1 | /******************************************************************************* |
2 | * Copyright 2016-2018 Intel Corporation |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | *******************************************************************************/ |
16 | |
17 | #include <assert.h> |
18 | #include "mkldnn.h" |
19 | |
20 | #include "c_types_map.hpp" |
21 | #include "type_helpers.hpp" |
22 | #include "utils.hpp" |
23 | |
24 | using namespace mkldnn::impl; |
25 | using namespace mkldnn::impl::utils; |
26 | using namespace mkldnn::impl::status; |
27 | using namespace mkldnn::impl::prop_kind; |
28 | using namespace mkldnn::impl::alg_kind; |
29 | using namespace mkldnn::impl::types; |
30 | |
31 | namespace { |
32 | status_t pooling_desc_init(pooling_desc_t *pool_desc, |
33 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
34 | const memory_desc_t *src_desc, const memory_desc_t *dst_desc, |
35 | const dims_t strides, const dims_t kernel, const dims_t padding_l, |
36 | const dims_t padding_r, padding_kind_t padding_kind) { |
37 | bool args_ok = true |
38 | && !any_null(pool_desc, src_desc, dst_desc, strides, kernel, padding_l) |
39 | && one_of(alg_kind, pooling_max, |
40 | pooling_avg_include_padding, |
41 | pooling_avg_exclude_padding) |
42 | && one_of(padding_kind, padding_kind::padding_zero); |
43 | if (!args_ok) return invalid_arguments; |
44 | |
45 | if (padding_r == nullptr) padding_r = padding_l; |
46 | |
47 | auto pd = pooling_desc_t(); |
48 | pd.primitive_kind = primitive_kind::pooling; |
49 | pd.prop_kind = prop_kind; |
50 | pd.alg_kind = alg_kind; |
51 | pd.src_desc.ndims = src_desc->ndims; |
52 | |
53 | const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); |
54 | |
55 | pd.diff_src_desc = pd.src_desc = zero_md(); |
56 | pd.diff_dst_desc = pd.dst_desc = zero_md(); |
57 | |
58 | (is_fwd ? pd.src_desc : pd.diff_src_desc) = *src_desc; |
59 | (is_fwd ? pd.dst_desc : pd.diff_dst_desc) = *dst_desc; |
60 | |
61 | int sp_dims = src_desc->ndims - 2; |
62 | utils::array_copy(pd.strides, strides, sp_dims); |
63 | utils::array_copy(pd.kernel, kernel, sp_dims); |
64 | utils::array_copy(pd.padding[0], padding_l, sp_dims); |
65 | utils::array_copy(pd.padding[1], padding_r, sp_dims); |
66 | |
67 | pd.padding_kind = padding_kind; |
68 | if (one_of(alg_kind, pooling_max, pooling_avg_include_padding, |
69 | pooling_avg_exclude_padding)) { |
70 | pd.accum_data_type = types::default_accum_data_type( |
71 | src_desc->data_type, dst_desc->data_type); |
72 | } else { |
73 | pd.accum_data_type = dst_desc->data_type; |
74 | } |
75 | |
76 | bool consistency = true |
77 | && utils::one_of(src_desc->ndims, 4, 5) |
78 | && utils::one_of(dst_desc->ndims, 4, 5) |
79 | && src_desc->dims[0] == dst_desc->dims[0] |
80 | && src_desc->dims[1] == dst_desc->dims[1]; |
81 | for (int i = 2; i < src_desc->ndims; ++i) |
82 | consistency = consistency && ( |
83 | (src_desc->dims[i] - kernel[i - 2] + padding_l[i - 2] |
84 | + padding_r[i - 2]) / strides[i - 2] + 1 |
85 | == dst_desc->dims[i]); |
86 | if (!consistency) return invalid_arguments; |
87 | |
88 | *pool_desc = pd; |
89 | return success; |
90 | } |
91 | } |
92 | |
93 | status_t mkldnn_pooling_forward_desc_init(pooling_desc_t *pool_desc, |
94 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
95 | const memory_desc_t *src_desc, const memory_desc_t *dst_desc, |
96 | const dims_t strides, const dims_t kernel, const dims_t padding_l, |
97 | const dims_t padding_r, padding_kind_t padding_kind) { |
98 | if (!one_of(prop_kind, forward_training, forward_inference)) |
99 | return invalid_arguments; |
100 | return pooling_desc_init(pool_desc, prop_kind, alg_kind, src_desc, |
101 | dst_desc, strides, kernel, padding_l, padding_r, padding_kind); |
102 | } |
103 | |
104 | status_t mkldnn_pooling_backward_desc_init(pooling_desc_t *pool_desc, |
105 | alg_kind_t alg_kind, const memory_desc_t *diff_src_desc, |
106 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
107 | const dims_t kernel, const dims_t padding_l, const dims_t padding_r, |
108 | padding_kind_t padding_kind) { |
109 | return pooling_desc_init(pool_desc, prop_kind::backward_data, alg_kind, |
110 | diff_src_desc, diff_dst_desc, strides, kernel, padding_l, |
111 | padding_r, padding_kind); |
112 | } |
113 | |
114 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
115 | |