| 1 | /******************************************************************************* |
| 2 | * Copyright 2016-2018 Intel Corporation |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | *******************************************************************************/ |
| 16 | |
| 17 | #include <assert.h> |
| 18 | #include "mkldnn.h" |
| 19 | |
| 20 | #include "c_types_map.hpp" |
| 21 | #include "type_helpers.hpp" |
| 22 | #include "utils.hpp" |
| 23 | |
| 24 | using namespace mkldnn::impl; |
| 25 | using namespace mkldnn::impl::utils; |
| 26 | using namespace mkldnn::impl::status; |
| 27 | using namespace mkldnn::impl::prop_kind; |
| 28 | using namespace mkldnn::impl::alg_kind; |
| 29 | using namespace mkldnn::impl::types; |
| 30 | |
| 31 | namespace mkldnn { |
| 32 | namespace impl { |
| 33 | status_t conv_desc_init(convolution_desc_t *conv_desc, |
| 34 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
| 35 | const memory_desc_t *src_desc, const memory_desc_t *weights_desc, |
| 36 | const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, |
| 37 | const dims_t strides, const dims_t dilates, |
| 38 | const dims_t padding_l, const dims_t padding_r, |
| 39 | padding_kind_t padding_kind) { |
| 40 | bool args_ok = true |
| 41 | && !any_null(conv_desc, src_desc, weights_desc, dst_desc, strides, |
| 42 | padding_l) |
| 43 | && one_of(alg_kind, convolution_auto, convolution_direct, convolution_winograd) |
| 44 | && one_of(padding_kind, padding_kind::padding_zero); |
| 45 | if (!args_ok) return invalid_arguments; |
| 46 | |
| 47 | if (padding_r == nullptr) padding_r = padding_l; |
| 48 | |
| 49 | auto cd = convolution_desc_t(); |
| 50 | cd.primitive_kind = primitive_kind::convolution; |
| 51 | cd.prop_kind = prop_kind; |
| 52 | cd.alg_kind = alg_kind; |
| 53 | |
| 54 | cd.diff_src_desc = cd.src_desc = zero_md(); |
| 55 | cd.diff_dst_desc = cd.dst_desc = zero_md(); |
| 56 | cd.diff_weights_desc = cd.weights_desc = zero_md(); |
| 57 | cd.diff_bias_desc = cd.bias_desc = zero_md(); |
| 58 | |
| 59 | const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); |
| 60 | const bool with_bias = |
| 61 | bias_desc && bias_desc->format_kind != format_kind::undef; |
| 62 | const bool with_groups = weights_desc->ndims == src_desc->ndims + 1; |
| 63 | |
| 64 | (prop_kind == backward_data ? cd.diff_src_desc : cd.src_desc) = *src_desc; |
| 65 | (is_fwd ? cd.dst_desc : cd.diff_dst_desc) = *dst_desc; |
| 66 | (prop_kind == backward_weights ? cd.diff_weights_desc : cd.weights_desc) = |
| 67 | *weights_desc; |
| 68 | if (with_bias) |
| 69 | (prop_kind == backward_weights ? cd.diff_bias_desc : cd.bias_desc) = |
| 70 | *bias_desc; |
| 71 | |
| 72 | int sp_dims = src_desc->ndims - 2; |
| 73 | utils::array_copy(cd.strides, strides, sp_dims); |
| 74 | utils::array_copy(cd.padding[0], padding_l, sp_dims); |
| 75 | utils::array_copy(cd.padding[1], padding_r, sp_dims); |
| 76 | if (dilates) |
| 77 | utils::array_copy(cd.dilates, dilates, sp_dims); |
| 78 | else |
| 79 | utils::array_set(cd.dilates, 0, sp_dims); |
| 80 | |
| 81 | cd.padding_kind = padding_kind; |
| 82 | cd.accum_data_type = types::default_accum_data_type(src_desc->data_type, |
| 83 | weights_desc->data_type, dst_desc->data_type, prop_kind); |
| 84 | |
| 85 | const int g = with_groups ? weights_desc->dims[0] : 1; |
| 86 | const int bias_dim = prop_kind == backward_data |
| 87 | ? src_desc->dims[1] |
| 88 | : dst_desc->dims[1]; |
| 89 | |
| 90 | bool consistency = true |
| 91 | && memory_desc_wrapper(weights_desc).nelems() |
| 92 | && src_desc->ndims == dst_desc->ndims |
| 93 | && utils::one_of(src_desc->ndims, 3, 4, 5) |
| 94 | && utils::one_of(weights_desc->ndims, src_desc->ndims, |
| 95 | src_desc->ndims + 1) |
| 96 | && (with_bias ? bias_desc->ndims == 1 : true) |
| 97 | && (with_bias ? bias_desc->dims[0] == bias_dim : true) |
| 98 | && src_desc->dims[0] == dst_desc->dims[0] |
| 99 | && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1] |
| 100 | && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0]; |
| 101 | for (int i = 2; i < src_desc->ndims; ++i) |
| 102 | { |
| 103 | int src = src_desc->dims[i]; |
| 104 | int ker = weights_desc->dims[with_groups + i]; |
| 105 | int dil = cd.dilates[i - 2]; |
| 106 | int pad_l = padding_l[i - 2]; |
| 107 | int pad_r = padding_r[i - 2]; |
| 108 | int str = strides[i - 2]; |
| 109 | int dst = dst_desc->dims[i]; |
| 110 | int ker_range = 1 + (ker - 1) * (dil + 1); |
| 111 | |
| 112 | if (str < 1) return invalid_arguments; |
| 113 | consistency = consistency |
| 114 | && dil >= 0 |
| 115 | && pad_l >= 0 |
| 116 | && pad_r + str > 0 |
| 117 | && (src - ker_range + pad_l + pad_r) / str + 1 == dst; |
| 118 | } |
| 119 | if (!consistency) return invalid_arguments; |
| 120 | |
| 121 | *conv_desc = cd; |
| 122 | return success; |
| 123 | } |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | status_t mkldnn_convolution_forward_desc_init(convolution_desc_t *conv_desc, |
| 128 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
| 129 | const memory_desc_t *src_desc, const memory_desc_t *weights_desc, |
| 130 | const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, |
| 131 | const dims_t strides, const dims_t padding_l, const dims_t padding_r, |
| 132 | padding_kind_t padding_kind) { |
| 133 | if (!one_of(prop_kind, forward_training, forward_inference)) |
| 134 | return invalid_arguments; |
| 135 | return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc, |
| 136 | weights_desc, bias_desc, dst_desc, strides, nullptr, |
| 137 | padding_l, padding_r, padding_kind); |
| 138 | } |
| 139 | |
| 140 | status_t mkldnn_dilated_convolution_forward_desc_init( |
| 141 | convolution_desc_t *conv_desc, prop_kind_t prop_kind, |
| 142 | alg_kind_t alg_kind, const memory_desc_t *src_desc, |
| 143 | const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, |
| 144 | const memory_desc_t *dst_desc, const dims_t strides, |
| 145 | const dims_t dilates, const dims_t padding_l, |
| 146 | const dims_t padding_r, padding_kind_t padding_kind) { |
| 147 | if (!one_of(prop_kind, forward_training, forward_inference)) |
| 148 | return invalid_arguments; |
| 149 | return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc, |
| 150 | weights_desc, bias_desc, dst_desc, strides, dilates, |
| 151 | padding_l, padding_r, padding_kind); |
| 152 | } |
| 153 | |
| 154 | status_t mkldnn_convolution_backward_data_desc_init( |
| 155 | convolution_desc_t *conv_desc, alg_kind_t alg_kind, |
| 156 | const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, |
| 157 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
| 158 | const dims_t padding_l, const dims_t padding_r, |
| 159 | padding_kind_t padding_kind) { |
| 160 | return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc, |
| 161 | weights_desc, nullptr, diff_dst_desc, strides, nullptr, |
| 162 | padding_l, padding_r, padding_kind); |
| 163 | } |
| 164 | |
| 165 | status_t mkldnn_dilated_convolution_backward_data_desc_init( |
| 166 | convolution_desc_t *conv_desc, alg_kind_t alg_kind, |
| 167 | const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, |
| 168 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
| 169 | const dims_t dilates, const dims_t padding_l, const dims_t padding_r, |
| 170 | padding_kind_t padding_kind) { |
| 171 | return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc, |
| 172 | weights_desc, nullptr, diff_dst_desc, strides, dilates, |
| 173 | padding_l, padding_r, padding_kind); |
| 174 | } |
| 175 | |
| 176 | status_t mkldnn_convolution_backward_weights_desc_init( |
| 177 | convolution_desc_t *conv_desc, alg_kind_t alg_kind, |
| 178 | const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, |
| 179 | const memory_desc_t *diff_bias_desc, |
| 180 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
| 181 | const dims_t padding_l, const dims_t padding_r, |
| 182 | padding_kind_t padding_kind) { |
| 183 | return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc, |
| 184 | diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, |
| 185 | nullptr, padding_l, padding_r, padding_kind); |
| 186 | } |
| 187 | |
| 188 | status_t mkldnn_dilated_convolution_backward_weights_desc_init( |
| 189 | convolution_desc_t *conv_desc, alg_kind_t alg_kind, |
| 190 | const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, |
| 191 | const memory_desc_t *diff_bias_desc, |
| 192 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
| 193 | const dims_t dilates, const dims_t padding_l, const dims_t padding_r, |
| 194 | padding_kind_t padding_kind) { |
| 195 | return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc, |
| 196 | diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, |
| 197 | dilates, padding_l, padding_r, padding_kind); |
| 198 | } |
| 199 | |
| 200 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
| 201 | |