1 | /******************************************************************************* |
2 | * Copyright 2016-2018 Intel Corporation |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | *******************************************************************************/ |
16 | |
17 | #include <assert.h> |
18 | #include "mkldnn.h" |
19 | |
20 | #include "c_types_map.hpp" |
21 | #include "type_helpers.hpp" |
22 | #include "utils.hpp" |
23 | |
24 | using namespace mkldnn::impl; |
25 | using namespace mkldnn::impl::utils; |
26 | using namespace mkldnn::impl::status; |
27 | using namespace mkldnn::impl::prop_kind; |
28 | using namespace mkldnn::impl::alg_kind; |
29 | using namespace mkldnn::impl::types; |
30 | |
31 | namespace { |
32 | status_t lrn_desc_init(lrn_desc_t *lrn_desc, |
33 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
34 | const memory_desc_t *data_desc, const memory_desc_t *diff_data_desc, |
35 | dim_t local_size, float alpha, float beta, float k) { |
36 | bool args_ok = true |
37 | && !any_null(lrn_desc, data_desc) |
38 | && one_of(alg_kind, lrn_within_channel, lrn_across_channels) |
39 | && one_of(prop_kind, forward_training, forward_inference, backward_data) |
40 | && IMPLICATION(prop_kind == backward_data, diff_data_desc != nullptr); |
41 | if (!args_ok) return invalid_arguments; |
42 | |
43 | auto ld = lrn_desc_t(); |
44 | ld.primitive_kind = primitive_kind::lrn; |
45 | ld.prop_kind = prop_kind; |
46 | ld.alg_kind = alg_kind; |
47 | |
48 | const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); |
49 | |
50 | ld.data_desc = *data_desc; |
51 | if (!is_fwd) |
52 | ld.diff_data_desc = *diff_data_desc; |
53 | else |
54 | ld.diff_data_desc = zero_md(); |
55 | ld.local_size = local_size; |
56 | ld.lrn_alpha = alpha; |
57 | ld.lrn_beta = beta; |
58 | ld.lrn_k = k; |
59 | |
60 | bool consistency = true |
61 | && ld.data_desc.ndims == 4; |
62 | if (ld.prop_kind == backward_data) |
63 | consistency = consistency |
64 | && ld.diff_data_desc.ndims == 4 |
65 | && array_cmp(ld.diff_data_desc.dims, ld.data_desc.dims, 4); |
66 | if (!consistency) return invalid_arguments; |
67 | |
68 | *lrn_desc = ld; |
69 | return success; |
70 | } |
71 | } |
72 | |
73 | status_t mkldnn_lrn_forward_desc_init(lrn_desc_t *lrn_desc, |
74 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
75 | const memory_desc_t *data_desc, dim_t local_size, float alpha, |
76 | float beta, float k) { |
77 | if (!one_of(prop_kind, forward_training, forward_inference)) |
78 | return invalid_arguments; |
79 | return lrn_desc_init(lrn_desc, prop_kind, alg_kind, data_desc, nullptr, |
80 | local_size, alpha, beta, k); |
81 | } |
82 | |
83 | status_t mkldnn_lrn_backward_desc_init(lrn_desc_t *lrn_desc, |
84 | alg_kind_t alg_kind, const memory_desc_t *data_desc, |
85 | const memory_desc_t *diff_data_desc, dim_t local_size, float alpha, |
86 | float beta, float k) { |
87 | return lrn_desc_init(lrn_desc, backward_data, alg_kind, data_desc, |
88 | diff_data_desc, local_size, alpha, beta, k); |
89 | } |
90 | |
91 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
92 | |