1 | |
2 | #include "equation-solver.h" |
3 | |
4 | #define _USE_MATH_DEFINES |
5 | #include <cmath> |
6 | |
7 | namespace msdfgen { |
8 | |
9 | int solveQuadratic(double x[2], double a, double b, double c) { |
10 | // a == 0 -> linear equation |
11 | if (a == 0 || fabs(b) > 1e12*fabs(a)) { |
12 | // a == 0, b == 0 -> no solution |
13 | if (b == 0) { |
14 | if (c == 0) |
15 | return -1; // 0 == 0 |
16 | return 0; |
17 | } |
18 | x[0] = -c/b; |
19 | return 1; |
20 | } |
21 | double dscr = b*b-4*a*c; |
22 | if (dscr > 0) { |
23 | dscr = sqrt(dscr); |
24 | x[0] = (-b+dscr)/(2*a); |
25 | x[1] = (-b-dscr)/(2*a); |
26 | return 2; |
27 | } else if (dscr == 0) { |
28 | x[0] = -b/(2*a); |
29 | return 1; |
30 | } else |
31 | return 0; |
32 | } |
33 | |
34 | static int solveCubicNormed(double x[3], double a, double b, double c) { |
35 | double a2 = a*a; |
36 | double q = 1/9.*(a2-3*b); |
37 | double r = 1/54.*(a*(2*a2-9*b)+27*c); |
38 | double r2 = r*r; |
39 | double q3 = q*q*q; |
40 | a *= 1/3.; |
41 | if (r2 < q3) { |
42 | double t = r/sqrt(q3); |
43 | if (t < -1) t = -1; |
44 | if (t > 1) t = 1; |
45 | t = acos(t); |
46 | q = -2*sqrt(q); |
47 | x[0] = q*cos(1/3.*t)-a; |
48 | x[1] = q*cos(1/3.*(t+2*M_PI))-a; |
49 | x[2] = q*cos(1/3.*(t-2*M_PI))-a; |
50 | return 3; |
51 | } else { |
52 | double u = (r < 0 ? 1 : -1)*pow(fabs(r)+sqrt(r2-q3), 1/3.); |
53 | double v = u == 0 ? 0 : q/u; |
54 | x[0] = (u+v)-a; |
55 | if (u == v || fabs(u-v) < 1e-12*fabs(u+v)) { |
56 | x[1] = -.5*(u+v)-a; |
57 | return 2; |
58 | } |
59 | return 1; |
60 | } |
61 | } |
62 | |
63 | int solveCubic(double x[3], double a, double b, double c, double d) { |
64 | if (a != 0) { |
65 | double bn = b/a; |
66 | if (fabs(bn) < 1e6) // Above this ratio, the numerical error gets larger than if we treated a as zero |
67 | return solveCubicNormed(x, bn, c/a, d/a); |
68 | } |
69 | return solveQuadratic(x, b, c, d); |
70 | } |
71 | |
72 | } |
73 | |