1 | // MIT License |
2 | // |
3 | // Copyright(c) 2020 Jordan Peck (jordan.me2@gmail.com) |
4 | // Copyright(c) 2020 Contributors |
5 | // |
6 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
7 | // of this software and associated documentation files(the "Software"), to deal |
8 | // in the Software without restriction, including without limitation the rights |
9 | // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell |
10 | // copies of the Software, and to permit persons to whom the Software is |
11 | // furnished to do so, subject to the following conditions : |
12 | // |
13 | // The above copyright notice and this permission notice shall be included in all |
14 | // copies or substantial portions of the Software. |
15 | // |
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
17 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
18 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE |
19 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
20 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
21 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
22 | // SOFTWARE. |
23 | // |
24 | // .'',;:cldxkO00KKXXNNWWWNNXKOkxdollcc::::::;:::ccllloooolllllllllooollc:,'... ...........',;cldxkO000Okxdlc::;;;,,;;;::cclllllll |
25 | // ..',;:ldxO0KXXNNNNNNNNXXK0kxdolcc::::::;;;,,,,,,;;;;;;;;;;:::cclllllc:;'.... ...........',;:ldxO0KXXXK0Okxdolc::;;;;::cllodddddo |
26 | // ...',:loxO0KXNNNNNXXKK0Okxdolc::;::::::::;;;,,'''''.....''',;:clllllc:;,'............''''''''',;:loxO0KXNNNNNXK0Okxdollccccllodxxxxxxd |
27 | // ....';:ldkO0KXXXKK00Okxdolcc:;;;;;::cclllcc:;;,''..... ....',;clooddolcc:;;;;,,;;;;;::::;;;;;;:cloxk0KXNWWWWWWNXKK0Okxddoooddxxkkkkkxx |
28 | // .....';:ldxkOOOOOkxxdolcc:;;;,,,;;:cllooooolcc:;'... ..,:codxkkkxddooollloooooooollcc:::::clodkO0KXNWWWWWWNNXK00Okxxxxxxxxkkkkxxx |
29 | // . ....';:cloddddo___________,,,,;;:clooddddoolc:,... ..,:ldx__00OOOkkk___kkkkkkxxdollc::::cclodkO0KXXNNNNNNXXK0OOkxxxxxxxxxxxxddd |
30 | // .......',;:cccc:| |,,,;;:cclooddddoll:;'.. ..';cox| \KKK000| |KK00OOkxdocc___;::clldxxkO0KKKKK00Okkxdddddddddddddddoo |
31 | // .......'',,,,,''| ________|',,;;::cclloooooolc:;'......___:ldk| \KK000| |XKKK0Okxolc| |;;::cclodxxkkkkxxdoolllcclllooodddooooo |
32 | // ''......''''....| | ....'',,,,;;;::cclloooollc:;,''.'| |oxk| \OOO0| |KKK00Oxdoll|___|;;;;;::ccllllllcc::;;,,;;;:cclloooooooo |
33 | // ;;,''.......... | |_____',,;;;____:___cllo________.___| |___| \xkk| |KK_______ool___:::;________;;;_______...'',;;:ccclllloo |
34 | // c:;,''......... | |:::/ ' |lo/ | | \dx| |0/ \d| |cc/ |'/ \......',,;;:ccllo |
35 | // ol:;,'..........| _____|ll/ __ |o/ ______|____ ___| | \o| |/ ___ \| |o/ ______|/ ___ \ .......'',;:clo |
36 | // dlc;,...........| |::clooo| / | |x\___ \KXKKK0| |dol| |\ \| | | | | |d\___ \..| | / / ....',:cl |
37 | // xoc;'... .....'| |llodddd| \__| |_____\ \KKK0O| |lc:| |'\ | |___| | |_____\ \.| |_/___/... ...',;:c |
38 | // dlc;'... ....',;| |oddddddo\ | |Okkx| |::;| |..\ |\ /| | | \ |... ....',;:c |
39 | // ol:,'.......',:c|___|xxxddollc\_____,___|_________/ddoll|___|,,,|___|...\_____|:\ ______/l|___|_________/...\________|'........',;::cc |
40 | // c:;'.......';:codxxkkkkxxolc::;::clodxkOO0OOkkxdollc::;;,,''''',,,,''''''''''',,'''''',;:loxkkOOkxol:;,'''',,;:ccllcc:;,'''''',;::ccll |
41 | // ;,'.......',:codxkOO0OOkxdlc:;,,;;:cldxxkkxxdolc:;;,,''.....'',;;:::;;,,,'''''........,;cldkO0KK0Okdoc::;;::cloodddoolc:;;;;;::ccllooo |
42 | // .........',;:lodxOO0000Okdoc:,,',,;:clloddoolc:;,''.......'',;:clooollc:;;,,''.......',:ldkOKXNNXX0Oxdolllloddxxxxxxdolccccccllooodddd |
43 | // . .....';:cldxkO0000Okxol:;,''',,;::cccc:;,,'.......'',;:cldxxkkxxdolc:;;,'.......';coxOKXNWWWNXKOkxddddxxkkkkkkxdoollllooddxxxxkkk |
44 | // ....',;:codxkO000OOxdoc:;,''',,,;;;;,''.......',,;:clodkO00000Okxolc::;,,''..',;:ldxOKXNWWWNNK0OkkkkkkkkkkkxxddooooodxxkOOOOO000 |
45 | // ....',;;clodxkkOOOkkdolc:;,,,,,,,,'..........,;:clodxkO0KKXKK0Okxdolcc::;;,,,;;:codkO0XXNNNNXKK0OOOOOkkkkxxdoollloodxkO0KKKXXXXX |
46 | // |
47 | // VERSION: 1.0.1 |
48 | // https://github.com/Auburn/FastNoise |
49 | |
50 | #ifndef FASTNOISELITE_H |
51 | #define FASTNOISELITE_H |
52 | |
53 | #include <cmath> |
54 | |
55 | namespace fastnoiselite{ |
56 | |
57 | class FastNoiseLite |
58 | { |
59 | public: |
60 | enum NoiseType |
61 | { |
62 | NoiseType_OpenSimplex2, |
63 | NoiseType_OpenSimplex2S, |
64 | NoiseType_Cellular, |
65 | NoiseType_Perlin, |
66 | NoiseType_ValueCubic, |
67 | NoiseType_Value |
68 | }; |
69 | |
70 | enum RotationType3D |
71 | { |
72 | RotationType3D_None, |
73 | RotationType3D_ImproveXYPlanes, |
74 | RotationType3D_ImproveXZPlanes |
75 | }; |
76 | |
77 | enum FractalType |
78 | { |
79 | FractalType_None, |
80 | FractalType_FBm, |
81 | FractalType_Ridged, |
82 | FractalType_PingPong, |
83 | FractalType_DomainWarpProgressive, |
84 | FractalType_DomainWarpIndependent |
85 | }; |
86 | |
87 | enum CellularDistanceFunction |
88 | { |
89 | CellularDistanceFunction_Euclidean, |
90 | CellularDistanceFunction_EuclideanSq, |
91 | CellularDistanceFunction_Manhattan, |
92 | CellularDistanceFunction_Hybrid |
93 | }; |
94 | |
95 | enum CellularReturnType |
96 | { |
97 | CellularReturnType_CellValue, |
98 | CellularReturnType_Distance, |
99 | CellularReturnType_Distance2, |
100 | CellularReturnType_Distance2Add, |
101 | CellularReturnType_Distance2Sub, |
102 | CellularReturnType_Distance2Mul, |
103 | CellularReturnType_Distance2Div |
104 | }; |
105 | |
106 | enum DomainWarpType |
107 | { |
108 | DomainWarpType_OpenSimplex2, |
109 | DomainWarpType_OpenSimplex2Reduced, |
110 | DomainWarpType_BasicGrid |
111 | }; |
112 | |
113 | /// <summary> |
114 | /// Create new FastNoise object with optional seed |
115 | /// </summary> |
116 | FastNoiseLite(int seed = 1337) |
117 | { |
118 | mSeed = seed; |
119 | mFrequency = 0.01f; |
120 | mNoiseType = NoiseType_OpenSimplex2; |
121 | mRotationType3D = RotationType3D_None; |
122 | mTransformType3D = TransformType3D_DefaultOpenSimplex2; |
123 | |
124 | mFractalType = FractalType_None; |
125 | mOctaves = 3; |
126 | mLacunarity = 2.0f; |
127 | mGain = 0.5f; |
128 | mWeightedStrength = 0.0f; |
129 | mPingPongStrength = 2.0f; |
130 | |
131 | mFractalBounding = 1 / 1.75f; |
132 | |
133 | mCellularDistanceFunction = CellularDistanceFunction_EuclideanSq; |
134 | mCellularReturnType = CellularReturnType_Distance; |
135 | mCellularJitterModifier = 1.0f; |
136 | |
137 | mDomainWarpType = DomainWarpType_OpenSimplex2; |
138 | mWarpTransformType3D = TransformType3D_DefaultOpenSimplex2; |
139 | mDomainWarpAmp = 1.0f; |
140 | } |
141 | |
142 | /// <summary> |
143 | /// Sets seed used for all noise types |
144 | /// </summary> |
145 | /// <remarks> |
146 | /// Default: 1337 |
147 | /// </remarks> |
148 | void SetSeed(int seed) { mSeed = seed; } |
149 | |
150 | /// <summary> |
151 | /// Sets frequency for all noise types |
152 | /// </summary> |
153 | /// <remarks> |
154 | /// Default: 0.01 |
155 | /// </remarks> |
156 | void SetFrequency(float frequency) { mFrequency = frequency; } |
157 | |
158 | /// <summary> |
159 | /// Sets noise algorithm used for GetNoise(...) |
160 | /// </summary> |
161 | /// <remarks> |
162 | /// Default: OpenSimplex2 |
163 | /// </remarks> |
164 | void SetNoiseType(NoiseType noiseType) |
165 | { |
166 | mNoiseType = noiseType; |
167 | UpdateTransformType3D(); |
168 | } |
169 | |
170 | /// <summary> |
171 | /// Sets domain rotation type for 3D Noise and 3D DomainWarp. |
172 | /// Can aid in reducing directional artifacts when sampling a 2D plane in 3D |
173 | /// </summary> |
174 | /// <remarks> |
175 | /// Default: None |
176 | /// </remarks> |
177 | void SetRotationType3D(RotationType3D rotationType3D) |
178 | { |
179 | mRotationType3D = rotationType3D; |
180 | UpdateTransformType3D(); |
181 | UpdateWarpTransformType3D(); |
182 | } |
183 | |
184 | /// <summary> |
185 | /// Sets method for combining octaves in all fractal noise types |
186 | /// </summary> |
187 | /// <remarks> |
188 | /// Default: None |
189 | /// Note: FractalType_DomainWarp... only affects DomainWarp(...) |
190 | /// </remarks> |
191 | void SetFractalType(FractalType fractalType) { mFractalType = fractalType; } |
192 | |
193 | /// <summary> |
194 | /// Sets octave count for all fractal noise types |
195 | /// </summary> |
196 | /// <remarks> |
197 | /// Default: 3 |
198 | /// </remarks> |
199 | void SetFractalOctaves(int octaves) |
200 | { |
201 | mOctaves = octaves; |
202 | CalculateFractalBounding(); |
203 | } |
204 | |
205 | /// <summary> |
206 | /// Sets octave lacunarity for all fractal noise types |
207 | /// </summary> |
208 | /// <remarks> |
209 | /// Default: 2.0 |
210 | /// </remarks> |
211 | void SetFractalLacunarity(float lacunarity) { mLacunarity = lacunarity; } |
212 | |
213 | /// <summary> |
214 | /// Sets octave gain for all fractal noise types |
215 | /// </summary> |
216 | /// <remarks> |
217 | /// Default: 0.5 |
218 | /// </remarks> |
219 | void SetFractalGain(float gain) |
220 | { |
221 | mGain = gain; |
222 | CalculateFractalBounding(); |
223 | } |
224 | |
225 | /// <summary> |
226 | /// Sets octave weighting for all none DomainWarp fratal types |
227 | /// </summary> |
228 | /// <remarks> |
229 | /// Default: 0.0 |
230 | /// Note: Keep between 0...1 to maintain -1...1 output bounding |
231 | /// </remarks> |
232 | void SetFractalWeightedStrength(float weightedStrength) { mWeightedStrength = weightedStrength; } |
233 | |
234 | /// <summary> |
235 | /// Sets strength of the fractal ping pong effect |
236 | /// </summary> |
237 | /// <remarks> |
238 | /// Default: 2.0 |
239 | /// </remarks> |
240 | void SetFractalPingPongStrength(float pingPongStrength) { mPingPongStrength = pingPongStrength; } |
241 | |
242 | |
243 | /// <summary> |
244 | /// Sets distance function used in cellular noise calculations |
245 | /// </summary> |
246 | /// <remarks> |
247 | /// Default: Distance |
248 | /// </remarks> |
249 | void SetCellularDistanceFunction(CellularDistanceFunction cellularDistanceFunction) { mCellularDistanceFunction = cellularDistanceFunction; } |
250 | |
251 | /// <summary> |
252 | /// Sets return type from cellular noise calculations |
253 | /// </summary> |
254 | /// <remarks> |
255 | /// Default: EuclideanSq |
256 | /// </remarks> |
257 | void SetCellularReturnType(CellularReturnType cellularReturnType) { mCellularReturnType = cellularReturnType; } |
258 | |
259 | /// <summary> |
260 | /// Sets the maximum distance a cellular point can move from it's grid position |
261 | /// </summary> |
262 | /// <remarks> |
263 | /// Default: 1.0 |
264 | /// Note: Setting this higher than 1 will cause artifacts |
265 | /// </remarks> |
266 | void SetCellularJitter(float cellularJitter) { mCellularJitterModifier = cellularJitter; } |
267 | |
268 | |
269 | /// <summary> |
270 | /// Sets the warp algorithm when using DomainWarp(...) |
271 | /// </summary> |
272 | /// <remarks> |
273 | /// Default: OpenSimplex2 |
274 | /// </remarks> |
275 | void SetDomainWarpType(DomainWarpType domainWarpType) |
276 | { |
277 | mDomainWarpType = domainWarpType; |
278 | UpdateWarpTransformType3D(); |
279 | } |
280 | |
281 | |
282 | /// <summary> |
283 | /// Sets the maximum warp distance from original position when using DomainWarp(...) |
284 | /// </summary> |
285 | /// <remarks> |
286 | /// Default: 1.0 |
287 | /// </remarks> |
288 | void SetDomainWarpAmp(float domainWarpAmp) { mDomainWarpAmp = domainWarpAmp; } |
289 | |
290 | |
291 | /// <summary> |
292 | /// 2D noise at given position using current settings |
293 | /// </summary> |
294 | /// <returns> |
295 | /// Noise output bounded between -1...1 |
296 | /// </returns> |
297 | template <typename FNfloat> |
298 | float GetNoise(FNfloat x, FNfloat y) const |
299 | { |
300 | Arguments_must_be_floating_point_values<FNfloat>(); |
301 | |
302 | TransformNoiseCoordinate(x, y); |
303 | |
304 | switch (mFractalType) |
305 | { |
306 | default: |
307 | return GenNoiseSingle(mSeed, x, y); |
308 | case FractalType_FBm: |
309 | return GenFractalFBm(x, y); |
310 | case FractalType_Ridged: |
311 | return GenFractalRidged(x, y); |
312 | case FractalType_PingPong: |
313 | return GenFractalPingPong(x, y); |
314 | } |
315 | } |
316 | |
317 | /// <summary> |
318 | /// 3D noise at given position using current settings |
319 | /// </summary> |
320 | /// <returns> |
321 | /// Noise output bounded between -1...1 |
322 | /// </returns> |
323 | template <typename FNfloat> |
324 | float GetNoise(FNfloat x, FNfloat y, FNfloat z) const |
325 | { |
326 | Arguments_must_be_floating_point_values<FNfloat>(); |
327 | |
328 | TransformNoiseCoordinate(x, y, z); |
329 | |
330 | switch (mFractalType) |
331 | { |
332 | default: |
333 | return GenNoiseSingle(mSeed, x, y, z); |
334 | case FractalType_FBm: |
335 | return GenFractalFBm(x, y, z); |
336 | case FractalType_Ridged: |
337 | return GenFractalRidged(x, y, z); |
338 | case FractalType_PingPong: |
339 | return GenFractalPingPong(x, y, z); |
340 | } |
341 | } |
342 | |
343 | |
344 | /// <summary> |
345 | /// 2D warps the input position using current domain warp settings |
346 | /// </summary> |
347 | /// <example> |
348 | /// Example usage with GetNoise |
349 | /// <code>DomainWarp(x, y) |
350 | /// noise = GetNoise(x, y)</code> |
351 | /// </example> |
352 | template <typename FNfloat> |
353 | void DomainWarp(FNfloat& x, FNfloat& y) const |
354 | { |
355 | Arguments_must_be_floating_point_values<FNfloat>(); |
356 | |
357 | switch (mFractalType) |
358 | { |
359 | default: |
360 | DomainWarpSingle(x, y); |
361 | break; |
362 | case FractalType_DomainWarpProgressive: |
363 | DomainWarpFractalProgressive(x, y); |
364 | break; |
365 | case FractalType_DomainWarpIndependent: |
366 | DomainWarpFractalIndependent(x, y); |
367 | break; |
368 | } |
369 | } |
370 | |
371 | /// <summary> |
372 | /// 3D warps the input position using current domain warp settings |
373 | /// </summary> |
374 | /// <example> |
375 | /// Example usage with GetNoise |
376 | /// <code>DomainWarp(x, y, z) |
377 | /// noise = GetNoise(x, y, z)</code> |
378 | /// </example> |
379 | template <typename FNfloat> |
380 | void DomainWarp(FNfloat& x, FNfloat& y, FNfloat& z) const |
381 | { |
382 | Arguments_must_be_floating_point_values<FNfloat>(); |
383 | |
384 | switch (mFractalType) |
385 | { |
386 | default: |
387 | DomainWarpSingle(x, y, z); |
388 | break; |
389 | case FractalType_DomainWarpProgressive: |
390 | DomainWarpFractalProgressive(x, y, z); |
391 | break; |
392 | case FractalType_DomainWarpIndependent: |
393 | DomainWarpFractalIndependent(x, y, z); |
394 | break; |
395 | } |
396 | } |
397 | |
398 | private: |
399 | template <typename T> |
400 | struct Arguments_must_be_floating_point_values; |
401 | |
402 | enum TransformType3D |
403 | { |
404 | TransformType3D_None, |
405 | TransformType3D_ImproveXYPlanes, |
406 | TransformType3D_ImproveXZPlanes, |
407 | TransformType3D_DefaultOpenSimplex2 |
408 | }; |
409 | |
410 | int mSeed; |
411 | float mFrequency; |
412 | NoiseType mNoiseType; |
413 | RotationType3D mRotationType3D; |
414 | TransformType3D mTransformType3D; |
415 | |
416 | FractalType mFractalType; |
417 | int mOctaves; |
418 | float mLacunarity; |
419 | float mGain; |
420 | float mWeightedStrength; |
421 | float mPingPongStrength; |
422 | |
423 | float mFractalBounding; |
424 | |
425 | CellularDistanceFunction mCellularDistanceFunction; |
426 | CellularReturnType mCellularReturnType; |
427 | float mCellularJitterModifier; |
428 | |
429 | DomainWarpType mDomainWarpType; |
430 | TransformType3D mWarpTransformType3D; |
431 | float mDomainWarpAmp; |
432 | |
433 | |
434 | template <typename T> |
435 | struct Lookup |
436 | { |
437 | static const T Gradients2D[]; |
438 | static const T Gradients3D[]; |
439 | static const T RandVecs2D[]; |
440 | static const T RandVecs3D[]; |
441 | }; |
442 | |
443 | static float FastMin(float a, float b) { return a < b ? a : b; } |
444 | |
445 | static float FastMax(float a, float b) { return a > b ? a : b; } |
446 | |
447 | static float FastAbs(float f) { return f < 0 ? -f : f; } |
448 | |
449 | static float FastSqrt(float f) { return sqrtf(f); } |
450 | |
451 | template <typename FNfloat> |
452 | static int FastFloor(FNfloat f) { return f >= 0 ? (int)f : (int)f - 1; } |
453 | |
454 | template <typename FNfloat> |
455 | static int FastRound(FNfloat f) { return f >= 0 ? (int)(f + 0.5f) : (int)(f - 0.5f); } |
456 | |
457 | static float Lerp(float a, float b, float t) { return a + t * (b - a); } |
458 | |
459 | static float InterpHermite(float t) { return t * t * (3 - 2 * t); } |
460 | |
461 | static float InterpQuintic(float t) { return t * t * t * (t * (t * 6 - 15) + 10); } |
462 | |
463 | static float CubicLerp(float a, float b, float c, float d, float t) |
464 | { |
465 | float p = (d - c) - (a - b); |
466 | return t * t * t * p + t * t * ((a - b) - p) + t * (c - a) + b; |
467 | } |
468 | |
469 | static float PingPong(float t) |
470 | { |
471 | t -= (int)(t * 0.5f) * 2; |
472 | return t < 1 ? t : 2 - t; |
473 | } |
474 | |
475 | void CalculateFractalBounding() |
476 | { |
477 | float gain = FastAbs(mGain); |
478 | float amp = gain; |
479 | float ampFractal = 1.0f; |
480 | for (int i = 1; i < mOctaves; i++) |
481 | { |
482 | ampFractal += amp; |
483 | amp *= gain; |
484 | } |
485 | mFractalBounding = 1 / ampFractal; |
486 | } |
487 | |
488 | // Hashing |
489 | static const int PrimeX = 501125321; |
490 | static const int PrimeY = 1136930381; |
491 | static const int PrimeZ = 1720413743; |
492 | |
493 | static int Hash(int seed, int xPrimed, int yPrimed) |
494 | { |
495 | int hash = seed ^ xPrimed ^ yPrimed; |
496 | |
497 | hash *= 0x27d4eb2d; |
498 | return hash; |
499 | } |
500 | |
501 | |
502 | static int Hash(int seed, int xPrimed, int yPrimed, int zPrimed) |
503 | { |
504 | int hash = seed ^ xPrimed ^ yPrimed ^ zPrimed; |
505 | |
506 | hash *= 0x27d4eb2d; |
507 | return hash; |
508 | } |
509 | |
510 | |
511 | static float ValCoord(int seed, int xPrimed, int yPrimed) |
512 | { |
513 | int hash = Hash(seed, xPrimed, yPrimed); |
514 | |
515 | hash *= hash; |
516 | hash ^= hash << 19; |
517 | return hash * (1 / 2147483648.0f); |
518 | } |
519 | |
520 | |
521 | static float ValCoord(int seed, int xPrimed, int yPrimed, int zPrimed) |
522 | { |
523 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed); |
524 | |
525 | hash *= hash; |
526 | hash ^= hash << 19; |
527 | return hash * (1 / 2147483648.0f); |
528 | } |
529 | |
530 | |
531 | float GradCoord(int seed, int xPrimed, int yPrimed, float xd, float yd) const |
532 | { |
533 | int hash = Hash(seed, xPrimed, yPrimed); |
534 | hash ^= hash >> 15; |
535 | hash &= 127 << 1; |
536 | |
537 | float xg = Lookup<float>::Gradients2D[hash]; |
538 | float yg = Lookup<float>::Gradients2D[hash | 1]; |
539 | |
540 | return xd * xg + yd * yg; |
541 | } |
542 | |
543 | |
544 | float GradCoord(int seed, int xPrimed, int yPrimed, int zPrimed, float xd, float yd, float zd) const |
545 | { |
546 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed); |
547 | hash ^= hash >> 15; |
548 | hash &= 63 << 2; |
549 | |
550 | float xg = Lookup<float>::Gradients3D[hash]; |
551 | float yg = Lookup<float>::Gradients3D[hash | 1]; |
552 | float zg = Lookup<float>::Gradients3D[hash | 2]; |
553 | |
554 | return xd * xg + yd * yg + zd * zg; |
555 | } |
556 | |
557 | |
558 | void GradCoordOut(int seed, int xPrimed, int yPrimed, float& xo, float& yo) const |
559 | { |
560 | int hash = Hash(seed, xPrimed, yPrimed) & (255 << 1); |
561 | |
562 | xo = Lookup<float>::RandVecs2D[hash]; |
563 | yo = Lookup<float>::RandVecs2D[hash | 1]; |
564 | } |
565 | |
566 | |
567 | void GradCoordOut(int seed, int xPrimed, int yPrimed, int zPrimed, float& xo, float& yo, float& zo) const |
568 | { |
569 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed) & (255 << 2); |
570 | |
571 | xo = Lookup<float>::RandVecs3D[hash]; |
572 | yo = Lookup<float>::RandVecs3D[hash | 1]; |
573 | zo = Lookup<float>::RandVecs3D[hash | 2]; |
574 | } |
575 | |
576 | |
577 | void GradCoordDual(int seed, int xPrimed, int yPrimed, float xd, float yd, float& xo, float& yo) const |
578 | { |
579 | int hash = Hash(seed, xPrimed, yPrimed); |
580 | int index1 = hash & (127 << 1); |
581 | int index2 = (hash >> 7) & (255 << 1); |
582 | |
583 | float xg = Lookup<float>::Gradients2D[index1]; |
584 | float yg = Lookup<float>::Gradients2D[index1 | 1]; |
585 | float value = xd * xg + yd * yg; |
586 | |
587 | float xgo = Lookup<float>::RandVecs2D[index2]; |
588 | float ygo = Lookup<float>::RandVecs2D[index2 | 1]; |
589 | |
590 | xo = value * xgo; |
591 | yo = value * ygo; |
592 | } |
593 | |
594 | |
595 | void GradCoordDual(int seed, int xPrimed, int yPrimed, int zPrimed, float xd, float yd, float zd, float& xo, float& yo, float& zo) const |
596 | { |
597 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed); |
598 | int index1 = hash & (63 << 2); |
599 | int index2 = (hash >> 6) & (255 << 2); |
600 | |
601 | float xg = Lookup<float>::Gradients3D[index1]; |
602 | float yg = Lookup<float>::Gradients3D[index1 | 1]; |
603 | float zg = Lookup<float>::Gradients3D[index1 | 2]; |
604 | float value = xd * xg + yd * yg + zd * zg; |
605 | |
606 | float xgo = Lookup<float>::RandVecs3D[index2]; |
607 | float ygo = Lookup<float>::RandVecs3D[index2 | 1]; |
608 | float zgo = Lookup<float>::RandVecs3D[index2 | 2]; |
609 | |
610 | xo = value * xgo; |
611 | yo = value * ygo; |
612 | zo = value * zgo; |
613 | } |
614 | |
615 | |
616 | // Generic noise gen |
617 | |
618 | template <typename FNfloat> |
619 | float GenNoiseSingle(int seed, FNfloat x, FNfloat y) const |
620 | { |
621 | switch (mNoiseType) |
622 | { |
623 | case NoiseType_OpenSimplex2: |
624 | return SingleSimplex(seed, x, y); |
625 | case NoiseType_OpenSimplex2S: |
626 | return SingleOpenSimplex2S(seed, x, y); |
627 | case NoiseType_Cellular: |
628 | return SingleCellular(seed, x, y); |
629 | case NoiseType_Perlin: |
630 | return SinglePerlin(seed, x, y); |
631 | case NoiseType_ValueCubic: |
632 | return SingleValueCubic(seed, x, y); |
633 | case NoiseType_Value: |
634 | return SingleValue(seed, x, y); |
635 | default: |
636 | return 0; |
637 | } |
638 | } |
639 | |
640 | template <typename FNfloat> |
641 | float GenNoiseSingle(int seed, FNfloat x, FNfloat y, FNfloat z) const |
642 | { |
643 | switch (mNoiseType) |
644 | { |
645 | case NoiseType_OpenSimplex2: |
646 | return SingleOpenSimplex2(seed, x, y, z); |
647 | case NoiseType_OpenSimplex2S: |
648 | return SingleOpenSimplex2S(seed, x, y, z); |
649 | case NoiseType_Cellular: |
650 | return SingleCellular(seed, x, y, z); |
651 | case NoiseType_Perlin: |
652 | return SinglePerlin(seed, x, y, z); |
653 | case NoiseType_ValueCubic: |
654 | return SingleValueCubic(seed, x, y, z); |
655 | case NoiseType_Value: |
656 | return SingleValue(seed, x, y, z); |
657 | default: |
658 | return 0; |
659 | } |
660 | } |
661 | |
662 | |
663 | // Noise Coordinate Transforms (frequency, and possible skew or rotation) |
664 | |
665 | template <typename FNfloat> |
666 | void TransformNoiseCoordinate(FNfloat& x, FNfloat& y) const |
667 | { |
668 | x *= mFrequency; |
669 | y *= mFrequency; |
670 | |
671 | switch (mNoiseType) |
672 | { |
673 | case NoiseType_OpenSimplex2: |
674 | case NoiseType_OpenSimplex2S: |
675 | { |
676 | const FNfloat SQRT3 = (FNfloat)1.7320508075688772935274463415059; |
677 | const FNfloat F2 = 0.5f * (SQRT3 - 1); |
678 | FNfloat t = (x + y) * F2; |
679 | x += t; |
680 | y += t; |
681 | } |
682 | break; |
683 | default: |
684 | break; |
685 | } |
686 | } |
687 | |
688 | template <typename FNfloat> |
689 | void TransformNoiseCoordinate(FNfloat& x, FNfloat& y, FNfloat& z) const |
690 | { |
691 | x *= mFrequency; |
692 | y *= mFrequency; |
693 | z *= mFrequency; |
694 | |
695 | switch (mTransformType3D) |
696 | { |
697 | case TransformType3D_ImproveXYPlanes: |
698 | { |
699 | FNfloat xy = x + y; |
700 | FNfloat s2 = xy * -(FNfloat)0.211324865405187; |
701 | z *= (FNfloat)0.577350269189626; |
702 | x += s2 - z; |
703 | y = y + s2 - z; |
704 | z += xy * (FNfloat)0.577350269189626; |
705 | } |
706 | break; |
707 | case TransformType3D_ImproveXZPlanes: |
708 | { |
709 | FNfloat xz = x + z; |
710 | FNfloat s2 = xz * -(FNfloat)0.211324865405187; |
711 | y *= (FNfloat)0.577350269189626; |
712 | x += s2 - y; |
713 | z += s2 - y; |
714 | y += xz * (FNfloat)0.577350269189626; |
715 | } |
716 | break; |
717 | case TransformType3D_DefaultOpenSimplex2: |
718 | { |
719 | const FNfloat R3 = (FNfloat)(2.0 / 3.0); |
720 | FNfloat r = (x + y + z) * R3; // Rotation, not skew |
721 | x = r - x; |
722 | y = r - y; |
723 | z = r - z; |
724 | } |
725 | break; |
726 | default: |
727 | break; |
728 | } |
729 | } |
730 | |
731 | void UpdateTransformType3D() |
732 | { |
733 | switch (mRotationType3D) |
734 | { |
735 | case RotationType3D_ImproveXYPlanes: |
736 | mTransformType3D = TransformType3D_ImproveXYPlanes; |
737 | break; |
738 | case RotationType3D_ImproveXZPlanes: |
739 | mTransformType3D = TransformType3D_ImproveXZPlanes; |
740 | break; |
741 | default: |
742 | switch (mNoiseType) |
743 | { |
744 | case NoiseType_OpenSimplex2: |
745 | case NoiseType_OpenSimplex2S: |
746 | mTransformType3D = TransformType3D_DefaultOpenSimplex2; |
747 | break; |
748 | default: |
749 | mTransformType3D = TransformType3D_None; |
750 | break; |
751 | } |
752 | break; |
753 | } |
754 | } |
755 | |
756 | |
757 | // Domain Warp Coordinate Transforms |
758 | |
759 | template <typename FNfloat> |
760 | void TransformDomainWarpCoordinate(FNfloat& x, FNfloat& y) const |
761 | { |
762 | switch (mDomainWarpType) |
763 | { |
764 | case DomainWarpType_OpenSimplex2: |
765 | case DomainWarpType_OpenSimplex2Reduced: |
766 | { |
767 | const FNfloat SQRT3 = (FNfloat)1.7320508075688772935274463415059; |
768 | const FNfloat F2 = 0.5f * (SQRT3 - 1); |
769 | FNfloat t = (x + y) * F2; |
770 | x += t; |
771 | y += t; |
772 | } |
773 | break; |
774 | default: |
775 | break; |
776 | } |
777 | } |
778 | |
779 | template <typename FNfloat> |
780 | void TransformDomainWarpCoordinate(FNfloat& x, FNfloat& y, FNfloat& z) const |
781 | { |
782 | switch (mWarpTransformType3D) |
783 | { |
784 | case TransformType3D_ImproveXYPlanes: |
785 | { |
786 | FNfloat xy = x + y; |
787 | FNfloat s2 = xy * -(FNfloat)0.211324865405187; |
788 | z *= (FNfloat)0.577350269189626; |
789 | x += s2 - z; |
790 | y = y + s2 - z; |
791 | z += xy * (FNfloat)0.577350269189626; |
792 | } |
793 | break; |
794 | case TransformType3D_ImproveXZPlanes: |
795 | { |
796 | FNfloat xz = x + z; |
797 | FNfloat s2 = xz * -(FNfloat)0.211324865405187; |
798 | y *= (FNfloat)0.577350269189626; |
799 | x += s2 - y; |
800 | z += s2 - y; |
801 | y += xz * (FNfloat)0.577350269189626; |
802 | } |
803 | break; |
804 | case TransformType3D_DefaultOpenSimplex2: |
805 | { |
806 | const FNfloat R3 = (FNfloat)(2.0 / 3.0); |
807 | FNfloat r = (x + y + z) * R3; // Rotation, not skew |
808 | x = r - x; |
809 | y = r - y; |
810 | z = r - z; |
811 | } |
812 | break; |
813 | default: |
814 | break; |
815 | } |
816 | } |
817 | |
818 | void UpdateWarpTransformType3D() |
819 | { |
820 | switch (mRotationType3D) |
821 | { |
822 | case RotationType3D_ImproveXYPlanes: |
823 | mWarpTransformType3D = TransformType3D_ImproveXYPlanes; |
824 | break; |
825 | case RotationType3D_ImproveXZPlanes: |
826 | mWarpTransformType3D = TransformType3D_ImproveXZPlanes; |
827 | break; |
828 | default: |
829 | switch (mDomainWarpType) |
830 | { |
831 | case DomainWarpType_OpenSimplex2: |
832 | case DomainWarpType_OpenSimplex2Reduced: |
833 | mWarpTransformType3D = TransformType3D_DefaultOpenSimplex2; |
834 | break; |
835 | default: |
836 | mWarpTransformType3D = TransformType3D_None; |
837 | break; |
838 | } |
839 | break; |
840 | } |
841 | } |
842 | |
843 | |
844 | // Fractal FBm |
845 | |
846 | template <typename FNfloat> |
847 | float GenFractalFBm(FNfloat x, FNfloat y) const |
848 | { |
849 | int seed = mSeed; |
850 | float sum = 0; |
851 | float amp = mFractalBounding; |
852 | |
853 | for (int i = 0; i < mOctaves; i++) |
854 | { |
855 | float noise = GenNoiseSingle(seed++, x, y); |
856 | sum += noise * amp; |
857 | amp *= Lerp(1.0f, FastMin(noise + 1, 2) * 0.5f, mWeightedStrength); |
858 | |
859 | x *= mLacunarity; |
860 | y *= mLacunarity; |
861 | amp *= mGain; |
862 | } |
863 | |
864 | return sum; |
865 | } |
866 | |
867 | template <typename FNfloat> |
868 | float GenFractalFBm(FNfloat x, FNfloat y, FNfloat z) const |
869 | { |
870 | int seed = mSeed; |
871 | float sum = 0; |
872 | float amp = mFractalBounding; |
873 | |
874 | for (int i = 0; i < mOctaves; i++) |
875 | { |
876 | float noise = GenNoiseSingle(seed++, x, y, z); |
877 | sum += noise * amp; |
878 | amp *= Lerp(1.0f, (noise + 1) * 0.5f, mWeightedStrength); |
879 | |
880 | x *= mLacunarity; |
881 | y *= mLacunarity; |
882 | z *= mLacunarity; |
883 | amp *= mGain; |
884 | } |
885 | |
886 | return sum; |
887 | } |
888 | |
889 | |
890 | // Fractal Ridged |
891 | |
892 | template <typename FNfloat> |
893 | float GenFractalRidged(FNfloat x, FNfloat y) const |
894 | { |
895 | int seed = mSeed; |
896 | float sum = 0; |
897 | float amp = mFractalBounding; |
898 | |
899 | for (int i = 0; i < mOctaves; i++) |
900 | { |
901 | float noise = FastAbs(GenNoiseSingle(seed++, x, y)); |
902 | sum += (noise * -2 + 1) * amp; |
903 | amp *= Lerp(1.0f, 1 - noise, mWeightedStrength); |
904 | |
905 | x *= mLacunarity; |
906 | y *= mLacunarity; |
907 | amp *= mGain; |
908 | } |
909 | |
910 | return sum; |
911 | } |
912 | |
913 | template <typename FNfloat> |
914 | float GenFractalRidged(FNfloat x, FNfloat y, FNfloat z) const |
915 | { |
916 | int seed = mSeed; |
917 | float sum = 0; |
918 | float amp = mFractalBounding; |
919 | |
920 | for (int i = 0; i < mOctaves; i++) |
921 | { |
922 | float noise = FastAbs(GenNoiseSingle(seed++, x, y, z)); |
923 | sum += (noise * -2 + 1) * amp; |
924 | amp *= Lerp(1.0f, 1 - noise, mWeightedStrength); |
925 | |
926 | x *= mLacunarity; |
927 | y *= mLacunarity; |
928 | z *= mLacunarity; |
929 | amp *= mGain; |
930 | } |
931 | |
932 | return sum; |
933 | } |
934 | |
935 | |
936 | // Fractal PingPong |
937 | |
938 | template <typename FNfloat> |
939 | float GenFractalPingPong(FNfloat x, FNfloat y) const |
940 | { |
941 | int seed = mSeed; |
942 | float sum = 0; |
943 | float amp = mFractalBounding; |
944 | |
945 | for (int i = 0; i < mOctaves; i++) |
946 | { |
947 | float noise = PingPong((GenNoiseSingle(seed++, x, y) + 1) * mPingPongStrength); |
948 | sum += (noise - 0.5f) * 2 * amp; |
949 | amp *= Lerp(1.0f, noise, mWeightedStrength); |
950 | |
951 | x *= mLacunarity; |
952 | y *= mLacunarity; |
953 | amp *= mGain; |
954 | } |
955 | |
956 | return sum; |
957 | } |
958 | |
959 | template <typename FNfloat> |
960 | float GenFractalPingPong(FNfloat x, FNfloat y, FNfloat z) const |
961 | { |
962 | int seed = mSeed; |
963 | float sum = 0; |
964 | float amp = mFractalBounding; |
965 | |
966 | for (int i = 0; i < mOctaves; i++) |
967 | { |
968 | float noise = PingPong((GenNoiseSingle(seed++, x, y, z) + 1) * mPingPongStrength); |
969 | sum += (noise - 0.5f) * 2 * amp; |
970 | amp *= Lerp(1.0f, noise, mWeightedStrength); |
971 | |
972 | x *= mLacunarity; |
973 | y *= mLacunarity; |
974 | z *= mLacunarity; |
975 | amp *= mGain; |
976 | } |
977 | |
978 | return sum; |
979 | } |
980 | |
981 | |
982 | // Simplex/OpenSimplex2 Noise |
983 | |
984 | template <typename FNfloat> |
985 | float SingleSimplex(int seed, FNfloat x, FNfloat y) const |
986 | { |
987 | // 2D OpenSimplex2 case uses the same algorithm as ordinary Simplex. |
988 | |
989 | const float SQRT3 = 1.7320508075688772935274463415059f; |
990 | const float G2 = (3 - SQRT3) / 6; |
991 | |
992 | /* |
993 | * --- Skew moved to TransformNoiseCoordinate method --- |
994 | * const FNfloat F2 = 0.5f * (SQRT3 - 1); |
995 | * FNfloat s = (x + y) * F2; |
996 | * x += s; y += s; |
997 | */ |
998 | |
999 | int i = FastFloor(x); |
1000 | int j = FastFloor(y); |
1001 | float xi = (float)(x - i); |
1002 | float yi = (float)(y - j); |
1003 | |
1004 | float t = (xi + yi) * G2; |
1005 | float x0 = (float)(xi - t); |
1006 | float y0 = (float)(yi - t); |
1007 | |
1008 | i *= PrimeX; |
1009 | j *= PrimeY; |
1010 | |
1011 | float n0, n1, n2; |
1012 | |
1013 | float a = 0.5f - x0 * x0 - y0 * y0; |
1014 | if (a <= 0) n0 = 0; |
1015 | else |
1016 | { |
1017 | n0 = (a * a) * (a * a) * GradCoord(seed, i, j, x0, y0); |
1018 | } |
1019 | |
1020 | float c = (float)(2 * (1 - 2 * G2) * (1 / G2 - 2)) * t + ((float)(-2 * (1 - 2 * G2) * (1 - 2 * G2)) + a); |
1021 | if (c <= 0) n2 = 0; |
1022 | else |
1023 | { |
1024 | float x2 = x0 + (2 * (float)G2 - 1); |
1025 | float y2 = y0 + (2 * (float)G2 - 1); |
1026 | n2 = (c * c) * (c * c) * GradCoord(seed, i + PrimeX, j + PrimeY, x2, y2); |
1027 | } |
1028 | |
1029 | if (y0 > x0) |
1030 | { |
1031 | float x1 = x0 + (float)G2; |
1032 | float y1 = y0 + ((float)G2 - 1); |
1033 | float b = 0.5f - x1 * x1 - y1 * y1; |
1034 | if (b <= 0) n1 = 0; |
1035 | else |
1036 | { |
1037 | n1 = (b * b) * (b * b) * GradCoord(seed, i, j + PrimeY, x1, y1); |
1038 | } |
1039 | } |
1040 | else |
1041 | { |
1042 | float x1 = x0 + ((float)G2 - 1); |
1043 | float y1 = y0 + (float)G2; |
1044 | float b = 0.5f - x1 * x1 - y1 * y1; |
1045 | if (b <= 0) n1 = 0; |
1046 | else |
1047 | { |
1048 | n1 = (b * b) * (b * b) * GradCoord(seed, i + PrimeX, j, x1, y1); |
1049 | } |
1050 | } |
1051 | |
1052 | return (n0 + n1 + n2) * 99.83685446303647f; |
1053 | } |
1054 | |
1055 | template <typename FNfloat> |
1056 | float SingleOpenSimplex2(int seed, FNfloat x, FNfloat y, FNfloat z) const |
1057 | { |
1058 | // 3D OpenSimplex2 case uses two offset rotated cube grids. |
1059 | |
1060 | /* |
1061 | * --- Rotation moved to TransformNoiseCoordinate method --- |
1062 | * const FNfloat R3 = (FNfloat)(2.0 / 3.0); |
1063 | * FNfloat r = (x + y + z) * R3; // Rotation, not skew |
1064 | * x = r - x; y = r - y; z = r - z; |
1065 | */ |
1066 | |
1067 | int i = FastRound(x); |
1068 | int j = FastRound(y); |
1069 | int k = FastRound(z); |
1070 | float x0 = (float)(x - i); |
1071 | float y0 = (float)(y - j); |
1072 | float z0 = (float)(z - k); |
1073 | |
1074 | int xNSign = (int)(-1.0f - x0) | 1; |
1075 | int yNSign = (int)(-1.0f - y0) | 1; |
1076 | int zNSign = (int)(-1.0f - z0) | 1; |
1077 | |
1078 | float ax0 = xNSign * -x0; |
1079 | float ay0 = yNSign * -y0; |
1080 | float az0 = zNSign * -z0; |
1081 | |
1082 | i *= PrimeX; |
1083 | j *= PrimeY; |
1084 | k *= PrimeZ; |
1085 | |
1086 | float value = 0; |
1087 | float a = (0.6f - x0 * x0) - (y0 * y0 + z0 * z0); |
1088 | |
1089 | for (int l = 0; ; l++) |
1090 | { |
1091 | if (a > 0) |
1092 | { |
1093 | value += (a * a) * (a * a) * GradCoord(seed, i, j, k, x0, y0, z0); |
1094 | } |
1095 | |
1096 | float b = a + 1; |
1097 | int i1 = i; |
1098 | int j1 = j; |
1099 | int k1 = k; |
1100 | float x1 = x0; |
1101 | float y1 = y0; |
1102 | float z1 = z0; |
1103 | |
1104 | if (ax0 >= ay0 && ax0 >= az0) |
1105 | { |
1106 | x1 += xNSign; |
1107 | b -= xNSign * 2 * x1; |
1108 | i1 -= xNSign * PrimeX; |
1109 | } |
1110 | else if (ay0 > ax0 && ay0 >= az0) |
1111 | { |
1112 | y1 += yNSign; |
1113 | b -= yNSign * 2 * y1; |
1114 | j1 -= yNSign * PrimeY; |
1115 | } |
1116 | else |
1117 | { |
1118 | z1 += zNSign; |
1119 | b -= zNSign * 2 * z1; |
1120 | k1 -= zNSign * PrimeZ; |
1121 | } |
1122 | |
1123 | if (b > 0) |
1124 | { |
1125 | value += (b * b) * (b * b) * GradCoord(seed, i1, j1, k1, x1, y1, z1); |
1126 | } |
1127 | |
1128 | if (l == 1) break; |
1129 | |
1130 | ax0 = 0.5f - ax0; |
1131 | ay0 = 0.5f - ay0; |
1132 | az0 = 0.5f - az0; |
1133 | |
1134 | x0 = xNSign * ax0; |
1135 | y0 = yNSign * ay0; |
1136 | z0 = zNSign * az0; |
1137 | |
1138 | a += (0.75f - ax0) - (ay0 + az0); |
1139 | |
1140 | i += (xNSign >> 1) & PrimeX; |
1141 | j += (yNSign >> 1) & PrimeY; |
1142 | k += (zNSign >> 1) & PrimeZ; |
1143 | |
1144 | xNSign = -xNSign; |
1145 | yNSign = -yNSign; |
1146 | zNSign = -zNSign; |
1147 | |
1148 | seed = ~seed; |
1149 | } |
1150 | |
1151 | return value * 32.69428253173828125f; |
1152 | } |
1153 | |
1154 | |
1155 | // OpenSimplex2S Noise |
1156 | |
1157 | template <typename FNfloat> |
1158 | float SingleOpenSimplex2S(int seed, FNfloat x, FNfloat y) const |
1159 | { |
1160 | // 2D OpenSimplex2S case is a modified 2D simplex noise. |
1161 | |
1162 | const FNfloat SQRT3 = (FNfloat)1.7320508075688772935274463415059; |
1163 | const FNfloat G2 = (3 - SQRT3) / 6; |
1164 | |
1165 | /* |
1166 | * --- Skew moved to TransformNoiseCoordinate method --- |
1167 | * const FNfloat F2 = 0.5f * (SQRT3 - 1); |
1168 | * FNfloat s = (x + y) * F2; |
1169 | * x += s; y += s; |
1170 | */ |
1171 | |
1172 | int i = FastFloor(x); |
1173 | int j = FastFloor(y); |
1174 | float xi = (float)(x - i); |
1175 | float yi = (float)(y - j); |
1176 | |
1177 | i *= PrimeX; |
1178 | j *= PrimeY; |
1179 | int i1 = i + PrimeX; |
1180 | int j1 = j + PrimeY; |
1181 | |
1182 | float t = (xi + yi) * (float)G2; |
1183 | float x0 = xi - t; |
1184 | float y0 = yi - t; |
1185 | |
1186 | float a0 = (2.0f / 3.0f) - x0 * x0 - y0 * y0; |
1187 | float value = (a0 * a0) * (a0 * a0) * GradCoord(seed, i, j, x0, y0); |
1188 | |
1189 | float a1 = (float)(2 * (1 - 2 * G2) * (1 / G2 - 2)) * t + ((float)(-2 * (1 - 2 * G2) * (1 - 2 * G2)) + a0); |
1190 | float x1 = x0 - (float)(1 - 2 * G2); |
1191 | float y1 = y0 - (float)(1 - 2 * G2); |
1192 | value += (a1 * a1) * (a1 * a1) * GradCoord(seed, i1, j1, x1, y1); |
1193 | |
1194 | // Nested conditionals were faster than compact bit logic/arithmetic. |
1195 | float xmyi = xi - yi; |
1196 | if (t > G2) |
1197 | { |
1198 | if (xi + xmyi > 1) |
1199 | { |
1200 | float x2 = x0 + (float)(3 * G2 - 2); |
1201 | float y2 = y0 + (float)(3 * G2 - 1); |
1202 | float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; |
1203 | if (a2 > 0) |
1204 | { |
1205 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, i + (PrimeX << 1), j + PrimeY, x2, y2); |
1206 | } |
1207 | } |
1208 | else |
1209 | { |
1210 | float x2 = x0 + (float)G2; |
1211 | float y2 = y0 + (float)(G2 - 1); |
1212 | float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; |
1213 | if (a2 > 0) |
1214 | { |
1215 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, i, j + PrimeY, x2, y2); |
1216 | } |
1217 | } |
1218 | |
1219 | if (yi - xmyi > 1) |
1220 | { |
1221 | float x3 = x0 + (float)(3 * G2 - 1); |
1222 | float y3 = y0 + (float)(3 * G2 - 2); |
1223 | float a3 = (2.0f / 3.0f) - x3 * x3 - y3 * y3; |
1224 | if (a3 > 0) |
1225 | { |
1226 | value += (a3 * a3) * (a3 * a3) * GradCoord(seed, i + PrimeX, j + (PrimeY << 1), x3, y3); |
1227 | } |
1228 | } |
1229 | else |
1230 | { |
1231 | float x3 = x0 + (float)(G2 - 1); |
1232 | float y3 = y0 + (float)G2; |
1233 | float a3 = (2.0f / 3.0f) - x3 * x3 - y3 * y3; |
1234 | if (a3 > 0) |
1235 | { |
1236 | value += (a3 * a3) * (a3 * a3) * GradCoord(seed, i + PrimeX, j, x3, y3); |
1237 | } |
1238 | } |
1239 | } |
1240 | else |
1241 | { |
1242 | if (xi + xmyi < 0) |
1243 | { |
1244 | float x2 = x0 + (float)(1 - G2); |
1245 | float y2 = y0 - (float)G2; |
1246 | float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; |
1247 | if (a2 > 0) |
1248 | { |
1249 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, i - PrimeX, j, x2, y2); |
1250 | } |
1251 | } |
1252 | else |
1253 | { |
1254 | float x2 = x0 + (float)(G2 - 1); |
1255 | float y2 = y0 + (float)G2; |
1256 | float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; |
1257 | if (a2 > 0) |
1258 | { |
1259 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, i + PrimeX, j, x2, y2); |
1260 | } |
1261 | } |
1262 | |
1263 | if (yi < xmyi) |
1264 | { |
1265 | float x2 = x0 - (float)G2; |
1266 | float y2 = y0 - (float)(G2 - 1); |
1267 | float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; |
1268 | if (a2 > 0) |
1269 | { |
1270 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, i, j - PrimeY, x2, y2); |
1271 | } |
1272 | } |
1273 | else |
1274 | { |
1275 | float x2 = x0 + (float)G2; |
1276 | float y2 = y0 + (float)(G2 - 1); |
1277 | float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; |
1278 | if (a2 > 0) |
1279 | { |
1280 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, i, j + PrimeY, x2, y2); |
1281 | } |
1282 | } |
1283 | } |
1284 | |
1285 | return value * 18.24196194486065f; |
1286 | } |
1287 | |
1288 | template <typename FNfloat> |
1289 | float SingleOpenSimplex2S(int seed, FNfloat x, FNfloat y, FNfloat z) const |
1290 | { |
1291 | // 3D OpenSimplex2S case uses two offset rotated cube grids. |
1292 | |
1293 | /* |
1294 | * --- Rotation moved to TransformNoiseCoordinate method --- |
1295 | * const FNfloat R3 = (FNfloat)(2.0 / 3.0); |
1296 | * FNfloat r = (x + y + z) * R3; // Rotation, not skew |
1297 | * x = r - x; y = r - y; z = r - z; |
1298 | */ |
1299 | |
1300 | int i = FastFloor(x); |
1301 | int j = FastFloor(y); |
1302 | int k = FastFloor(z); |
1303 | float xi = (float)(x - i); |
1304 | float yi = (float)(y - j); |
1305 | float zi = (float)(z - k); |
1306 | |
1307 | i *= PrimeX; |
1308 | j *= PrimeY; |
1309 | k *= PrimeZ; |
1310 | int seed2 = seed + 1293373; |
1311 | |
1312 | int xNMask = (int)(-0.5f - xi); |
1313 | int yNMask = (int)(-0.5f - yi); |
1314 | int zNMask = (int)(-0.5f - zi); |
1315 | |
1316 | float x0 = xi + xNMask; |
1317 | float y0 = yi + yNMask; |
1318 | float z0 = zi + zNMask; |
1319 | float a0 = 0.75f - x0 * x0 - y0 * y0 - z0 * z0; |
1320 | float value = (a0 * a0) * (a0 * a0) * GradCoord(seed, |
1321 | i + (xNMask & PrimeX), j + (yNMask & PrimeY), k + (zNMask & PrimeZ), x0, y0, z0); |
1322 | |
1323 | float x1 = xi - 0.5f; |
1324 | float y1 = yi - 0.5f; |
1325 | float z1 = zi - 0.5f; |
1326 | float a1 = 0.75f - x1 * x1 - y1 * y1 - z1 * z1; |
1327 | value += (a1 * a1) * (a1 * a1) * GradCoord(seed2, |
1328 | i + PrimeX, j + PrimeY, k + PrimeZ, x1, y1, z1); |
1329 | |
1330 | float xAFlipMask0 = ((xNMask | 1) << 1) * x1; |
1331 | float yAFlipMask0 = ((yNMask | 1) << 1) * y1; |
1332 | float zAFlipMask0 = ((zNMask | 1) << 1) * z1; |
1333 | float xAFlipMask1 = (-2 - (xNMask << 2)) * x1 - 1.0f; |
1334 | float yAFlipMask1 = (-2 - (yNMask << 2)) * y1 - 1.0f; |
1335 | float zAFlipMask1 = (-2 - (zNMask << 2)) * z1 - 1.0f; |
1336 | |
1337 | bool skip5 = false; |
1338 | float a2 = xAFlipMask0 + a0; |
1339 | if (a2 > 0) |
1340 | { |
1341 | float x2 = x0 - (xNMask | 1); |
1342 | float y2 = y0; |
1343 | float z2 = z0; |
1344 | value += (a2 * a2) * (a2 * a2) * GradCoord(seed, |
1345 | i + (~xNMask & PrimeX), j + (yNMask & PrimeY), k + (zNMask & PrimeZ), x2, y2, z2); |
1346 | } |
1347 | else |
1348 | { |
1349 | float a3 = yAFlipMask0 + zAFlipMask0 + a0; |
1350 | if (a3 > 0) |
1351 | { |
1352 | float x3 = x0; |
1353 | float y3 = y0 - (yNMask | 1); |
1354 | float z3 = z0 - (zNMask | 1); |
1355 | value += (a3 * a3) * (a3 * a3) * GradCoord(seed, |
1356 | i + (xNMask & PrimeX), j + (~yNMask & PrimeY), k + (~zNMask & PrimeZ), x3, y3, z3); |
1357 | } |
1358 | |
1359 | float a4 = xAFlipMask1 + a1; |
1360 | if (a4 > 0) |
1361 | { |
1362 | float x4 = (xNMask | 1) + x1; |
1363 | float y4 = y1; |
1364 | float z4 = z1; |
1365 | value += (a4 * a4) * (a4 * a4) * GradCoord(seed2, |
1366 | i + (xNMask & (PrimeX * 2)), j + PrimeY, k + PrimeZ, x4, y4, z4); |
1367 | skip5 = true; |
1368 | } |
1369 | } |
1370 | |
1371 | bool skip9 = false; |
1372 | float a6 = yAFlipMask0 + a0; |
1373 | if (a6 > 0) |
1374 | { |
1375 | float x6 = x0; |
1376 | float y6 = y0 - (yNMask | 1); |
1377 | float z6 = z0; |
1378 | value += (a6 * a6) * (a6 * a6) * GradCoord(seed, |
1379 | i + (xNMask & PrimeX), j + (~yNMask & PrimeY), k + (zNMask & PrimeZ), x6, y6, z6); |
1380 | } |
1381 | else |
1382 | { |
1383 | float a7 = xAFlipMask0 + zAFlipMask0 + a0; |
1384 | if (a7 > 0) |
1385 | { |
1386 | float x7 = x0 - (xNMask | 1); |
1387 | float y7 = y0; |
1388 | float z7 = z0 - (zNMask | 1); |
1389 | value += (a7 * a7) * (a7 * a7) * GradCoord(seed, |
1390 | i + (~xNMask & PrimeX), j + (yNMask & PrimeY), k + (~zNMask & PrimeZ), x7, y7, z7); |
1391 | } |
1392 | |
1393 | float a8 = yAFlipMask1 + a1; |
1394 | if (a8 > 0) |
1395 | { |
1396 | float x8 = x1; |
1397 | float y8 = (yNMask | 1) + y1; |
1398 | float z8 = z1; |
1399 | value += (a8 * a8) * (a8 * a8) * GradCoord(seed2, |
1400 | i + PrimeX, j + (yNMask & (PrimeY << 1)), k + PrimeZ, x8, y8, z8); |
1401 | skip9 = true; |
1402 | } |
1403 | } |
1404 | |
1405 | bool skipD = false; |
1406 | float aA = zAFlipMask0 + a0; |
1407 | if (aA > 0) |
1408 | { |
1409 | float xA = x0; |
1410 | float yA = y0; |
1411 | float zA = z0 - (zNMask | 1); |
1412 | value += (aA * aA) * (aA * aA) * GradCoord(seed, |
1413 | i + (xNMask & PrimeX), j + (yNMask & PrimeY), k + (~zNMask & PrimeZ), xA, yA, zA); |
1414 | } |
1415 | else |
1416 | { |
1417 | float aB = xAFlipMask0 + yAFlipMask0 + a0; |
1418 | if (aB > 0) |
1419 | { |
1420 | float xB = x0 - (xNMask | 1); |
1421 | float yB = y0 - (yNMask | 1); |
1422 | float zB = z0; |
1423 | value += (aB * aB) * (aB * aB) * GradCoord(seed, |
1424 | i + (~xNMask & PrimeX), j + (~yNMask & PrimeY), k + (zNMask & PrimeZ), xB, yB, zB); |
1425 | } |
1426 | |
1427 | float aC = zAFlipMask1 + a1; |
1428 | if (aC > 0) |
1429 | { |
1430 | float xC = x1; |
1431 | float yC = y1; |
1432 | float zC = (zNMask | 1) + z1; |
1433 | value += (aC * aC) * (aC * aC) * GradCoord(seed2, |
1434 | i + PrimeX, j + PrimeY, k + (zNMask & (PrimeZ << 1)), xC, yC, zC); |
1435 | skipD = true; |
1436 | } |
1437 | } |
1438 | |
1439 | if (!skip5) |
1440 | { |
1441 | float a5 = yAFlipMask1 + zAFlipMask1 + a1; |
1442 | if (a5 > 0) |
1443 | { |
1444 | float x5 = x1; |
1445 | float y5 = (yNMask | 1) + y1; |
1446 | float z5 = (zNMask | 1) + z1; |
1447 | value += (a5 * a5) * (a5 * a5) * GradCoord(seed2, |
1448 | i + PrimeX, j + (yNMask & (PrimeY << 1)), k + (zNMask & (PrimeZ << 1)), x5, y5, z5); |
1449 | } |
1450 | } |
1451 | |
1452 | if (!skip9) |
1453 | { |
1454 | float a9 = xAFlipMask1 + zAFlipMask1 + a1; |
1455 | if (a9 > 0) |
1456 | { |
1457 | float x9 = (xNMask | 1) + x1; |
1458 | float y9 = y1; |
1459 | float z9 = (zNMask | 1) + z1; |
1460 | value += (a9 * a9) * (a9 * a9) * GradCoord(seed2, |
1461 | i + (xNMask & (PrimeX * 2)), j + PrimeY, k + (zNMask & (PrimeZ << 1)), x9, y9, z9); |
1462 | } |
1463 | } |
1464 | |
1465 | if (!skipD) |
1466 | { |
1467 | float aD = xAFlipMask1 + yAFlipMask1 + a1; |
1468 | if (aD > 0) |
1469 | { |
1470 | float xD = (xNMask | 1) + x1; |
1471 | float yD = (yNMask | 1) + y1; |
1472 | float zD = z1; |
1473 | value += (aD * aD) * (aD * aD) * GradCoord(seed2, |
1474 | i + (xNMask & (PrimeX << 1)), j + (yNMask & (PrimeY << 1)), k + PrimeZ, xD, yD, zD); |
1475 | } |
1476 | } |
1477 | |
1478 | return value * 9.046026385208288f; |
1479 | } |
1480 | |
1481 | |
1482 | // Cellular Noise |
1483 | |
1484 | template <typename FNfloat> |
1485 | float SingleCellular(int seed, FNfloat x, FNfloat y) const |
1486 | { |
1487 | int xr = FastRound(x); |
1488 | int yr = FastRound(y); |
1489 | |
1490 | float distance0 = 1e10f; |
1491 | float distance1 = 1e10f; |
1492 | int closestHash = 0; |
1493 | |
1494 | float cellularJitter = 0.43701595f * mCellularJitterModifier; |
1495 | |
1496 | int xPrimed = (xr - 1) * PrimeX; |
1497 | int yPrimedBase = (yr - 1) * PrimeY; |
1498 | |
1499 | switch (mCellularDistanceFunction) |
1500 | { |
1501 | default: |
1502 | case CellularDistanceFunction_Euclidean: |
1503 | case CellularDistanceFunction_EuclideanSq: |
1504 | for (int xi = xr - 1; xi <= xr + 1; xi++) |
1505 | { |
1506 | int yPrimed = yPrimedBase; |
1507 | |
1508 | for (int yi = yr - 1; yi <= yr + 1; yi++) |
1509 | { |
1510 | int hash = Hash(seed, xPrimed, yPrimed); |
1511 | int idx = hash & (255 << 1); |
1512 | |
1513 | float vecX = (float)(xi - x) + Lookup<float>::RandVecs2D[idx] * cellularJitter; |
1514 | float vecY = (float)(yi - y) + Lookup<float>::RandVecs2D[idx | 1] * cellularJitter; |
1515 | |
1516 | float newDistance = vecX * vecX + vecY * vecY; |
1517 | |
1518 | distance1 = FastMax(FastMin(distance1, newDistance), distance0); |
1519 | if (newDistance < distance0) |
1520 | { |
1521 | distance0 = newDistance; |
1522 | closestHash = hash; |
1523 | } |
1524 | yPrimed += PrimeY; |
1525 | } |
1526 | xPrimed += PrimeX; |
1527 | } |
1528 | break; |
1529 | case CellularDistanceFunction_Manhattan: |
1530 | for (int xi = xr - 1; xi <= xr + 1; xi++) |
1531 | { |
1532 | int yPrimed = yPrimedBase; |
1533 | |
1534 | for (int yi = yr - 1; yi <= yr + 1; yi++) |
1535 | { |
1536 | int hash = Hash(seed, xPrimed, yPrimed); |
1537 | int idx = hash & (255 << 1); |
1538 | |
1539 | float vecX = (float)(xi - x) + Lookup<float>::RandVecs2D[idx] * cellularJitter; |
1540 | float vecY = (float)(yi - y) + Lookup<float>::RandVecs2D[idx | 1] * cellularJitter; |
1541 | |
1542 | float newDistance = FastAbs(vecX) + FastAbs(vecY); |
1543 | |
1544 | distance1 = FastMax(FastMin(distance1, newDistance), distance0); |
1545 | if (newDistance < distance0) |
1546 | { |
1547 | distance0 = newDistance; |
1548 | closestHash = hash; |
1549 | } |
1550 | yPrimed += PrimeY; |
1551 | } |
1552 | xPrimed += PrimeX; |
1553 | } |
1554 | break; |
1555 | case CellularDistanceFunction_Hybrid: |
1556 | for (int xi = xr - 1; xi <= xr + 1; xi++) |
1557 | { |
1558 | int yPrimed = yPrimedBase; |
1559 | |
1560 | for (int yi = yr - 1; yi <= yr + 1; yi++) |
1561 | { |
1562 | int hash = Hash(seed, xPrimed, yPrimed); |
1563 | int idx = hash & (255 << 1); |
1564 | |
1565 | float vecX = (float)(xi - x) + Lookup<float>::RandVecs2D[idx] * cellularJitter; |
1566 | float vecY = (float)(yi - y) + Lookup<float>::RandVecs2D[idx | 1] * cellularJitter; |
1567 | |
1568 | float newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY); |
1569 | |
1570 | distance1 = FastMax(FastMin(distance1, newDistance), distance0); |
1571 | if (newDistance < distance0) |
1572 | { |
1573 | distance0 = newDistance; |
1574 | closestHash = hash; |
1575 | } |
1576 | yPrimed += PrimeY; |
1577 | } |
1578 | xPrimed += PrimeX; |
1579 | } |
1580 | break; |
1581 | } |
1582 | |
1583 | if (mCellularDistanceFunction == CellularDistanceFunction_Euclidean && mCellularReturnType >= CellularReturnType_Distance) |
1584 | { |
1585 | distance0 = FastSqrt(distance0); |
1586 | |
1587 | if (mCellularReturnType >= CellularReturnType_Distance2) |
1588 | { |
1589 | distance1 = FastSqrt(distance1); |
1590 | } |
1591 | } |
1592 | |
1593 | switch (mCellularReturnType) |
1594 | { |
1595 | case CellularReturnType_CellValue: |
1596 | return closestHash * (1 / 2147483648.0f); |
1597 | case CellularReturnType_Distance: |
1598 | return distance0 - 1; |
1599 | case CellularReturnType_Distance2: |
1600 | return distance1 - 1; |
1601 | case CellularReturnType_Distance2Add: |
1602 | return (distance1 + distance0) * 0.5f - 1; |
1603 | case CellularReturnType_Distance2Sub: |
1604 | return distance1 - distance0 - 1; |
1605 | case CellularReturnType_Distance2Mul: |
1606 | return distance1 * distance0 * 0.5f - 1; |
1607 | case CellularReturnType_Distance2Div: |
1608 | return distance0 / distance1 - 1; |
1609 | default: |
1610 | return 0; |
1611 | } |
1612 | } |
1613 | |
1614 | // GCC raises warnings when integer overflows occur, which are needed for hashing here. |
1615 | #if defined(__GNUC__) && !defined(__clang__) |
1616 | #pragma GCC diagnostic push |
1617 | #pragma GCC diagnostic ignored "-Waggressive-loop-optimizations" |
1618 | #endif |
1619 | |
1620 | template <typename FNfloat> |
1621 | float SingleCellular(int seed, FNfloat x, FNfloat y, FNfloat z) const |
1622 | { |
1623 | int xr = FastRound(x); |
1624 | int yr = FastRound(y); |
1625 | int zr = FastRound(z); |
1626 | |
1627 | float distance0 = 1e10f; |
1628 | float distance1 = 1e10f; |
1629 | int closestHash = 0; |
1630 | |
1631 | float cellularJitter = 0.39614353f * mCellularJitterModifier; |
1632 | |
1633 | int xPrimed = (xr - 1) * PrimeX; |
1634 | int yPrimedBase = (yr - 1) * PrimeY; |
1635 | int zPrimedBase = (zr - 1) * PrimeZ; |
1636 | |
1637 | switch (mCellularDistanceFunction) |
1638 | { |
1639 | case CellularDistanceFunction_Euclidean: |
1640 | case CellularDistanceFunction_EuclideanSq: |
1641 | for (int xi = xr - 1; xi <= xr + 1; xi++) |
1642 | { |
1643 | int yPrimed = yPrimedBase; |
1644 | |
1645 | for (int yi = yr - 1; yi <= yr + 1; yi++) |
1646 | { |
1647 | int zPrimed = zPrimedBase; |
1648 | |
1649 | for (int zi = zr - 1; zi <= zr + 1; zi++) |
1650 | { |
1651 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed); |
1652 | int idx = hash & (255 << 2); |
1653 | |
1654 | float vecX = (float)(xi - x) + Lookup<float>::RandVecs3D[idx] * cellularJitter; |
1655 | float vecY = (float)(yi - y) + Lookup<float>::RandVecs3D[idx | 1] * cellularJitter; |
1656 | float vecZ = (float)(zi - z) + Lookup<float>::RandVecs3D[idx | 2] * cellularJitter; |
1657 | |
1658 | float newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ; |
1659 | |
1660 | distance1 = FastMax(FastMin(distance1, newDistance), distance0); |
1661 | if (newDistance < distance0) |
1662 | { |
1663 | distance0 = newDistance; |
1664 | closestHash = hash; |
1665 | } |
1666 | zPrimed += PrimeZ; |
1667 | } |
1668 | yPrimed += PrimeY; |
1669 | } |
1670 | xPrimed += PrimeX; |
1671 | } |
1672 | break; |
1673 | case CellularDistanceFunction_Manhattan: |
1674 | for (int xi = xr - 1; xi <= xr + 1; xi++) |
1675 | { |
1676 | int yPrimed = yPrimedBase; |
1677 | |
1678 | for (int yi = yr - 1; yi <= yr + 1; yi++) |
1679 | { |
1680 | int zPrimed = zPrimedBase; |
1681 | |
1682 | for (int zi = zr - 1; zi <= zr + 1; zi++) |
1683 | { |
1684 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed); |
1685 | int idx = hash & (255 << 2); |
1686 | |
1687 | float vecX = (float)(xi - x) + Lookup<float>::RandVecs3D[idx] * cellularJitter; |
1688 | float vecY = (float)(yi - y) + Lookup<float>::RandVecs3D[idx | 1] * cellularJitter; |
1689 | float vecZ = (float)(zi - z) + Lookup<float>::RandVecs3D[idx | 2] * cellularJitter; |
1690 | |
1691 | float newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ); |
1692 | |
1693 | distance1 = FastMax(FastMin(distance1, newDistance), distance0); |
1694 | if (newDistance < distance0) |
1695 | { |
1696 | distance0 = newDistance; |
1697 | closestHash = hash; |
1698 | } |
1699 | zPrimed += PrimeZ; |
1700 | } |
1701 | yPrimed += PrimeY; |
1702 | } |
1703 | xPrimed += PrimeX; |
1704 | } |
1705 | break; |
1706 | case CellularDistanceFunction_Hybrid: |
1707 | for (int xi = xr - 1; xi <= xr + 1; xi++) |
1708 | { |
1709 | int yPrimed = yPrimedBase; |
1710 | |
1711 | for (int yi = yr - 1; yi <= yr + 1; yi++) |
1712 | { |
1713 | int zPrimed = zPrimedBase; |
1714 | |
1715 | for (int zi = zr - 1; zi <= zr + 1; zi++) |
1716 | { |
1717 | int hash = Hash(seed, xPrimed, yPrimed, zPrimed); |
1718 | int idx = hash & (255 << 2); |
1719 | |
1720 | float vecX = (float)(xi - x) + Lookup<float>::RandVecs3D[idx] * cellularJitter; |
1721 | float vecY = (float)(yi - y) + Lookup<float>::RandVecs3D[idx | 1] * cellularJitter; |
1722 | float vecZ = (float)(zi - z) + Lookup<float>::RandVecs3D[idx | 2] * cellularJitter; |
1723 | |
1724 | float newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ); |
1725 | |
1726 | distance1 = FastMax(FastMin(distance1, newDistance), distance0); |
1727 | if (newDistance < distance0) |
1728 | { |
1729 | distance0 = newDistance; |
1730 | closestHash = hash; |
1731 | } |
1732 | zPrimed += PrimeZ; |
1733 | } |
1734 | yPrimed += PrimeY; |
1735 | } |
1736 | xPrimed += PrimeX; |
1737 | } |
1738 | break; |
1739 | default: |
1740 | break; |
1741 | } |
1742 | |
1743 | if (mCellularDistanceFunction == CellularDistanceFunction_Euclidean && mCellularReturnType >= CellularReturnType_Distance) |
1744 | { |
1745 | distance0 = FastSqrt(distance0); |
1746 | |
1747 | if (mCellularReturnType >= CellularReturnType_Distance2) |
1748 | { |
1749 | distance1 = FastSqrt(distance1); |
1750 | } |
1751 | } |
1752 | |
1753 | switch (mCellularReturnType) |
1754 | { |
1755 | case CellularReturnType_CellValue: |
1756 | return closestHash * (1 / 2147483648.0f); |
1757 | case CellularReturnType_Distance: |
1758 | return distance0 - 1; |
1759 | case CellularReturnType_Distance2: |
1760 | return distance1 - 1; |
1761 | case CellularReturnType_Distance2Add: |
1762 | return (distance1 + distance0) * 0.5f - 1; |
1763 | case CellularReturnType_Distance2Sub: |
1764 | return distance1 - distance0 - 1; |
1765 | case CellularReturnType_Distance2Mul: |
1766 | return distance1 * distance0 * 0.5f - 1; |
1767 | case CellularReturnType_Distance2Div: |
1768 | return distance0 / distance1 - 1; |
1769 | default: |
1770 | return 0; |
1771 | } |
1772 | } |
1773 | |
1774 | #if defined(__GNUC__) && !defined(__clang__) |
1775 | #pragma GCC diagnostic pop |
1776 | #endif |
1777 | |
1778 | // Perlin Noise |
1779 | |
1780 | template <typename FNfloat> |
1781 | float SinglePerlin(int seed, FNfloat x, FNfloat y) const |
1782 | { |
1783 | int x0 = FastFloor(x); |
1784 | int y0 = FastFloor(y); |
1785 | |
1786 | float xd0 = (float)(x - x0); |
1787 | float yd0 = (float)(y - y0); |
1788 | float xd1 = xd0 - 1; |
1789 | float yd1 = yd0 - 1; |
1790 | |
1791 | float xs = InterpQuintic(xd0); |
1792 | float ys = InterpQuintic(yd0); |
1793 | |
1794 | x0 *= PrimeX; |
1795 | y0 *= PrimeY; |
1796 | int x1 = x0 + PrimeX; |
1797 | int y1 = y0 + PrimeY; |
1798 | |
1799 | float xf0 = Lerp(GradCoord(seed, x0, y0, xd0, yd0), GradCoord(seed, x1, y0, xd1, yd0), xs); |
1800 | float xf1 = Lerp(GradCoord(seed, x0, y1, xd0, yd1), GradCoord(seed, x1, y1, xd1, yd1), xs); |
1801 | |
1802 | return Lerp(xf0, xf1, ys) * 1.4247691104677813f; |
1803 | } |
1804 | |
1805 | template <typename FNfloat> |
1806 | float SinglePerlin(int seed, FNfloat x, FNfloat y, FNfloat z) const |
1807 | { |
1808 | int x0 = FastFloor(x); |
1809 | int y0 = FastFloor(y); |
1810 | int z0 = FastFloor(z); |
1811 | |
1812 | float xd0 = (float)(x - x0); |
1813 | float yd0 = (float)(y - y0); |
1814 | float zd0 = (float)(z - z0); |
1815 | float xd1 = xd0 - 1; |
1816 | float yd1 = yd0 - 1; |
1817 | float zd1 = zd0 - 1; |
1818 | |
1819 | float xs = InterpQuintic(xd0); |
1820 | float ys = InterpQuintic(yd0); |
1821 | float zs = InterpQuintic(zd0); |
1822 | |
1823 | x0 *= PrimeX; |
1824 | y0 *= PrimeY; |
1825 | z0 *= PrimeZ; |
1826 | int x1 = x0 + PrimeX; |
1827 | int y1 = y0 + PrimeY; |
1828 | int z1 = z0 + PrimeZ; |
1829 | |
1830 | float xf00 = Lerp(GradCoord(seed, x0, y0, z0, xd0, yd0, zd0), GradCoord(seed, x1, y0, z0, xd1, yd0, zd0), xs); |
1831 | float xf10 = Lerp(GradCoord(seed, x0, y1, z0, xd0, yd1, zd0), GradCoord(seed, x1, y1, z0, xd1, yd1, zd0), xs); |
1832 | float xf01 = Lerp(GradCoord(seed, x0, y0, z1, xd0, yd0, zd1), GradCoord(seed, x1, y0, z1, xd1, yd0, zd1), xs); |
1833 | float xf11 = Lerp(GradCoord(seed, x0, y1, z1, xd0, yd1, zd1), GradCoord(seed, x1, y1, z1, xd1, yd1, zd1), xs); |
1834 | |
1835 | float yf0 = Lerp(xf00, xf10, ys); |
1836 | float yf1 = Lerp(xf01, xf11, ys); |
1837 | |
1838 | return Lerp(yf0, yf1, zs) * 0.964921414852142333984375f; |
1839 | } |
1840 | |
1841 | |
1842 | // Value Cubic Noise |
1843 | |
1844 | template <typename FNfloat> |
1845 | float SingleValueCubic(int seed, FNfloat x, FNfloat y) const |
1846 | { |
1847 | int x1 = FastFloor(x); |
1848 | int y1 = FastFloor(y); |
1849 | |
1850 | float xs = (float)(x - x1); |
1851 | float ys = (float)(y - y1); |
1852 | |
1853 | x1 *= PrimeX; |
1854 | y1 *= PrimeY; |
1855 | int x0 = x1 - PrimeX; |
1856 | int y0 = y1 - PrimeY; |
1857 | int x2 = x1 + PrimeX; |
1858 | int y2 = y1 + PrimeY; |
1859 | int x3 = x1 + (int)((long)PrimeX << 1); |
1860 | int y3 = y1 + (int)((long)PrimeY << 1); |
1861 | |
1862 | return CubicLerp( |
1863 | CubicLerp(ValCoord(seed, x0, y0), ValCoord(seed, x1, y0), ValCoord(seed, x2, y0), ValCoord(seed, x3, y0), |
1864 | xs), |
1865 | CubicLerp(ValCoord(seed, x0, y1), ValCoord(seed, x1, y1), ValCoord(seed, x2, y1), ValCoord(seed, x3, y1), |
1866 | xs), |
1867 | CubicLerp(ValCoord(seed, x0, y2), ValCoord(seed, x1, y2), ValCoord(seed, x2, y2), ValCoord(seed, x3, y2), |
1868 | xs), |
1869 | CubicLerp(ValCoord(seed, x0, y3), ValCoord(seed, x1, y3), ValCoord(seed, x2, y3), ValCoord(seed, x3, y3), |
1870 | xs), |
1871 | ys) * (1 / (1.5f * 1.5f)); |
1872 | } |
1873 | |
1874 | template <typename FNfloat> |
1875 | float SingleValueCubic(int seed, FNfloat x, FNfloat y, FNfloat z) const |
1876 | { |
1877 | int x1 = FastFloor(x); |
1878 | int y1 = FastFloor(y); |
1879 | int z1 = FastFloor(z); |
1880 | |
1881 | float xs = (float)(x - x1); |
1882 | float ys = (float)(y - y1); |
1883 | float zs = (float)(z - z1); |
1884 | |
1885 | x1 *= PrimeX; |
1886 | y1 *= PrimeY; |
1887 | z1 *= PrimeZ; |
1888 | |
1889 | int x0 = x1 - PrimeX; |
1890 | int y0 = y1 - PrimeY; |
1891 | int z0 = z1 - PrimeZ; |
1892 | int x2 = x1 + PrimeX; |
1893 | int y2 = y1 + PrimeY; |
1894 | int z2 = z1 + PrimeZ; |
1895 | int x3 = x1 + (int)((long)PrimeX << 1); |
1896 | int y3 = y1 + (int)((long)PrimeY << 1); |
1897 | int z3 = z1 + (int)((long)PrimeZ << 1); |
1898 | |
1899 | |
1900 | return CubicLerp( |
1901 | CubicLerp( |
1902 | CubicLerp(ValCoord(seed, x0, y0, z0), ValCoord(seed, x1, y0, z0), ValCoord(seed, x2, y0, z0), ValCoord(seed, x3, y0, z0), xs), |
1903 | CubicLerp(ValCoord(seed, x0, y1, z0), ValCoord(seed, x1, y1, z0), ValCoord(seed, x2, y1, z0), ValCoord(seed, x3, y1, z0), xs), |
1904 | CubicLerp(ValCoord(seed, x0, y2, z0), ValCoord(seed, x1, y2, z0), ValCoord(seed, x2, y2, z0), ValCoord(seed, x3, y2, z0), xs), |
1905 | CubicLerp(ValCoord(seed, x0, y3, z0), ValCoord(seed, x1, y3, z0), ValCoord(seed, x2, y3, z0), ValCoord(seed, x3, y3, z0), xs), |
1906 | ys), |
1907 | CubicLerp( |
1908 | CubicLerp(ValCoord(seed, x0, y0, z1), ValCoord(seed, x1, y0, z1), ValCoord(seed, x2, y0, z1), ValCoord(seed, x3, y0, z1), xs), |
1909 | CubicLerp(ValCoord(seed, x0, y1, z1), ValCoord(seed, x1, y1, z1), ValCoord(seed, x2, y1, z1), ValCoord(seed, x3, y1, z1), xs), |
1910 | CubicLerp(ValCoord(seed, x0, y2, z1), ValCoord(seed, x1, y2, z1), ValCoord(seed, x2, y2, z1), ValCoord(seed, x3, y2, z1), xs), |
1911 | CubicLerp(ValCoord(seed, x0, y3, z1), ValCoord(seed, x1, y3, z1), ValCoord(seed, x2, y3, z1), ValCoord(seed, x3, y3, z1), xs), |
1912 | ys), |
1913 | CubicLerp( |
1914 | CubicLerp(ValCoord(seed, x0, y0, z2), ValCoord(seed, x1, y0, z2), ValCoord(seed, x2, y0, z2), ValCoord(seed, x3, y0, z2), xs), |
1915 | CubicLerp(ValCoord(seed, x0, y1, z2), ValCoord(seed, x1, y1, z2), ValCoord(seed, x2, y1, z2), ValCoord(seed, x3, y1, z2), xs), |
1916 | CubicLerp(ValCoord(seed, x0, y2, z2), ValCoord(seed, x1, y2, z2), ValCoord(seed, x2, y2, z2), ValCoord(seed, x3, y2, z2), xs), |
1917 | CubicLerp(ValCoord(seed, x0, y3, z2), ValCoord(seed, x1, y3, z2), ValCoord(seed, x2, y3, z2), ValCoord(seed, x3, y3, z2), xs), |
1918 | ys), |
1919 | CubicLerp( |
1920 | CubicLerp(ValCoord(seed, x0, y0, z3), ValCoord(seed, x1, y0, z3), ValCoord(seed, x2, y0, z3), ValCoord(seed, x3, y0, z3), xs), |
1921 | CubicLerp(ValCoord(seed, x0, y1, z3), ValCoord(seed, x1, y1, z3), ValCoord(seed, x2, y1, z3), ValCoord(seed, x3, y1, z3), xs), |
1922 | CubicLerp(ValCoord(seed, x0, y2, z3), ValCoord(seed, x1, y2, z3), ValCoord(seed, x2, y2, z3), ValCoord(seed, x3, y2, z3), xs), |
1923 | CubicLerp(ValCoord(seed, x0, y3, z3), ValCoord(seed, x1, y3, z3), ValCoord(seed, x2, y3, z3), ValCoord(seed, x3, y3, z3), xs), |
1924 | ys), |
1925 | zs) * (1 / (1.5f * 1.5f * 1.5f)); |
1926 | } |
1927 | |
1928 | |
1929 | // Value Noise |
1930 | |
1931 | template <typename FNfloat> |
1932 | float SingleValue(int seed, FNfloat x, FNfloat y) const |
1933 | { |
1934 | int x0 = FastFloor(x); |
1935 | int y0 = FastFloor(y); |
1936 | |
1937 | float xs = InterpHermite((float)(x - x0)); |
1938 | float ys = InterpHermite((float)(y - y0)); |
1939 | |
1940 | x0 *= PrimeX; |
1941 | y0 *= PrimeY; |
1942 | int x1 = x0 + PrimeX; |
1943 | int y1 = y0 + PrimeY; |
1944 | |
1945 | float xf0 = Lerp(ValCoord(seed, x0, y0), ValCoord(seed, x1, y0), xs); |
1946 | float xf1 = Lerp(ValCoord(seed, x0, y1), ValCoord(seed, x1, y1), xs); |
1947 | |
1948 | return Lerp(xf0, xf1, ys); |
1949 | } |
1950 | |
1951 | template <typename FNfloat> |
1952 | float SingleValue(int seed, FNfloat x, FNfloat y, FNfloat z) const |
1953 | { |
1954 | int x0 = FastFloor(x); |
1955 | int y0 = FastFloor(y); |
1956 | int z0 = FastFloor(z); |
1957 | |
1958 | float xs = InterpHermite((float)(x - x0)); |
1959 | float ys = InterpHermite((float)(y - y0)); |
1960 | float zs = InterpHermite((float)(z - z0)); |
1961 | |
1962 | x0 *= PrimeX; |
1963 | y0 *= PrimeY; |
1964 | z0 *= PrimeZ; |
1965 | int x1 = x0 + PrimeX; |
1966 | int y1 = y0 + PrimeY; |
1967 | int z1 = z0 + PrimeZ; |
1968 | |
1969 | float xf00 = Lerp(ValCoord(seed, x0, y0, z0), ValCoord(seed, x1, y0, z0), xs); |
1970 | float xf10 = Lerp(ValCoord(seed, x0, y1, z0), ValCoord(seed, x1, y1, z0), xs); |
1971 | float xf01 = Lerp(ValCoord(seed, x0, y0, z1), ValCoord(seed, x1, y0, z1), xs); |
1972 | float xf11 = Lerp(ValCoord(seed, x0, y1, z1), ValCoord(seed, x1, y1, z1), xs); |
1973 | |
1974 | float yf0 = Lerp(xf00, xf10, ys); |
1975 | float yf1 = Lerp(xf01, xf11, ys); |
1976 | |
1977 | return Lerp(yf0, yf1, zs); |
1978 | } |
1979 | |
1980 | |
1981 | // Domain Warp |
1982 | |
1983 | template <typename FNfloat> |
1984 | void DoSingleDomainWarp(int seed, float amp, float freq, FNfloat x, FNfloat y, FNfloat& xr, FNfloat& yr) const |
1985 | { |
1986 | switch (mDomainWarpType) |
1987 | { |
1988 | case DomainWarpType_OpenSimplex2: |
1989 | SingleDomainWarpSimplexGradient(seed, amp * 38.283687591552734375f, freq, x, y, xr, yr, false); |
1990 | break; |
1991 | case DomainWarpType_OpenSimplex2Reduced: |
1992 | SingleDomainWarpSimplexGradient(seed, amp * 16.0f, freq, x, y, xr, yr, true); |
1993 | break; |
1994 | case DomainWarpType_BasicGrid: |
1995 | SingleDomainWarpBasicGrid(seed, amp, freq, x, y, xr, yr); |
1996 | break; |
1997 | } |
1998 | } |
1999 | |
2000 | template <typename FNfloat> |
2001 | void DoSingleDomainWarp(int seed, float amp, float freq, FNfloat x, FNfloat y, FNfloat z, FNfloat& xr, FNfloat& yr, FNfloat& zr) const |
2002 | { |
2003 | switch (mDomainWarpType) |
2004 | { |
2005 | case DomainWarpType_OpenSimplex2: |
2006 | SingleDomainWarpOpenSimplex2Gradient(seed, amp * 32.69428253173828125f, freq, x, y, z, xr, yr, zr, false); |
2007 | break; |
2008 | case DomainWarpType_OpenSimplex2Reduced: |
2009 | SingleDomainWarpOpenSimplex2Gradient(seed, amp * 7.71604938271605f, freq, x, y, z, xr, yr, zr, true); |
2010 | break; |
2011 | case DomainWarpType_BasicGrid: |
2012 | SingleDomainWarpBasicGrid(seed, amp, freq, x, y, z, xr, yr, zr); |
2013 | break; |
2014 | } |
2015 | } |
2016 | |
2017 | |
2018 | // Domain Warp Single Wrapper |
2019 | |
2020 | template <typename FNfloat> |
2021 | void DomainWarpSingle(FNfloat& x, FNfloat& y) const |
2022 | { |
2023 | int seed = mSeed; |
2024 | float amp = mDomainWarpAmp * mFractalBounding; |
2025 | float freq = mFrequency; |
2026 | |
2027 | FNfloat xs = x; |
2028 | FNfloat ys = y; |
2029 | TransformDomainWarpCoordinate(xs, ys); |
2030 | |
2031 | DoSingleDomainWarp(seed, amp, freq, xs, ys, x, y); |
2032 | } |
2033 | |
2034 | template <typename FNfloat> |
2035 | void DomainWarpSingle(FNfloat& x, FNfloat& y, FNfloat& z) const |
2036 | { |
2037 | int seed = mSeed; |
2038 | float amp = mDomainWarpAmp * mFractalBounding; |
2039 | float freq = mFrequency; |
2040 | |
2041 | FNfloat xs = x; |
2042 | FNfloat ys = y; |
2043 | FNfloat zs = z; |
2044 | TransformDomainWarpCoordinate(xs, ys, zs); |
2045 | |
2046 | DoSingleDomainWarp(seed, amp, freq, xs, ys, zs, x, y, z); |
2047 | } |
2048 | |
2049 | |
2050 | // Domain Warp Fractal Progressive |
2051 | |
2052 | template <typename FNfloat> |
2053 | void DomainWarpFractalProgressive(FNfloat& x, FNfloat& y) const |
2054 | { |
2055 | int seed = mSeed; |
2056 | float amp = mDomainWarpAmp * mFractalBounding; |
2057 | float freq = mFrequency; |
2058 | |
2059 | for (int i = 0; i < mOctaves; i++) |
2060 | { |
2061 | FNfloat xs = x; |
2062 | FNfloat ys = y; |
2063 | TransformDomainWarpCoordinate(xs, ys); |
2064 | |
2065 | DoSingleDomainWarp(seed, amp, freq, xs, ys, x, y); |
2066 | |
2067 | seed++; |
2068 | amp *= mGain; |
2069 | freq *= mLacunarity; |
2070 | } |
2071 | } |
2072 | |
2073 | template <typename FNfloat> |
2074 | void DomainWarpFractalProgressive(FNfloat& x, FNfloat& y, FNfloat& z) const |
2075 | { |
2076 | int seed = mSeed; |
2077 | float amp = mDomainWarpAmp * mFractalBounding; |
2078 | float freq = mFrequency; |
2079 | |
2080 | for (int i = 0; i < mOctaves; i++) |
2081 | { |
2082 | FNfloat xs = x; |
2083 | FNfloat ys = y; |
2084 | FNfloat zs = z; |
2085 | TransformDomainWarpCoordinate(xs, ys, zs); |
2086 | |
2087 | DoSingleDomainWarp(seed, amp, freq, xs, ys, zs, x, y, z); |
2088 | |
2089 | seed++; |
2090 | amp *= mGain; |
2091 | freq *= mLacunarity; |
2092 | } |
2093 | } |
2094 | |
2095 | |
2096 | // Domain Warp Fractal Independant |
2097 | |
2098 | template <typename FNfloat> |
2099 | void DomainWarpFractalIndependent(FNfloat& x, FNfloat& y) const |
2100 | { |
2101 | FNfloat xs = x; |
2102 | FNfloat ys = y; |
2103 | TransformDomainWarpCoordinate(xs, ys); |
2104 | |
2105 | int seed = mSeed; |
2106 | float amp = mDomainWarpAmp * mFractalBounding; |
2107 | float freq = mFrequency; |
2108 | |
2109 | for (int i = 0; i < mOctaves; i++) |
2110 | { |
2111 | DoSingleDomainWarp(seed, amp, freq, xs, ys, x, y); |
2112 | |
2113 | seed++; |
2114 | amp *= mGain; |
2115 | freq *= mLacunarity; |
2116 | } |
2117 | } |
2118 | |
2119 | template <typename FNfloat> |
2120 | void DomainWarpFractalIndependent(FNfloat& x, FNfloat& y, FNfloat& z) const |
2121 | { |
2122 | FNfloat xs = x; |
2123 | FNfloat ys = y; |
2124 | FNfloat zs = z; |
2125 | TransformDomainWarpCoordinate(xs, ys, zs); |
2126 | |
2127 | int seed = mSeed; |
2128 | float amp = mDomainWarpAmp * mFractalBounding; |
2129 | float freq = mFrequency; |
2130 | |
2131 | for (int i = 0; i < mOctaves; i++) |
2132 | { |
2133 | DoSingleDomainWarp(seed, amp, freq, xs, ys, zs, x, y, z); |
2134 | |
2135 | seed++; |
2136 | amp *= mGain; |
2137 | freq *= mLacunarity; |
2138 | } |
2139 | } |
2140 | |
2141 | |
2142 | // Domain Warp Basic Grid |
2143 | |
2144 | template <typename FNfloat> |
2145 | void SingleDomainWarpBasicGrid(int seed, float warpAmp, float frequency, FNfloat x, FNfloat y, FNfloat& xr, FNfloat& yr) const |
2146 | { |
2147 | FNfloat xf = x * frequency; |
2148 | FNfloat yf = y * frequency; |
2149 | |
2150 | int x0 = FastFloor(xf); |
2151 | int y0 = FastFloor(yf); |
2152 | |
2153 | float xs = InterpHermite((float)(xf - x0)); |
2154 | float ys = InterpHermite((float)(yf - y0)); |
2155 | |
2156 | x0 *= PrimeX; |
2157 | y0 *= PrimeY; |
2158 | int x1 = x0 + PrimeX; |
2159 | int y1 = y0 + PrimeY; |
2160 | |
2161 | int hash0 = Hash(seed, x0, y0) & (255 << 1); |
2162 | int hash1 = Hash(seed, x1, y0) & (255 << 1); |
2163 | |
2164 | float lx0x = Lerp(Lookup<float>::RandVecs2D[hash0], Lookup<float>::RandVecs2D[hash1], xs); |
2165 | float ly0x = Lerp(Lookup<float>::RandVecs2D[hash0 | 1], Lookup<float>::RandVecs2D[hash1 | 1], xs); |
2166 | |
2167 | hash0 = Hash(seed, x0, y1) & (255 << 1); |
2168 | hash1 = Hash(seed, x1, y1) & (255 << 1); |
2169 | |
2170 | float lx1x = Lerp(Lookup<float>::RandVecs2D[hash0], Lookup<float>::RandVecs2D[hash1], xs); |
2171 | float ly1x = Lerp(Lookup<float>::RandVecs2D[hash0 | 1], Lookup<float>::RandVecs2D[hash1 | 1], xs); |
2172 | |
2173 | xr += Lerp(lx0x, lx1x, ys) * warpAmp; |
2174 | yr += Lerp(ly0x, ly1x, ys) * warpAmp; |
2175 | } |
2176 | |
2177 | template <typename FNfloat> |
2178 | void SingleDomainWarpBasicGrid(int seed, float warpAmp, float frequency, FNfloat x, FNfloat y, FNfloat z, FNfloat& xr, FNfloat& yr, FNfloat& zr) const |
2179 | { |
2180 | FNfloat xf = x * frequency; |
2181 | FNfloat yf = y * frequency; |
2182 | FNfloat zf = z * frequency; |
2183 | |
2184 | int x0 = FastFloor(xf); |
2185 | int y0 = FastFloor(yf); |
2186 | int z0 = FastFloor(zf); |
2187 | |
2188 | float xs = InterpHermite((float)(xf - x0)); |
2189 | float ys = InterpHermite((float)(yf - y0)); |
2190 | float zs = InterpHermite((float)(zf - z0)); |
2191 | |
2192 | x0 *= PrimeX; |
2193 | y0 *= PrimeY; |
2194 | z0 *= PrimeZ; |
2195 | int x1 = x0 + PrimeX; |
2196 | int y1 = y0 + PrimeY; |
2197 | int z1 = z0 + PrimeZ; |
2198 | |
2199 | int hash0 = Hash(seed, x0, y0, z0) & (255 << 2); |
2200 | int hash1 = Hash(seed, x1, y0, z0) & (255 << 2); |
2201 | |
2202 | float lx0x = Lerp(Lookup<float>::RandVecs3D[hash0], Lookup<float>::RandVecs3D[hash1], xs); |
2203 | float ly0x = Lerp(Lookup<float>::RandVecs3D[hash0 | 1], Lookup<float>::RandVecs3D[hash1 | 1], xs); |
2204 | float lz0x = Lerp(Lookup<float>::RandVecs3D[hash0 | 2], Lookup<float>::RandVecs3D[hash1 | 2], xs); |
2205 | |
2206 | hash0 = Hash(seed, x0, y1, z0) & (255 << 2); |
2207 | hash1 = Hash(seed, x1, y1, z0) & (255 << 2); |
2208 | |
2209 | float lx1x = Lerp(Lookup<float>::RandVecs3D[hash0], Lookup<float>::RandVecs3D[hash1], xs); |
2210 | float ly1x = Lerp(Lookup<float>::RandVecs3D[hash0 | 1], Lookup<float>::RandVecs3D[hash1 | 1], xs); |
2211 | float lz1x = Lerp(Lookup<float>::RandVecs3D[hash0 | 2], Lookup<float>::RandVecs3D[hash1 | 2], xs); |
2212 | |
2213 | float lx0y = Lerp(lx0x, lx1x, ys); |
2214 | float ly0y = Lerp(ly0x, ly1x, ys); |
2215 | float lz0y = Lerp(lz0x, lz1x, ys); |
2216 | |
2217 | hash0 = Hash(seed, x0, y0, z1) & (255 << 2); |
2218 | hash1 = Hash(seed, x1, y0, z1) & (255 << 2); |
2219 | |
2220 | lx0x = Lerp(Lookup<float>::RandVecs3D[hash0], Lookup<float>::RandVecs3D[hash1], xs); |
2221 | ly0x = Lerp(Lookup<float>::RandVecs3D[hash0 | 1], Lookup<float>::RandVecs3D[hash1 | 1], xs); |
2222 | lz0x = Lerp(Lookup<float>::RandVecs3D[hash0 | 2], Lookup<float>::RandVecs3D[hash1 | 2], xs); |
2223 | |
2224 | hash0 = Hash(seed, x0, y1, z1) & (255 << 2); |
2225 | hash1 = Hash(seed, x1, y1, z1) & (255 << 2); |
2226 | |
2227 | lx1x = Lerp(Lookup<float>::RandVecs3D[hash0], Lookup<float>::RandVecs3D[hash1], xs); |
2228 | ly1x = Lerp(Lookup<float>::RandVecs3D[hash0 | 1], Lookup<float>::RandVecs3D[hash1 | 1], xs); |
2229 | lz1x = Lerp(Lookup<float>::RandVecs3D[hash0 | 2], Lookup<float>::RandVecs3D[hash1 | 2], xs); |
2230 | |
2231 | xr += Lerp(lx0y, Lerp(lx0x, lx1x, ys), zs) * warpAmp; |
2232 | yr += Lerp(ly0y, Lerp(ly0x, ly1x, ys), zs) * warpAmp; |
2233 | zr += Lerp(lz0y, Lerp(lz0x, lz1x, ys), zs) * warpAmp; |
2234 | } |
2235 | |
2236 | |
2237 | // Domain Warp Simplex/OpenSimplex2 |
2238 | |
2239 | template <typename FNfloat> |
2240 | void SingleDomainWarpSimplexGradient(int seed, float warpAmp, float frequency, FNfloat x, FNfloat y, FNfloat& xr, FNfloat& yr, bool outGradOnly) const |
2241 | { |
2242 | const float SQRT3 = 1.7320508075688772935274463415059f; |
2243 | const float G2 = (3 - SQRT3) / 6; |
2244 | |
2245 | x *= frequency; |
2246 | y *= frequency; |
2247 | |
2248 | /* |
2249 | * --- Skew moved to TransformNoiseCoordinate method --- |
2250 | * const FNfloat F2 = 0.5f * (SQRT3 - 1); |
2251 | * FNfloat s = (x + y) * F2; |
2252 | * x += s; y += s; |
2253 | */ |
2254 | |
2255 | int i = FastFloor(x); |
2256 | int j = FastFloor(y); |
2257 | float xi = (float)(x - i); |
2258 | float yi = (float)(y - j); |
2259 | |
2260 | float t = (xi + yi) * G2; |
2261 | float x0 = (float)(xi - t); |
2262 | float y0 = (float)(yi - t); |
2263 | |
2264 | i *= PrimeX; |
2265 | j *= PrimeY; |
2266 | |
2267 | float vx, vy; |
2268 | vx = vy = 0; |
2269 | |
2270 | float a = 0.5f - x0 * x0 - y0 * y0; |
2271 | if (a > 0) |
2272 | { |
2273 | float aaaa = (a * a) * (a * a); |
2274 | float xo, yo; |
2275 | if (outGradOnly) |
2276 | GradCoordOut(seed, i, j, xo, yo); |
2277 | else |
2278 | GradCoordDual(seed, i, j, x0, y0, xo, yo); |
2279 | vx += aaaa * xo; |
2280 | vy += aaaa * yo; |
2281 | } |
2282 | |
2283 | float c = (float)(2 * (1 - 2 * G2) * (1 / G2 - 2)) * t + ((float)(-2 * (1 - 2 * G2) * (1 - 2 * G2)) + a); |
2284 | if (c > 0) |
2285 | { |
2286 | float x2 = x0 + (2 * (float)G2 - 1); |
2287 | float y2 = y0 + (2 * (float)G2 - 1); |
2288 | float cccc = (c * c) * (c * c); |
2289 | float xo, yo; |
2290 | if (outGradOnly) |
2291 | GradCoordOut(seed, i + PrimeX, j + PrimeY, xo, yo); |
2292 | else |
2293 | GradCoordDual(seed, i + PrimeX, j + PrimeY, x2, y2, xo, yo); |
2294 | vx += cccc * xo; |
2295 | vy += cccc * yo; |
2296 | } |
2297 | |
2298 | if (y0 > x0) |
2299 | { |
2300 | float x1 = x0 + (float)G2; |
2301 | float y1 = y0 + ((float)G2 - 1); |
2302 | float b = 0.5f - x1 * x1 - y1 * y1; |
2303 | if (b > 0) |
2304 | { |
2305 | float bbbb = (b * b) * (b * b); |
2306 | float xo, yo; |
2307 | if (outGradOnly) |
2308 | GradCoordOut(seed, i, j + PrimeY, xo, yo); |
2309 | else |
2310 | GradCoordDual(seed, i, j + PrimeY, x1, y1, xo, yo); |
2311 | vx += bbbb * xo; |
2312 | vy += bbbb * yo; |
2313 | } |
2314 | } |
2315 | else |
2316 | { |
2317 | float x1 = x0 + ((float)G2 - 1); |
2318 | float y1 = y0 + (float)G2; |
2319 | float b = 0.5f - x1 * x1 - y1 * y1; |
2320 | if (b > 0) |
2321 | { |
2322 | float bbbb = (b * b) * (b * b); |
2323 | float xo, yo; |
2324 | if (outGradOnly) |
2325 | GradCoordOut(seed, i + PrimeX, j, xo, yo); |
2326 | else |
2327 | GradCoordDual(seed, i + PrimeX, j, x1, y1, xo, yo); |
2328 | vx += bbbb * xo; |
2329 | vy += bbbb * yo; |
2330 | } |
2331 | } |
2332 | |
2333 | xr += vx * warpAmp; |
2334 | yr += vy * warpAmp; |
2335 | } |
2336 | |
2337 | template <typename FNfloat> |
2338 | void SingleDomainWarpOpenSimplex2Gradient(int seed, float warpAmp, float frequency, FNfloat x, FNfloat y, FNfloat z, FNfloat& xr, FNfloat& yr, FNfloat& zr, bool outGradOnly) const |
2339 | { |
2340 | x *= frequency; |
2341 | y *= frequency; |
2342 | z *= frequency; |
2343 | |
2344 | /* |
2345 | * --- Rotation moved to TransformDomainWarpCoordinate method --- |
2346 | * const FNfloat R3 = (FNfloat)(2.0 / 3.0); |
2347 | * FNfloat r = (x + y + z) * R3; // Rotation, not skew |
2348 | * x = r - x; y = r - y; z = r - z; |
2349 | */ |
2350 | |
2351 | int i = FastRound(x); |
2352 | int j = FastRound(y); |
2353 | int k = FastRound(z); |
2354 | float x0 = (float)x - i; |
2355 | float y0 = (float)y - j; |
2356 | float z0 = (float)z - k; |
2357 | |
2358 | int xNSign = (int)(-x0 - 1.0f) | 1; |
2359 | int yNSign = (int)(-y0 - 1.0f) | 1; |
2360 | int zNSign = (int)(-z0 - 1.0f) | 1; |
2361 | |
2362 | float ax0 = xNSign * -x0; |
2363 | float ay0 = yNSign * -y0; |
2364 | float az0 = zNSign * -z0; |
2365 | |
2366 | i *= PrimeX; |
2367 | j *= PrimeY; |
2368 | k *= PrimeZ; |
2369 | |
2370 | float vx, vy, vz; |
2371 | vx = vy = vz = 0; |
2372 | |
2373 | float a = (0.6f - x0 * x0) - (y0 * y0 + z0 * z0); |
2374 | for (int l = 0; l < 2; l++) |
2375 | { |
2376 | if (a > 0) |
2377 | { |
2378 | float aaaa = (a * a) * (a * a); |
2379 | float xo, yo, zo; |
2380 | if (outGradOnly) |
2381 | GradCoordOut(seed, i, j, k, xo, yo, zo); |
2382 | else |
2383 | GradCoordDual(seed, i, j, k, x0, y0, z0, xo, yo, zo); |
2384 | vx += aaaa * xo; |
2385 | vy += aaaa * yo; |
2386 | vz += aaaa * zo; |
2387 | } |
2388 | |
2389 | float b = a + 1; |
2390 | int i1 = i; |
2391 | int j1 = j; |
2392 | int k1 = k; |
2393 | float x1 = x0; |
2394 | float y1 = y0; |
2395 | float z1 = z0; |
2396 | |
2397 | if (ax0 >= ay0 && ax0 >= az0) |
2398 | { |
2399 | x1 += xNSign; |
2400 | b -= xNSign * 2 * x1; |
2401 | i1 -= xNSign * PrimeX; |
2402 | } |
2403 | else if (ay0 > ax0 && ay0 >= az0) |
2404 | { |
2405 | y1 += yNSign; |
2406 | b -= yNSign * 2 * y1; |
2407 | j1 -= yNSign * PrimeY; |
2408 | } |
2409 | else |
2410 | { |
2411 | z1 += zNSign; |
2412 | b -= zNSign * 2 * z1; |
2413 | k1 -= zNSign * PrimeZ; |
2414 | } |
2415 | |
2416 | if (b > 0) |
2417 | { |
2418 | float bbbb = (b * b) * (b * b); |
2419 | float xo, yo, zo; |
2420 | if (outGradOnly) |
2421 | GradCoordOut(seed, i1, j1, k1, xo, yo, zo); |
2422 | else |
2423 | GradCoordDual(seed, i1, j1, k1, x1, y1, z1, xo, yo, zo); |
2424 | vx += bbbb * xo; |
2425 | vy += bbbb * yo; |
2426 | vz += bbbb * zo; |
2427 | } |
2428 | |
2429 | if (l == 1) break; |
2430 | |
2431 | ax0 = 0.5f - ax0; |
2432 | ay0 = 0.5f - ay0; |
2433 | az0 = 0.5f - az0; |
2434 | |
2435 | x0 = xNSign * ax0; |
2436 | y0 = yNSign * ay0; |
2437 | z0 = zNSign * az0; |
2438 | |
2439 | a += (0.75f - ax0) - (ay0 + az0); |
2440 | |
2441 | i += (xNSign >> 1) & PrimeX; |
2442 | j += (yNSign >> 1) & PrimeY; |
2443 | k += (zNSign >> 1) & PrimeZ; |
2444 | |
2445 | xNSign = -xNSign; |
2446 | yNSign = -yNSign; |
2447 | zNSign = -zNSign; |
2448 | |
2449 | seed += 1293373; |
2450 | } |
2451 | |
2452 | xr += vx * warpAmp; |
2453 | yr += vy * warpAmp; |
2454 | zr += vz * warpAmp; |
2455 | } |
2456 | }; |
2457 | |
2458 | template <> |
2459 | struct FastNoiseLite::Arguments_must_be_floating_point_values<float> {}; |
2460 | template <> |
2461 | struct FastNoiseLite::Arguments_must_be_floating_point_values<double> {}; |
2462 | template <> |
2463 | struct FastNoiseLite::Arguments_must_be_floating_point_values<long double> {}; |
2464 | |
2465 | template <typename T> |
2466 | const T FastNoiseLite::Lookup<T>::Gradients2D[] = |
2467 | { |
2468 | 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, |
2469 | 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, |
2470 | 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, |
2471 | -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, |
2472 | -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, |
2473 | -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, |
2474 | 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, |
2475 | 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, |
2476 | 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, |
2477 | -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, |
2478 | -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, |
2479 | -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, |
2480 | 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, |
2481 | 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, |
2482 | 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, |
2483 | -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, |
2484 | -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, |
2485 | -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, |
2486 | 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, |
2487 | 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, |
2488 | 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, |
2489 | -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, |
2490 | -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, |
2491 | -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, |
2492 | 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, |
2493 | 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, |
2494 | 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, |
2495 | -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, |
2496 | -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, |
2497 | -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, |
2498 | 0.38268343236509f, 0.923879532511287f, 0.923879532511287f, 0.38268343236509f, 0.923879532511287f, -0.38268343236509f, 0.38268343236509f, -0.923879532511287f, |
2499 | -0.38268343236509f, -0.923879532511287f, -0.923879532511287f, -0.38268343236509f, -0.923879532511287f, 0.38268343236509f, -0.38268343236509f, 0.923879532511287f, |
2500 | }; |
2501 | |
2502 | template <typename T> |
2503 | const T FastNoiseLite::Lookup<T>::RandVecs2D[] = |
2504 | { |
2505 | -0.2700222198f, -0.9628540911f, 0.3863092627f, -0.9223693152f, 0.04444859006f, -0.999011673f, -0.5992523158f, -0.8005602176f, -0.7819280288f, 0.6233687174f, 0.9464672271f, 0.3227999196f, -0.6514146797f, -0.7587218957f, 0.9378472289f, 0.347048376f, |
2506 | -0.8497875957f, -0.5271252623f, -0.879042592f, 0.4767432447f, -0.892300288f, -0.4514423508f, -0.379844434f, -0.9250503802f, -0.9951650832f, 0.0982163789f, 0.7724397808f, -0.6350880136f, 0.7573283322f, -0.6530343002f, -0.9928004525f, -0.119780055f, |
2507 | -0.0532665713f, 0.9985803285f, 0.9754253726f, -0.2203300762f, -0.7665018163f, 0.6422421394f, 0.991636706f, 0.1290606184f, -0.994696838f, 0.1028503788f, -0.5379205513f, -0.84299554f, 0.5022815471f, -0.8647041387f, 0.4559821461f, -0.8899889226f, |
2508 | -0.8659131224f, -0.5001944266f, 0.0879458407f, -0.9961252577f, -0.5051684983f, 0.8630207346f, 0.7753185226f, -0.6315704146f, -0.6921944612f, 0.7217110418f, -0.5191659449f, -0.8546734591f, 0.8978622882f, -0.4402764035f, -0.1706774107f, 0.9853269617f, |
2509 | -0.9353430106f, -0.3537420705f, -0.9992404798f, 0.03896746794f, -0.2882064021f, -0.9575683108f, -0.9663811329f, 0.2571137995f, -0.8759714238f, -0.4823630009f, -0.8303123018f, -0.5572983775f, 0.05110133755f, -0.9986934731f, -0.8558373281f, -0.5172450752f, |
2510 | 0.09887025282f, 0.9951003332f, 0.9189016087f, 0.3944867976f, -0.2439375892f, -0.9697909324f, -0.8121409387f, -0.5834613061f, -0.9910431363f, 0.1335421355f, 0.8492423985f, -0.5280031709f, -0.9717838994f, -0.2358729591f, 0.9949457207f, 0.1004142068f, |
2511 | 0.6241065508f, -0.7813392434f, 0.662910307f, 0.7486988212f, -0.7197418176f, 0.6942418282f, -0.8143370775f, -0.5803922158f, 0.104521054f, -0.9945226741f, -0.1065926113f, -0.9943027784f, 0.445799684f, -0.8951327509f, 0.105547406f, 0.9944142724f, |
2512 | -0.992790267f, 0.1198644477f, -0.8334366408f, 0.552615025f, 0.9115561563f, -0.4111755999f, 0.8285544909f, -0.5599084351f, 0.7217097654f, -0.6921957921f, 0.4940492677f, -0.8694339084f, -0.3652321272f, -0.9309164803f, -0.9696606758f, 0.2444548501f, |
2513 | 0.08925509731f, -0.996008799f, 0.5354071276f, -0.8445941083f, -0.1053576186f, 0.9944343981f, -0.9890284586f, 0.1477251101f, 0.004856104961f, 0.9999882091f, 0.9885598478f, 0.1508291331f, 0.9286129562f, -0.3710498316f, -0.5832393863f, -0.8123003252f, |
2514 | 0.3015207509f, 0.9534596146f, -0.9575110528f, 0.2883965738f, 0.9715802154f, -0.2367105511f, 0.229981792f, 0.9731949318f, 0.955763816f, -0.2941352207f, 0.740956116f, 0.6715534485f, -0.9971513787f, -0.07542630764f, 0.6905710663f, -0.7232645452f, |
2515 | -0.290713703f, -0.9568100872f, 0.5912777791f, -0.8064679708f, -0.9454592212f, -0.325740481f, 0.6664455681f, 0.74555369f, 0.6236134912f, 0.7817328275f, 0.9126993851f, -0.4086316587f, -0.8191762011f, 0.5735419353f, -0.8812745759f, -0.4726046147f, |
2516 | 0.9953313627f, 0.09651672651f, 0.9855650846f, -0.1692969699f, -0.8495980887f, 0.5274306472f, 0.6174853946f, -0.7865823463f, 0.8508156371f, 0.52546432f, 0.9985032451f, -0.05469249926f, 0.1971371563f, -0.9803759185f, 0.6607855748f, -0.7505747292f, |
2517 | -0.03097494063f, 0.9995201614f, -0.6731660801f, 0.739491331f, -0.7195018362f, -0.6944905383f, 0.9727511689f, 0.2318515979f, 0.9997059088f, -0.0242506907f, 0.4421787429f, -0.8969269532f, 0.9981350961f, -0.061043673f, -0.9173660799f, -0.3980445648f, |
2518 | -0.8150056635f, -0.5794529907f, -0.8789331304f, 0.4769450202f, 0.0158605829f, 0.999874213f, -0.8095464474f, 0.5870558317f, -0.9165898907f, -0.3998286786f, -0.8023542565f, 0.5968480938f, -0.5176737917f, 0.8555780767f, -0.8154407307f, -0.5788405779f, |
2519 | 0.4022010347f, -0.9155513791f, -0.9052556868f, -0.4248672045f, 0.7317445619f, 0.6815789728f, -0.5647632201f, -0.8252529947f, -0.8403276335f, -0.5420788397f, -0.9314281527f, 0.363925262f, 0.5238198472f, 0.8518290719f, 0.7432803869f, -0.6689800195f, |
2520 | -0.985371561f, -0.1704197369f, 0.4601468731f, 0.88784281f, 0.825855404f, 0.5638819483f, 0.6182366099f, 0.7859920446f, 0.8331502863f, -0.553046653f, 0.1500307506f, 0.9886813308f, -0.662330369f, -0.7492119075f, -0.668598664f, 0.743623444f, |
2521 | 0.7025606278f, 0.7116238924f, -0.5419389763f, -0.8404178401f, -0.3388616456f, 0.9408362159f, 0.8331530315f, 0.5530425174f, -0.2989720662f, -0.9542618632f, 0.2638522993f, 0.9645630949f, 0.124108739f, -0.9922686234f, -0.7282649308f, -0.6852956957f, |
2522 | 0.6962500149f, 0.7177993569f, -0.9183535368f, 0.3957610156f, -0.6326102274f, -0.7744703352f, -0.9331891859f, -0.359385508f, -0.1153779357f, -0.9933216659f, 0.9514974788f, -0.3076565421f, -0.08987977445f, -0.9959526224f, 0.6678496916f, 0.7442961705f, |
2523 | 0.7952400393f, -0.6062947138f, -0.6462007402f, -0.7631674805f, -0.2733598753f, 0.9619118351f, 0.9669590226f, -0.254931851f, -0.9792894595f, 0.2024651934f, -0.5369502995f, -0.8436138784f, -0.270036471f, -0.9628500944f, -0.6400277131f, 0.7683518247f, |
2524 | -0.7854537493f, -0.6189203566f, 0.06005905383f, -0.9981948257f, -0.02455770378f, 0.9996984141f, -0.65983623f, 0.751409442f, -0.6253894466f, -0.7803127835f, -0.6210408851f, -0.7837781695f, 0.8348888491f, 0.5504185768f, -0.1592275245f, 0.9872419133f, |
2525 | 0.8367622488f, 0.5475663786f, -0.8675753916f, -0.4973056806f, -0.2022662628f, -0.9793305667f, 0.9399189937f, 0.3413975472f, 0.9877404807f, -0.1561049093f, -0.9034455656f, 0.4287028224f, 0.1269804218f, -0.9919052235f, -0.3819600854f, 0.924178821f, |
2526 | 0.9754625894f, 0.2201652486f, -0.3204015856f, -0.9472818081f, -0.9874760884f, 0.1577687387f, 0.02535348474f, -0.9996785487f, 0.4835130794f, -0.8753371362f, -0.2850799925f, -0.9585037287f, -0.06805516006f, -0.99768156f, -0.7885244045f, -0.6150034663f, |
2527 | 0.3185392127f, -0.9479096845f, 0.8880043089f, 0.4598351306f, 0.6476921488f, -0.7619021462f, 0.9820241299f, 0.1887554194f, 0.9357275128f, -0.3527237187f, -0.8894895414f, 0.4569555293f, 0.7922791302f, 0.6101588153f, 0.7483818261f, 0.6632681526f, |
2528 | -0.7288929755f, -0.6846276581f, 0.8729032783f, -0.4878932944f, 0.8288345784f, 0.5594937369f, 0.08074567077f, 0.9967347374f, 0.9799148216f, -0.1994165048f, -0.580730673f, -0.8140957471f, -0.4700049791f, -0.8826637636f, 0.2409492979f, 0.9705377045f, |
2529 | 0.9437816757f, -0.3305694308f, -0.8927998638f, -0.4504535528f, -0.8069622304f, 0.5906030467f, 0.06258973166f, 0.9980393407f, -0.9312597469f, 0.3643559849f, 0.5777449785f, 0.8162173362f, -0.3360095855f, -0.941858566f, 0.697932075f, -0.7161639607f, |
2530 | -0.002008157227f, -0.9999979837f, -0.1827294312f, -0.9831632392f, -0.6523911722f, 0.7578824173f, -0.4302626911f, -0.9027037258f, -0.9985126289f, -0.05452091251f, -0.01028102172f, -0.9999471489f, -0.4946071129f, 0.8691166802f, -0.2999350194f, 0.9539596344f, |
2531 | 0.8165471961f, 0.5772786819f, 0.2697460475f, 0.962931498f, -0.7306287391f, -0.6827749597f, -0.7590952064f, -0.6509796216f, -0.907053853f, 0.4210146171f, -0.5104861064f, -0.8598860013f, 0.8613350597f, 0.5080373165f, 0.5007881595f, -0.8655698812f, |
2532 | -0.654158152f, 0.7563577938f, -0.8382755311f, -0.545246856f, 0.6940070834f, 0.7199681717f, 0.06950936031f, 0.9975812994f, 0.1702942185f, -0.9853932612f, 0.2695973274f, 0.9629731466f, 0.5519612192f, -0.8338697815f, 0.225657487f, -0.9742067022f, |
2533 | 0.4215262855f, -0.9068161835f, 0.4881873305f, -0.8727388672f, -0.3683854996f, -0.9296731273f, -0.9825390578f, 0.1860564427f, 0.81256471f, 0.5828709909f, 0.3196460933f, -0.9475370046f, 0.9570913859f, 0.2897862643f, -0.6876655497f, -0.7260276109f, |
2534 | -0.9988770922f, -0.047376731f, -0.1250179027f, 0.992154486f, -0.8280133617f, 0.560708367f, 0.9324863769f, -0.3612051451f, 0.6394653183f, 0.7688199442f, -0.01623847064f, -0.9998681473f, -0.9955014666f, -0.09474613458f, -0.81453315f, 0.580117012f, |
2535 | 0.4037327978f, -0.9148769469f, 0.9944263371f, 0.1054336766f, -0.1624711654f, 0.9867132919f, -0.9949487814f, -0.100383875f, -0.6995302564f, 0.7146029809f, 0.5263414922f, -0.85027327f, -0.5395221479f, 0.841971408f, 0.6579370318f, 0.7530729462f, |
2536 | 0.01426758847f, -0.9998982128f, -0.6734383991f, 0.7392433447f, 0.639412098f, -0.7688642071f, 0.9211571421f, 0.3891908523f, -0.146637214f, -0.9891903394f, -0.782318098f, 0.6228791163f, -0.5039610839f, -0.8637263605f, -0.7743120191f, -0.6328039957f, |
2537 | }; |
2538 | |
2539 | template <typename T> |
2540 | const T FastNoiseLite::Lookup<T>::Gradients3D[] = |
2541 | { |
2542 | 0, 1, 1, 0, 0,-1, 1, 0, 0, 1,-1, 0, 0,-1,-1, 0, |
2543 | 1, 0, 1, 0, -1, 0, 1, 0, 1, 0,-1, 0, -1, 0,-1, 0, |
2544 | 1, 1, 0, 0, -1, 1, 0, 0, 1,-1, 0, 0, -1,-1, 0, 0, |
2545 | 0, 1, 1, 0, 0,-1, 1, 0, 0, 1,-1, 0, 0,-1,-1, 0, |
2546 | 1, 0, 1, 0, -1, 0, 1, 0, 1, 0,-1, 0, -1, 0,-1, 0, |
2547 | 1, 1, 0, 0, -1, 1, 0, 0, 1,-1, 0, 0, -1,-1, 0, 0, |
2548 | 0, 1, 1, 0, 0,-1, 1, 0, 0, 1,-1, 0, 0,-1,-1, 0, |
2549 | 1, 0, 1, 0, -1, 0, 1, 0, 1, 0,-1, 0, -1, 0,-1, 0, |
2550 | 1, 1, 0, 0, -1, 1, 0, 0, 1,-1, 0, 0, -1,-1, 0, 0, |
2551 | 0, 1, 1, 0, 0,-1, 1, 0, 0, 1,-1, 0, 0,-1,-1, 0, |
2552 | 1, 0, 1, 0, -1, 0, 1, 0, 1, 0,-1, 0, -1, 0,-1, 0, |
2553 | 1, 1, 0, 0, -1, 1, 0, 0, 1,-1, 0, 0, -1,-1, 0, 0, |
2554 | 0, 1, 1, 0, 0,-1, 1, 0, 0, 1,-1, 0, 0,-1,-1, 0, |
2555 | 1, 0, 1, 0, -1, 0, 1, 0, 1, 0,-1, 0, -1, 0,-1, 0, |
2556 | 1, 1, 0, 0, -1, 1, 0, 0, 1,-1, 0, 0, -1,-1, 0, 0, |
2557 | 1, 1, 0, 0, 0,-1, 1, 0, -1, 1, 0, 0, 0,-1,-1, 0 |
2558 | }; |
2559 | |
2560 | template <typename T> |
2561 | const T FastNoiseLite::Lookup<T>::RandVecs3D[] = |
2562 | { |
2563 | -0.7292736885f, -0.6618439697f, 0.1735581948f, 0, 0.790292081f, -0.5480887466f, -0.2739291014f, 0, 0.7217578935f, 0.6226212466f, -0.3023380997f, 0, 0.565683137f, -0.8208298145f, -0.0790000257f, 0, 0.760049034f, -0.5555979497f, -0.3370999617f, 0, 0.3713945616f, 0.5011264475f, 0.7816254623f, 0, -0.1277062463f, -0.4254438999f, -0.8959289049f, 0, -0.2881560924f, -0.5815838982f, 0.7607405838f, 0, |
2564 | 0.5849561111f, -0.662820239f, -0.4674352136f, 0, 0.3307171178f, 0.0391653737f, 0.94291689f, 0, 0.8712121778f, -0.4113374369f, -0.2679381538f, 0, 0.580981015f, 0.7021915846f, 0.4115677815f, 0, 0.503756873f, 0.6330056931f, -0.5878203852f, 0, 0.4493712205f, 0.601390195f, 0.6606022552f, 0, -0.6878403724f, 0.09018890807f, -0.7202371714f, 0, -0.5958956522f, -0.6469350577f, 0.475797649f, 0, |
2565 | -0.5127052122f, 0.1946921978f, -0.8361987284f, 0, -0.9911507142f, -0.05410276466f, -0.1212153153f, 0, -0.2149721042f, 0.9720882117f, -0.09397607749f, 0, -0.7518650936f, -0.5428057603f, 0.3742469607f, 0, 0.5237068895f, 0.8516377189f, -0.02107817834f, 0, 0.6333504779f, 0.1926167129f, -0.7495104896f, 0, -0.06788241606f, 0.3998305789f, 0.9140719259f, 0, -0.5538628599f, -0.4729896695f, -0.6852128902f, 0, |
2566 | -0.7261455366f, -0.5911990757f, 0.3509933228f, 0, -0.9229274737f, -0.1782808786f, 0.3412049336f, 0, -0.6968815002f, 0.6511274338f, 0.3006480328f, 0, 0.9608044783f, -0.2098363234f, -0.1811724921f, 0, 0.06817146062f, -0.9743405129f, 0.2145069156f, 0, -0.3577285196f, -0.6697087264f, -0.6507845481f, 0, -0.1868621131f, 0.7648617052f, -0.6164974636f, 0, -0.6541697588f, 0.3967914832f, 0.6439087246f, 0, |
2567 | 0.6993340405f, -0.6164538506f, 0.3618239211f, 0, -0.1546665739f, 0.6291283928f, 0.7617583057f, 0, -0.6841612949f, -0.2580482182f, -0.6821542638f, 0, 0.5383980957f, 0.4258654885f, 0.7271630328f, 0, -0.5026987823f, -0.7939832935f, -0.3418836993f, 0, 0.3202971715f, 0.2834415347f, 0.9039195862f, 0, 0.8683227101f, -0.0003762656404f, -0.4959995258f, 0, 0.791120031f, -0.08511045745f, 0.6057105799f, 0, |
2568 | -0.04011016052f, -0.4397248749f, 0.8972364289f, 0, 0.9145119872f, 0.3579346169f, -0.1885487608f, 0, -0.9612039066f, -0.2756484276f, 0.01024666929f, 0, 0.6510361721f, -0.2877799159f, -0.7023778346f, 0, -0.2041786351f, 0.7365237271f, 0.644859585f, 0, -0.7718263711f, 0.3790626912f, 0.5104855816f, 0, -0.3060082741f, -0.7692987727f, 0.5608371729f, 0, 0.454007341f, -0.5024843065f, 0.7357899537f, 0, |
2569 | 0.4816795475f, 0.6021208291f, -0.6367380315f, 0, 0.6961980369f, -0.3222197429f, 0.641469197f, 0, -0.6532160499f, -0.6781148932f, 0.3368515753f, 0, 0.5089301236f, -0.6154662304f, -0.6018234363f, 0, -0.1635919754f, -0.9133604627f, -0.372840892f, 0, 0.52408019f, -0.8437664109f, 0.1157505864f, 0, 0.5902587356f, 0.4983817807f, -0.6349883666f, 0, 0.5863227872f, 0.494764745f, 0.6414307729f, 0, |
2570 | 0.6779335087f, 0.2341345225f, 0.6968408593f, 0, 0.7177054546f, -0.6858979348f, 0.120178631f, 0, -0.5328819713f, -0.5205125012f, 0.6671608058f, 0, -0.8654874251f, -0.0700727088f, -0.4960053754f, 0, -0.2861810166f, 0.7952089234f, 0.5345495242f, 0, -0.04849529634f, 0.9810836427f, -0.1874115585f, 0, -0.6358521667f, 0.6058348682f, 0.4781800233f, 0, 0.6254794696f, -0.2861619734f, 0.7258696564f, 0, |
2571 | -0.2585259868f, 0.5061949264f, -0.8227581726f, 0, 0.02136306781f, 0.5064016808f, -0.8620330371f, 0, 0.200111773f, 0.8599263484f, 0.4695550591f, 0, 0.4743561372f, 0.6014985084f, -0.6427953014f, 0, 0.6622993731f, -0.5202474575f, -0.5391679918f, 0, 0.08084972818f, -0.6532720452f, 0.7527940996f, 0, -0.6893687501f, 0.0592860349f, 0.7219805347f, 0, -0.1121887082f, -0.9673185067f, 0.2273952515f, 0, |
2572 | 0.7344116094f, 0.5979668656f, -0.3210532909f, 0, 0.5789393465f, -0.2488849713f, 0.7764570201f, 0, 0.6988182827f, 0.3557169806f, -0.6205791146f, 0, -0.8636845529f, -0.2748771249f, -0.4224826141f, 0, -0.4247027957f, -0.4640880967f, 0.777335046f, 0, 0.5257722489f, -0.8427017621f, 0.1158329937f, 0, 0.9343830603f, 0.316302472f, -0.1639543925f, 0, -0.1016836419f, -0.8057303073f, -0.5834887393f, 0, |
2573 | -0.6529238969f, 0.50602126f, -0.5635892736f, 0, -0.2465286165f, -0.9668205684f, -0.06694497494f, 0, -0.9776897119f, -0.2099250524f, -0.007368825344f, 0, 0.7736893337f, 0.5734244712f, 0.2694238123f, 0, -0.6095087895f, 0.4995678998f, 0.6155736747f, 0, 0.5794535482f, 0.7434546771f, 0.3339292269f, 0, -0.8226211154f, 0.08142581855f, 0.5627293636f, 0, -0.510385483f, 0.4703667658f, 0.7199039967f, 0, |
2574 | -0.5764971849f, -0.07231656274f, -0.8138926898f, 0, 0.7250628871f, 0.3949971505f, -0.5641463116f, 0, -0.1525424005f, 0.4860840828f, -0.8604958341f, 0, -0.5550976208f, -0.4957820792f, 0.667882296f, 0, -0.1883614327f, 0.9145869398f, 0.357841725f, 0, 0.7625556724f, -0.5414408243f, -0.3540489801f, 0, -0.5870231946f, -0.3226498013f, -0.7424963803f, 0, 0.3051124198f, 0.2262544068f, -0.9250488391f, 0, |
2575 | 0.6379576059f, 0.577242424f, -0.5097070502f, 0, -0.5966775796f, 0.1454852398f, -0.7891830656f, 0, -0.658330573f, 0.6555487542f, -0.3699414651f, 0, 0.7434892426f, 0.2351084581f, 0.6260573129f, 0, 0.5562114096f, 0.8264360377f, -0.0873632843f, 0, -0.3028940016f, -0.8251527185f, 0.4768419182f, 0, 0.1129343818f, -0.985888439f, -0.1235710781f, 0, 0.5937652891f, -0.5896813806f, 0.5474656618f, 0, |
2576 | 0.6757964092f, -0.5835758614f, -0.4502648413f, 0, 0.7242302609f, -0.1152719764f, 0.6798550586f, 0, -0.9511914166f, 0.0753623979f, -0.2992580792f, 0, 0.2539470961f, -0.1886339355f, 0.9486454084f, 0, 0.571433621f, -0.1679450851f, -0.8032795685f, 0, -0.06778234979f, 0.3978269256f, 0.9149531629f, 0, 0.6074972649f, 0.733060024f, -0.3058922593f, 0, -0.5435478392f, 0.1675822484f, 0.8224791405f, 0, |
2577 | -0.5876678086f, -0.3380045064f, -0.7351186982f, 0, -0.7967562402f, 0.04097822706f, -0.6029098428f, 0, -0.1996350917f, 0.8706294745f, 0.4496111079f, 0, -0.02787660336f, -0.9106232682f, -0.4122962022f, 0, -0.7797625996f, -0.6257634692f, 0.01975775581f, 0, -0.5211232846f, 0.7401644346f, -0.4249554471f, 0, 0.8575424857f, 0.4053272873f, -0.3167501783f, 0, 0.1045223322f, 0.8390195772f, -0.5339674439f, 0, |
2578 | 0.3501822831f, 0.9242524096f, -0.1520850155f, 0, 0.1987849858f, 0.07647613266f, 0.9770547224f, 0, 0.7845996363f, 0.6066256811f, -0.1280964233f, 0, 0.09006737436f, -0.9750989929f, -0.2026569073f, 0, -0.8274343547f, -0.542299559f, 0.1458203587f, 0, -0.3485797732f, -0.415802277f, 0.840000362f, 0, -0.2471778936f, -0.7304819962f, -0.6366310879f, 0, -0.3700154943f, 0.8577948156f, 0.3567584454f, 0, |
2579 | 0.5913394901f, -0.548311967f, -0.5913303597f, 0, 0.1204873514f, -0.7626472379f, -0.6354935001f, 0, 0.616959265f, 0.03079647928f, 0.7863922953f, 0, 0.1258156836f, -0.6640829889f, -0.7369967419f, 0, -0.6477565124f, -0.1740147258f, -0.7417077429f, 0, 0.6217889313f, -0.7804430448f, -0.06547655076f, 0, 0.6589943422f, -0.6096987708f, 0.4404473475f, 0, -0.2689837504f, -0.6732403169f, -0.6887635427f, 0, |
2580 | -0.3849775103f, 0.5676542638f, 0.7277093879f, 0, 0.5754444408f, 0.8110471154f, -0.1051963504f, 0, 0.9141593684f, 0.3832947817f, 0.131900567f, 0, -0.107925319f, 0.9245493968f, 0.3654593525f, 0, 0.377977089f, 0.3043148782f, 0.8743716458f, 0, -0.2142885215f, -0.8259286236f, 0.5214617324f, 0, 0.5802544474f, 0.4148098596f, -0.7008834116f, 0, -0.1982660881f, 0.8567161266f, -0.4761596756f, 0, |
2581 | -0.03381553704f, 0.3773180787f, -0.9254661404f, 0, -0.6867922841f, -0.6656597827f, 0.2919133642f, 0, 0.7731742607f, -0.2875793547f, -0.5652430251f, 0, -0.09655941928f, 0.9193708367f, -0.3813575004f, 0, 0.2715702457f, -0.9577909544f, -0.09426605581f, 0, 0.2451015704f, -0.6917998565f, -0.6792188003f, 0, 0.977700782f, -0.1753855374f, 0.1155036542f, 0, -0.5224739938f, 0.8521606816f, 0.02903615945f, 0, |
2582 | -0.7734880599f, -0.5261292347f, 0.3534179531f, 0, -0.7134492443f, -0.269547243f, 0.6467878011f, 0, 0.1644037271f, 0.5105846203f, -0.8439637196f, 0, 0.6494635788f, 0.05585611296f, 0.7583384168f, 0, -0.4711970882f, 0.5017280509f, -0.7254255765f, 0, -0.6335764307f, -0.2381686273f, -0.7361091029f, 0, -0.9021533097f, -0.270947803f, -0.3357181763f, 0, -0.3793711033f, 0.872258117f, 0.3086152025f, 0, |
2583 | -0.6855598966f, -0.3250143309f, 0.6514394162f, 0, 0.2900942212f, -0.7799057743f, -0.5546100667f, 0, -0.2098319339f, 0.85037073f, 0.4825351604f, 0, -0.4592603758f, 0.6598504336f, -0.5947077538f, 0, 0.8715945488f, 0.09616365406f, -0.4807031248f, 0, -0.6776666319f, 0.7118504878f, -0.1844907016f, 0, 0.7044377633f, 0.312427597f, 0.637304036f, 0, -0.7052318886f, -0.2401093292f, -0.6670798253f, 0, |
2584 | 0.081921007f, -0.7207336136f, -0.6883545647f, 0, -0.6993680906f, -0.5875763221f, -0.4069869034f, 0, -0.1281454481f, 0.6419895885f, 0.7559286424f, 0, -0.6337388239f, -0.6785471501f, -0.3714146849f, 0, 0.5565051903f, -0.2168887573f, -0.8020356851f, 0, -0.5791554484f, 0.7244372011f, -0.3738578718f, 0, 0.1175779076f, -0.7096451073f, 0.6946792478f, 0, -0.6134619607f, 0.1323631078f, 0.7785527795f, 0, |
2585 | 0.6984635305f, -0.02980516237f, -0.715024719f, 0, 0.8318082963f, -0.3930171956f, 0.3919597455f, 0, 0.1469576422f, 0.05541651717f, -0.9875892167f, 0, 0.708868575f, -0.2690503865f, 0.6520101478f, 0, 0.2726053183f, 0.67369766f, -0.68688995f, 0, -0.6591295371f, 0.3035458599f, -0.6880466294f, 0, 0.4815131379f, -0.7528270071f, 0.4487723203f, 0, 0.9430009463f, 0.1675647412f, -0.2875261255f, 0, |
2586 | 0.434802957f, 0.7695304522f, -0.4677277752f, 0, 0.3931996188f, 0.594473625f, 0.7014236729f, 0, 0.7254336655f, -0.603925654f, 0.3301814672f, 0, 0.7590235227f, -0.6506083235f, 0.02433313207f, 0, -0.8552768592f, -0.3430042733f, 0.3883935666f, 0, -0.6139746835f, 0.6981725247f, 0.3682257648f, 0, -0.7465905486f, -0.5752009504f, 0.3342849376f, 0, 0.5730065677f, 0.810555537f, -0.1210916791f, 0, |
2587 | -0.9225877367f, -0.3475211012f, -0.167514036f, 0, -0.7105816789f, -0.4719692027f, -0.5218416899f, 0, -0.08564609717f, 0.3583001386f, 0.929669703f, 0, -0.8279697606f, -0.2043157126f, 0.5222271202f, 0, 0.427944023f, 0.278165994f, 0.8599346446f, 0, 0.5399079671f, -0.7857120652f, -0.3019204161f, 0, 0.5678404253f, -0.5495413974f, -0.6128307303f, 0, -0.9896071041f, 0.1365639107f, -0.04503418428f, 0, |
2588 | -0.6154342638f, -0.6440875597f, 0.4543037336f, 0, 0.1074204368f, -0.7946340692f, 0.5975094525f, 0, -0.3595449969f, -0.8885529948f, 0.28495784f, 0, -0.2180405296f, 0.1529888965f, 0.9638738118f, 0, -0.7277432317f, -0.6164050508f, -0.3007234646f, 0, 0.7249729114f, -0.00669719484f, 0.6887448187f, 0, -0.5553659455f, -0.5336586252f, 0.6377908264f, 0, 0.5137558015f, 0.7976208196f, -0.3160000073f, 0, |
2589 | -0.3794024848f, 0.9245608561f, -0.03522751494f, 0, 0.8229248658f, 0.2745365933f, -0.4974176556f, 0, -0.5404114394f, 0.6091141441f, 0.5804613989f, 0, 0.8036581901f, -0.2703029469f, 0.5301601931f, 0, 0.6044318879f, 0.6832968393f, 0.4095943388f, 0, 0.06389988817f, 0.9658208605f, -0.2512108074f, 0, 0.1087113286f, 0.7402471173f, -0.6634877936f, 0, -0.713427712f, -0.6926784018f, 0.1059128479f, 0, |
2590 | 0.6458897819f, -0.5724548511f, -0.5050958653f, 0, -0.6553931414f, 0.7381471625f, 0.159995615f, 0, 0.3910961323f, 0.9188871375f, -0.05186755998f, 0, -0.4879022471f, -0.5904376907f, 0.6429111375f, 0, 0.6014790094f, 0.7707441366f, -0.2101820095f, 0, -0.5677173047f, 0.7511360995f, 0.3368851762f, 0, 0.7858573506f, 0.226674665f, 0.5753666838f, 0, -0.4520345543f, -0.604222686f, -0.6561857263f, 0, |
2591 | 0.002272116345f, 0.4132844051f, -0.9105991643f, 0, -0.5815751419f, -0.5162925989f, 0.6286591339f, 0, -0.03703704785f, 0.8273785755f, 0.5604221175f, 0, -0.5119692504f, 0.7953543429f, -0.3244980058f, 0, -0.2682417366f, -0.9572290247f, -0.1084387619f, 0, -0.2322482736f, -0.9679131102f, -0.09594243324f, 0, 0.3554328906f, -0.8881505545f, 0.2913006227f, 0, 0.7346520519f, -0.4371373164f, 0.5188422971f, 0, |
2592 | 0.9985120116f, 0.04659011161f, -0.02833944577f, 0, -0.3727687496f, -0.9082481361f, 0.1900757285f, 0, 0.91737377f, -0.3483642108f, 0.1925298489f, 0, 0.2714911074f, 0.4147529736f, -0.8684886582f, 0, 0.5131763485f, -0.7116334161f, 0.4798207128f, 0, -0.8737353606f, 0.18886992f, -0.4482350644f, 0, 0.8460043821f, -0.3725217914f, 0.3814499973f, 0, 0.8978727456f, -0.1780209141f, -0.4026575304f, 0, |
2593 | 0.2178065647f, -0.9698322841f, -0.1094789531f, 0, -0.1518031304f, -0.7788918132f, -0.6085091231f, 0, -0.2600384876f, -0.4755398075f, -0.8403819825f, 0, 0.572313509f, -0.7474340931f, -0.3373418503f, 0, -0.7174141009f, 0.1699017182f, -0.6756111411f, 0, -0.684180784f, 0.02145707593f, -0.7289967412f, 0, -0.2007447902f, 0.06555605789f, -0.9774476623f, 0, -0.1148803697f, -0.8044887315f, 0.5827524187f, 0, |
2594 | -0.7870349638f, 0.03447489231f, 0.6159443543f, 0, -0.2015596421f, 0.6859872284f, 0.6991389226f, 0, -0.08581082512f, -0.10920836f, -0.9903080513f, 0, 0.5532693395f, 0.7325250401f, -0.396610771f, 0, -0.1842489331f, -0.9777375055f, -0.1004076743f, 0, 0.0775473789f, -0.9111505856f, 0.4047110257f, 0, 0.1399838409f, 0.7601631212f, -0.6344734459f, 0, 0.4484419361f, -0.845289248f, 0.2904925424f, 0 |
2595 | }; |
2596 | |
2597 | } |
2598 | #endif // namespace fastnoiselite |
2599 | |