| 379 | float toe(float x) |
| 380 | { |
| 381 | float k_1 = 0.206f; |
| 382 | float k_2 = 0.03f; |
| 383 | float k_3 = (1.f + k_1) / (1.f + k_2); |
| 384 | return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x)); |
| 385 | } |
| 386 | |
| 387 | float toe_inv(float x) |
| 388 | { |
| 389 | float k_1 = 0.206f; |
| 390 | float k_2 = 0.03f; |
| 391 | float k_3 = (1.f + k_1) / (1.f + k_2); |
| 392 | return (x * x + k_1 * x) / (k_3 * (x + k_2)); |
| 393 | } |
| 394 | )" |
| 395 | R"(vec2 to_ST(vec2 cusp) |
| 396 | { |
| 397 | float L = cusp.x; |
| 398 | float C = cusp.y; |
| 399 | return vec2( C / L, C / (1.f - L) ); |
| 400 | } |
| 401 | |
| 402 | // Returns a smooth approximation of the location of the cusp |
| 403 | // This polynomial was created by an optimization process |
| 404 | // It has been designed so that S_mid < S_max and T_mid < T_max |
| 405 | vec2 get_ST_mid(float a_, float b_) |
| 406 | { |
| 407 | float S = 0.11516993f + 1.f / ( |
| 408 | +7.44778970f + 4.15901240f * b_ |
| 409 | + a_ * (-2.19557347f + 1.75198401f * b_ |
| 410 | + a_ * (-2.13704948f - 10.02301043f * b_ |
| 411 | + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_ |
| 412 | ))) |
| 413 | ); |
| 414 | |
| 415 | float T = 0.11239642f + 1.f / ( |
| 416 | +1.61320320f - 0.68124379f * b_ |
| 417 | + a_ * (+0.40370612f + 0.90148123f * b_ |
| 418 | + a_ * (-0.27087943f + 0.61223990f * b_ |
| 419 | + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_ |
| 420 | ))) |
| 421 | ); |
| 422 | |
| 423 | return vec2( S, T ); |
| 424 | } |
| 425 | |
| 426 | vec3 get_Cs(float L, float a_, float b_) |
| 427 | { |
| 428 | vec2 cusp = find_cusp(a_, b_); |
| 429 | |
| 430 | float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp); |
| 431 | vec2 ST_max = to_ST(cusp); |
| 432 | |
| 433 | // Scale factor to compensate for the curved part of gamut shape: |
| 434 | float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y); |
| 435 | |
| 436 | float C_mid; |
| 437 | { |
| 438 | vec2 ST_mid = get_ST_mid(a_, b_); |
| 439 | |
| 440 | // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma. |
| 441 | float C_a = L * ST_mid.x; |
| 442 | float C_b = (1.f - L) * ST_mid.y; |
| 443 | C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b)))); |
| 444 | } |
| 445 | |
| 446 | float C_0; |
| 447 | { |
| 448 | // for C_0, the shape is independent of hue, so vec2 are constant. Values picked to roughly be the average values of vec2. |
| 449 | float C_a = L * 0.4f; |
| 450 | float C_b = (1.f - L) * 0.8f; |
| 451 | |
| 452 | // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma. |
| 453 | C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b))); |
| 454 | } |
| 455 | |
| 456 | return vec3( C_0, C_mid, C_max ); |
| 457 | } |
| 458 | |
| 459 | vec3 okhsl_to_srgb(vec3 hsl) |
| 460 | { |
| 461 | float h = hsl.x; |
| 462 | float s = hsl.y; |
| 463 | float l = hsl.z; |
| 464 | |
| 465 | if (l == 1.0f) |
| 466 | { |
| 467 | return vec3( 1.f, 1.f, 1.f ); |
| 468 | } |
| 469 | |
| 470 | else if (l == 0.f) |
| 471 | { |
| 472 | return vec3( 0.f, 0.f, 0.f ); |
| 473 | } |
| 474 | |
| 475 | float a_ = cos(2.f * M_PI * h); |
| 476 | float b_ = sin(2.f * M_PI * h); |
| 477 | float L = toe_inv(l); |
| 478 | |
| 479 | vec3 cs = get_Cs(L, a_, b_); |
| 480 | float C_0 = cs.x; |
| 481 | float C_mid = cs.y; |
| 482 | float C_max = cs.z; |
| 483 | |
| 484 | float mid = 0.8f; |
| 485 | float mid_inv = 1.25f; |
| 486 | |
| 487 | float C, t, k_0, k_1, k_2; |
| 488 | |
| 489 | if (s < mid) |
| 490 | { |
| 491 | t = mid_inv * s; |
| 492 | |
| 493 | k_1 = mid * C_0; |
| 494 | k_2 = (1.f - k_1 / C_mid); |
| 495 | |
| 496 | C = t * k_1 / (1.f - k_2 * t); |
| 497 | } |
| 498 | else |
| 499 | { |
| 500 | t = (s - mid)/ (1.f - mid); |
| 501 | |
| 502 | k_0 = C_mid; |
| 503 | k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0; |
| 504 | k_2 = (1.f - (k_1) / (C_max - C_mid)); |
| 505 | |
| 506 | C = k_0 + t * k_1 / (1.f - k_2 * t); |
| 507 | } |
| 508 | |
| 509 | vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ )); |
| 510 | return vec3( |
| 511 | srgb_transfer_function(rgb.r), |
| 512 | srgb_transfer_function(rgb.g), |
| 513 | srgb_transfer_function(rgb.b) |
| 514 | ); |
| 515 | } |
| 516 | |
| 517 | vec3 srgb_to_okhsl(vec3 rgb) |
| 518 | { |
| 519 | vec3 lab = linear_srgb_to_oklab(vec3( |
| 520 | srgb_transfer_function_inv(rgb.r), |
| 521 | srgb_transfer_function_inv(rgb.g), |
| 522 | srgb_transfer_function_inv(rgb.b) |
| 523 | )); |
| 524 | |
| 525 | float C = sqrt(lab.y * lab.y + lab.z * lab.z); |
| 526 | float a_ = lab.y / C; |
| 527 | float b_ = lab.z / C; |
| 528 | |
| 529 | float L = lab.x; |
| 530 | float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI; |
| 531 | |
| 532 | vec3 cs = get_Cs(L, a_, b_); |
| 533 | float C_0 = cs.x; |
| 534 | float C_mid = cs.y; |
| 535 | float C_max = cs.z; |
| 536 | |
| 537 | // Inverse of the interpolation in okhsl_to_srgb: |
| 538 | |
| 539 | float mid = 0.8f; |
| 540 | float mid_inv = 1.25f; |
| 541 | |
| 542 | float s; |
| 543 | if (C < C_mid) |
| 544 | { |
| 545 | float k_1 = mid * C_0; |
| 546 | float k_2 = (1.f - k_1 / C_mid); |
| 547 | |
| 548 | float t = C / (k_1 + k_2 * C); |
| 549 | s = t * mid; |
| 550 | } |
| 551 | else |
| 552 | { |
| 553 | float k_0 = C_mid; |
| 554 | float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0; |
| 555 | float k_2 = (1.f - (k_1) / (C_max - C_mid)); |
| 556 | |
| 557 | float t = (C - k_0) / (k_1 + k_2 * (C - k_0)); |
| 558 | s = mid + (1.f - mid) * t; |
| 559 | } |
| 560 | |
| 561 | float l = toe(L); |
| 562 | return vec3( h, s, l ); |
| 563 | } |
| 564 | |
| 565 | |
| 566 | vec3 okhsv_to_srgb(vec3 hsv) |
| 567 | { |
| 568 | float h = hsv.x; |
| 569 | float s = hsv.y; |
| 570 | float v = hsv.z; |
| 571 | |
| 572 | float a_ = cos(2.f * M_PI * h); |
| 573 | float b_ = sin(2.f * M_PI * h); |
| 574 | |
| 575 | vec2 cusp = find_cusp(a_, b_); |
| 576 | vec2 ST_max = to_ST(cusp); |
| 577 | float S_max = ST_max.x; |
| 578 | float T_max = ST_max.y; |
| 579 | float S_0 = 0.5f; |
| 580 | float k = 1.f- S_0 / S_max; |
| 581 | |
| 582 | // first we compute L and V as if the gamut is a perfect triangle: |
| 583 | |
| 584 | // L, C when v==1: |
| 585 | float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s); |
| 586 | float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s); |
| 587 | |
| 588 | float L = v * L_v; |
| 589 | float C = v * C_v; |
| 590 | |
| 591 | // then we compensate for both toe and the curved top part of the triangle: |
| 592 | float L_vt = toe_inv(L_v); |
| 593 | float C_vt = C_v * L_vt / L_v; |
| 594 | |
| 595 | float L_new = toe_inv(L); |
| 596 | C = C * L_new / L; |
| 597 | L = L_new; |
| 598 | |
| 599 | vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt )); |
| 600 | float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f))); |
| 601 | |
| 602 | L = L * scale_L; |
| 603 | C = C * scale_L; |
| 604 | |
| 605 | vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ )); |
| 606 | return vec3( |
| 607 | srgb_transfer_function(rgb.r), |
| 608 | srgb_transfer_function(rgb.g), |
| 609 | srgb_transfer_function(rgb.b) |
| 610 | ); |
| 611 | } |
| 612 | )" |
| 613 | R"( |
| 614 | vec3 srgb_to_okhsv(vec3 rgb) |
| 615 | { |
| 616 | vec3 lab = linear_srgb_to_oklab(vec3( |
| 617 | srgb_transfer_function_inv(rgb.r), |
| 618 | srgb_transfer_function_inv(rgb.g), |
| 619 | srgb_transfer_function_inv(rgb.b) |
| 620 | )); |
| 621 | |
| 622 | float C = sqrt(lab.y * lab.y + lab.z * lab.z); |
| 623 | float a_ = lab.y / C; |
| 624 | float b_ = lab.z / C; |
| 625 | |
| 626 | float L = lab.x; |
| 627 | float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI; |
| 628 | |
| 629 | vec2 cusp = find_cusp(a_, b_); |
| 630 | vec2 ST_max = to_ST(cusp); |
| 631 | float S_max = ST_max.x; |
| 632 | float T_max = ST_max.y; |
| 633 | float S_0 = 0.5f; |
| 634 | float k = 1.f - S_0 / S_max; |
| 635 | |
| 636 | // first we find L_v, C_v, L_vt and C_vt |
| 637 | |
| 638 | float t = T_max / (C + L * T_max); |
| 639 | float L_v = t * L; |
| 640 | float C_v = t * C; |
| 641 | |
| 642 | float L_vt = toe_inv(L_v); |
| 643 | float C_vt = C_v * L_vt / L_v; |
| 644 | |
| 645 | // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle: |
| 646 | vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt )); |
| 647 | float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f))); |
| 648 | |
| 649 | L = L / scale_L; |
| 650 | C = C / scale_L; |
| 651 | |
| 652 | C = C * toe(L) / L; |
| 653 | L = toe(L); |
| 654 | |
| 655 | // we can now compute v and s: |
| 656 | |
| 657 | float v = L / L_v; |
| 658 | float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v); |
| 659 | |
| 660 | return vec3 (h, s, v ); |
| 661 | })" ; |
| 662 | |
| 663 | #endif |
| 664 | |