1 | /******************************************************************************* |
2 | * Copyright 2018 Intel Corporation |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | *******************************************************************************/ |
16 | |
17 | #include "mkldnn.h" |
18 | #include <assert.h> |
19 | |
20 | #include "c_types_map.hpp" |
21 | #include "type_helpers.hpp" |
22 | #include "utils.hpp" |
23 | |
24 | using namespace mkldnn::impl; |
25 | using namespace mkldnn::impl::utils; |
26 | using namespace mkldnn::impl::status; |
27 | using namespace mkldnn::impl::prop_kind; |
28 | using namespace mkldnn::impl::alg_kind; |
29 | using namespace mkldnn::impl::types; |
30 | |
31 | namespace { |
32 | status_t deconv_desc_init(deconvolution_desc_t *deconv_desc, |
33 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
34 | const memory_desc_t *src_desc, const memory_desc_t *weights_desc, |
35 | const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, |
36 | const dims_t strides, const dims_t dilates, const dims_t padding_l, |
37 | const dims_t padding_r, padding_kind_t padding_kind) { |
38 | bool args_ok = true |
39 | && !any_null(deconv_desc, src_desc, weights_desc, dst_desc, strides, |
40 | padding_l) |
41 | && one_of(alg_kind, deconvolution_direct, deconvolution_winograd) |
42 | && one_of(padding_kind, padding_kind::padding_zero); |
43 | if (!args_ok) |
44 | return invalid_arguments; |
45 | |
46 | if (padding_r == nullptr) |
47 | padding_r = padding_l; |
48 | |
49 | auto dd = deconvolution_desc_t(); |
50 | dd.primitive_kind = primitive_kind::deconvolution; |
51 | dd.prop_kind = prop_kind; |
52 | dd.alg_kind = alg_kind; |
53 | |
54 | dd.diff_src_desc = dd.src_desc = zero_md(); |
55 | dd.diff_dst_desc = dd.dst_desc = zero_md(); |
56 | dd.diff_weights_desc = dd.weights_desc = zero_md(); |
57 | dd.diff_bias_desc = dd.bias_desc = zero_md(); |
58 | |
59 | const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); |
60 | const bool with_bias |
61 | = bias_desc && bias_desc->format_kind != format_kind::undef; |
62 | const bool with_groups = weights_desc->ndims == src_desc->ndims + 1; |
63 | |
64 | (prop_kind == backward_data ? dd.diff_src_desc : dd.src_desc) = *src_desc; |
65 | (is_fwd ? dd.dst_desc : dd.diff_dst_desc) = *dst_desc; |
66 | (prop_kind == backward_weights ? dd.diff_weights_desc : dd.weights_desc) |
67 | = *weights_desc; |
68 | if (with_bias) |
69 | (prop_kind == backward_weights ? dd.diff_bias_desc : dd.bias_desc) |
70 | = *bias_desc; |
71 | |
72 | int sp_dims = src_desc->ndims - 2; |
73 | utils::array_copy(dd.strides, strides, sp_dims); |
74 | utils::array_copy(dd.padding[0], padding_l, sp_dims); |
75 | utils::array_copy(dd.padding[1], padding_r, sp_dims); |
76 | if (dilates) |
77 | utils::array_copy(dd.dilates, dilates, sp_dims); |
78 | else |
79 | utils::array_set(dd.dilates, 0, sp_dims); |
80 | |
81 | dd.padding_kind = padding_kind; |
82 | dd.accum_data_type = types::default_accum_data_type(src_desc->data_type, |
83 | weights_desc->data_type, dst_desc->data_type, prop_kind); |
84 | |
85 | const int g = with_groups ? weights_desc->dims[0] : 1; |
86 | bool consistency = true |
87 | && src_desc->ndims == dst_desc->ndims |
88 | && utils::one_of(src_desc->ndims, 3, 4, 5) |
89 | && utils::one_of(weights_desc->ndims, src_desc->ndims, |
90 | src_desc->ndims + 1) |
91 | && (with_bias ? bias_desc->ndims == 1 : true) |
92 | && (with_bias ? bias_desc->dims[0] == dst_desc->dims[1] : true) |
93 | && src_desc->dims[0] == dst_desc->dims[0] |
94 | && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1] |
95 | && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0]; |
96 | for (int i = 2; i < src_desc->ndims; ++i) { |
97 | int src = src_desc->dims[i]; |
98 | int ker = weights_desc->dims[with_groups + i]; |
99 | int dil = dd.dilates[i - 2]; |
100 | int pad = padding_l[i - 2] + padding_r[i - 2]; |
101 | int str = strides[i - 2]; |
102 | int dst = dst_desc->dims[i]; |
103 | int ker_range = 1 + (ker - 1) * (dil + 1); |
104 | |
105 | consistency |
106 | = consistency && (dst - ker_range + pad) / str + 1 == src; |
107 | } |
108 | if (!consistency) |
109 | return invalid_arguments; |
110 | |
111 | *deconv_desc = dd; |
112 | return success; |
113 | } |
114 | } |
115 | |
116 | status_t mkldnn_deconvolution_forward_desc_init( |
117 | deconvolution_desc_t *deconv_desc, prop_kind_t prop_kind, |
118 | alg_kind_t alg_kind, const memory_desc_t *src_desc, |
119 | const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, |
120 | const memory_desc_t *dst_desc, const dims_t strides, |
121 | const dims_t padding_l, const dims_t padding_r, |
122 | padding_kind_t padding_kind) { |
123 | if (!one_of(prop_kind, forward_training, forward_inference)) |
124 | return invalid_arguments; |
125 | return deconv_desc_init(deconv_desc, prop_kind, alg_kind, src_desc, |
126 | weights_desc, bias_desc, dst_desc, strides, nullptr, padding_l, |
127 | padding_r, padding_kind); |
128 | } |
129 | |
130 | status_t mkldnn_dilated_deconvolution_forward_desc_init( |
131 | deconvolution_desc_t *deconv_desc, prop_kind_t prop_kind, |
132 | alg_kind_t alg_kind, const memory_desc_t *src_desc, |
133 | const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, |
134 | const memory_desc_t *dst_desc, const dims_t strides, |
135 | const dims_t dilates, const dims_t padding_l, const dims_t padding_r, |
136 | padding_kind_t padding_kind) { |
137 | if (!one_of(prop_kind, forward_training, forward_inference)) |
138 | return invalid_arguments; |
139 | return deconv_desc_init(deconv_desc, prop_kind, alg_kind, src_desc, |
140 | weights_desc, bias_desc, dst_desc, strides, dilates, padding_l, |
141 | padding_r, padding_kind); |
142 | } |
143 | |
144 | status_t mkldnn_deconvolution_backward_data_desc_init( |
145 | deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, |
146 | const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, |
147 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
148 | const dims_t padding_l, const dims_t padding_r, |
149 | padding_kind_t padding_kind) { |
150 | return deconv_desc_init(deconv_desc, backward_data, alg_kind, diff_src_desc, |
151 | weights_desc, nullptr, diff_dst_desc, strides, nullptr, padding_l, |
152 | padding_r, padding_kind); |
153 | } |
154 | |
155 | status_t mkldnn_dilated_deconvolution_backward_data_desc_init( |
156 | deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, |
157 | const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, |
158 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
159 | const dims_t dilates, const dims_t padding_l, const dims_t padding_r, |
160 | padding_kind_t padding_kind) { |
161 | return deconv_desc_init(deconv_desc, backward_data, alg_kind, diff_src_desc, |
162 | weights_desc, nullptr, diff_dst_desc, strides,dilates, padding_l, |
163 | padding_r, padding_kind); |
164 | } |
165 | |
166 | status_t mkldnn_deconvolution_backward_weights_desc_init( |
167 | deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, |
168 | const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, |
169 | const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc, |
170 | const dims_t strides, const dims_t padding_l, const dims_t padding_r, |
171 | padding_kind_t padding_kind) { |
172 | return deconv_desc_init(deconv_desc, backward_weights, alg_kind, src_desc, |
173 | diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, nullptr, |
174 | padding_l, padding_r, padding_kind); |
175 | } |
176 | |
177 | status_t mkldnn_dilated_deconvolution_backward_weights_desc_init( |
178 | deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, |
179 | const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, |
180 | const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc, |
181 | const dims_t strides, const dims_t dilates, const dims_t padding_l, |
182 | const dims_t padding_r, padding_kind_t padding_kind) { |
183 | return deconv_desc_init(deconv_desc, backward_weights, alg_kind, src_desc, |
184 | diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, dilates, |
185 | padding_l, padding_r, padding_kind); |
186 | } |
187 | |
188 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
189 | |