| 1 | /******************************************************************************* |
| 2 | * Copyright 2017-2018 Intel Corporation |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | *******************************************************************************/ |
| 16 | |
| 17 | #ifdef __INTEL_COMPILER |
| 18 | #include <immintrin.h> |
| 19 | #endif |
| 20 | |
| 21 | #include "mkldnn_types.h" |
| 22 | |
| 23 | #include "c_types_map.hpp" |
| 24 | #include "mkldnn_thread.hpp" |
| 25 | #include "type_helpers.hpp" |
| 26 | #include "utils.hpp" |
| 27 | |
| 28 | #include "jit_avx512_common_convolution_winograd.hpp" |
| 29 | |
| 30 | #ifndef _MSC_VER |
| 31 | #define pragma_unroll _Pragma("unroll") |
| 32 | #else |
| 33 | #define pragma_unroll |
| 34 | #endif |
| 35 | |
| 36 | namespace mkldnn { |
| 37 | namespace impl { |
| 38 | namespace cpu { |
| 39 | |
| 40 | using namespace memory_tracking::names; |
| 41 | |
| 42 | namespace { |
| 43 | |
| 44 | unsigned int LLC_cache_size = get_cache_size(3, false); |
| 45 | |
| 46 | void inline load_ps(float *dest, const float *src_mem) { |
| 47 | #ifdef __INTEL_COMPILER |
| 48 | __m512 *Iv512 = (__m512 *)dest; |
| 49 | Iv512[0] = _mm512_load_ps(src_mem); |
| 50 | #else |
| 51 | PRAGMA_OMP_SIMD() |
| 52 | for (int v = 0; v < simd_w; v++) dest[v] = src_mem[v]; |
| 53 | #endif |
| 54 | } |
| 55 | |
| 56 | void inline store_output(float *dest, const float *data, bool streamout) { |
| 57 | #ifdef __INTEL_COMPILER |
| 58 | if (streamout) |
| 59 | _mm512_stream_ps(dest, *((__m512 *)data)); |
| 60 | else |
| 61 | _mm512_store_ps(dest, *((__m512 *)data)); |
| 62 | #else |
| 63 | PRAGMA_OMP_SIMD() |
| 64 | for (int v = 0; v < simd_w; v++) |
| 65 | dest[v] = data[v]; |
| 66 | #endif |
| 67 | } |
| 68 | |
| 69 | void inline accum_output( |
| 70 | float *dest, float *data, bool streamout, bool with_relu_postsum) { |
| 71 | #ifdef __INTEL_COMPILER |
| 72 | __m512 _data = _mm512_loadu_ps(data); |
| 73 | __m512 _dest = _mm512_loadu_ps(dest); |
| 74 | _data = _mm512_add_ps(_data, _dest); |
| 75 | if (with_relu_postsum) |
| 76 | _data = _mm512_max_ps(_data, _mm512_setzero_ps()); |
| 77 | if (streamout) |
| 78 | _mm512_stream_ps(dest, _data); |
| 79 | else |
| 80 | _mm512_store_ps(dest, _data); |
| 81 | #else |
| 82 | PRAGMA_OMP_SIMD() |
| 83 | for (int v = 0; v < simd_w; v++) |
| 84 | data[v] += dest[v]; |
| 85 | |
| 86 | if (with_relu_postsum) { |
| 87 | PRAGMA_OMP_SIMD() |
| 88 | for (int v = 0; v < simd_w; v++) |
| 89 | if (data[v] < 0.f) |
| 90 | data[v] = 0.f; |
| 91 | } |
| 92 | |
| 93 | PRAGMA_OMP_SIMD() |
| 94 | for (int v = 0; v < simd_w; v++) |
| 95 | dest[v] = data[v]; |
| 96 | #endif |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | using namespace mkldnn::impl::status; |
| 101 | using namespace mkldnn::impl::utils; |
| 102 | |
| 103 | void trans_W_4x4_3x3(float Fw_[6][6][16][16], float F[3][3][16][16]) { |
| 104 | float Fw[6][16]; |
| 105 | float T[6][3][16]; |
| 106 | float t0[16]; |
| 107 | float t1[16]; |
| 108 | float t2[16]; |
| 109 | |
| 110 | for (int j = 0; j < 16; j++) { |
| 111 | #pragma unroll |
| 112 | for (int i = 0; i < 3; i++) { |
| 113 | PRAGMA_OMP_SIMD() |
| 114 | for (int k = 0; k < 16; k++) { |
| 115 | t0[k] = 0.26890756302521f * F[2][i][j][k]; |
| 116 | t1[k] = -t0[k] - 0.688403361344538f * F[0][i][j][k]; |
| 117 | t2[k] = t0[k] + 0.119514472455649f * F[0][i][j][k]; |
| 118 | |
| 119 | T[0][i][k] = 1.13777777777778f * F[0][i][j][k]; |
| 120 | T[1][i][k] = t1[k] - 0.430252100840336f * F[1][i][j][k]; |
| 121 | T[2][i][k] = t1[k] + 0.430252100840336f * F[1][i][j][k]; |
| 122 | T[3][i][k] = t2[k] + 0.179271708683473f * F[1][i][j][k]; |
| 123 | T[4][i][k] = t2[k] - 0.179271708683473f * F[1][i][j][k]; |
| 124 | T[5][i][k] = F[2][i][j][k]; |
| 125 | } |
| 126 | } |
| 127 | #pragma unroll |
| 128 | for (int i = 0; i < 6; i++) { |
| 129 | PRAGMA_OMP_SIMD() |
| 130 | for (int k = 0; k < 16; k++) { |
| 131 | t0[k] = 0.26890756302521f * T[i][2][k]; |
| 132 | t1[k] = -t0[k] - 0.688403361344538f * T[i][0][k]; |
| 133 | t2[k] = t0[k] + 0.119514472455649f * T[i][0][k]; |
| 134 | |
| 135 | Fw[0][k] = 1.13777777777778f * T[i][0][k]; |
| 136 | Fw[1][k] = t1[k] - 0.430252100840336f * T[i][1][k]; |
| 137 | Fw[2][k] = t1[k] + 0.430252100840336f * T[i][1][k]; |
| 138 | Fw[3][k] = t2[k] + 0.179271708683473f * T[i][1][k]; |
| 139 | Fw[4][k] = t2[k] - 0.179271708683473f * T[i][1][k]; |
| 140 | Fw[5][k] = T[i][2][k]; |
| 141 | #pragma unroll |
| 142 | for (int l = 0; l < 6; l++) { |
| 143 | Fw_[i][l][j][k] = Fw[l][k]; |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | void trans_O_4x4_3x3(float Mw[6][6][16], float O[4][4][16]) { |
| 151 | float T[4][6][16]; |
| 152 | float t0[16]; |
| 153 | float t1[16]; |
| 154 | float t2[16]; |
| 155 | float t3[16]; |
| 156 | |
| 157 | #pragma unroll |
| 158 | for (int i = 0; i < 6; i++) { |
| 159 | PRAGMA_OMP_SIMD() |
| 160 | for (int v = 0; v < 16; v++) { |
| 161 | t0[v] = Mw[1][i][v] + Mw[2][i][v]; |
| 162 | t1[v] = Mw[3][i][v] + Mw[4][i][v]; |
| 163 | t2[v] = Mw[1][i][v] - Mw[2][i][v]; |
| 164 | t3[v] = Mw[3][i][v] - Mw[4][i][v]; |
| 165 | |
| 166 | T[0][i][v] = t0[v] + t1[v] + Mw[0][i][v]; |
| 167 | T[1][i][v] = t2[v] * 0.625f + t3[v] * 1.5f; |
| 168 | T[2][i][v] = t0[v] * 0.390625f + t1[v] * 2.25f; |
| 169 | T[3][i][v] = t2[v] * 0.244140625f + t3[v] * 3.375f + Mw[5][i][v]; |
| 170 | } |
| 171 | } |
| 172 | #pragma unroll |
| 173 | for (int i = 0; i < 4; i++) { |
| 174 | PRAGMA_OMP_SIMD() |
| 175 | for (int v = 0; v < 16; v++) { |
| 176 | t0[v] = T[i][1][v] + T[i][2][v]; |
| 177 | t1[v] = T[i][3][v] + T[i][4][v]; |
| 178 | t2[v] = T[i][1][v] - T[i][2][v]; |
| 179 | t3[v] = T[i][3][v] - T[i][4][v]; |
| 180 | |
| 181 | O[i][0][v] = t0[v] + t1[v] + T[i][0][v]; |
| 182 | O[i][1][v] = t2[v] * 0.625f + t3[v] * 1.5f; |
| 183 | O[i][2][v] = t0[v] * 0.390625f + t1[v] * 2.25f; |
| 184 | O[i][3][v] = t2[v] * 0.244140625f + t3[v] * 3.375f + T[i][5][v]; |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | |
| 190 | void trans_W_3x3_4x4(float Fw[6][6][16], float F[4][6][16]) |
| 191 | { |
| 192 | const float rcp3 = 1.0f / 3.0f; |
| 193 | const float rcp4 = 1.0f / 4.0f; |
| 194 | const float rcp6 = 1.0f / 6.0f; |
| 195 | const float rcp12 = 1.0f / 12.0f; |
| 196 | const float rcp24 = 1.0f / 24.0f; |
| 197 | float t0[16]; |
| 198 | float t1[16]; |
| 199 | float t2[16]; |
| 200 | float t3[16]; |
| 201 | float t4[16]; |
| 202 | float T[6][4][16]; |
| 203 | |
| 204 | pragma_unroll |
| 205 | for (int i = 0; i < 4; i++) { |
| 206 | PRAGMA_OMP_SIMD() |
| 207 | for (int j = 0; j < 16; j++) { |
| 208 | t0[j] = F[2][i][j] * rcp6; |
| 209 | t1[j] = F[0][i][j] * -rcp6 - t0[j]; |
| 210 | t2[j] = F[0][i][j] * rcp24 + t0[j]; |
| 211 | t3[j] = (F[1][i][j] + F[3][i][j]) * rcp6; |
| 212 | t4[j] = F[1][i][j] * rcp12 + F[3][i][j] * rcp3; |
| 213 | |
| 214 | T[0][i][j] = F[0][i][j] * rcp4; |
| 215 | T[1][i][j] = t1[j] - t3[j]; |
| 216 | T[2][i][j] = t1[j] + t3[j]; |
| 217 | T[3][i][j] = t2[j] + t4[j]; |
| 218 | T[4][i][j] = t2[j] - t4[j]; |
| 219 | T[5][i][j] = F[3][i][j]; |
| 220 | } |
| 221 | } |
| 222 | pragma_unroll |
| 223 | for (int i = 0; i < 6; i++) { |
| 224 | PRAGMA_OMP_SIMD() |
| 225 | for (int j = 0; j < 16; j++) { |
| 226 | t0[j] = T[i][2][j] * rcp6; |
| 227 | t1[j] = T[i][0][j] * -rcp6 - t0[j]; |
| 228 | t2[j] = T[i][0][j] * rcp24 + t0[j]; |
| 229 | t3[j] = (T[i][1][j] + T[i][3][j]) * rcp6; |
| 230 | t4[j] = T[i][1][j] * rcp12 + T[i][3][j] * rcp3; |
| 231 | |
| 232 | Fw[i][0][j] = T[i][0][j] * rcp4; |
| 233 | Fw[i][1][j] = t1[j] - t3[j]; |
| 234 | Fw[i][2][j] = t1[j] + t3[j]; |
| 235 | Fw[i][3][j] = t2[j] + t4[j]; |
| 236 | Fw[i][4][j] = t2[j] - t4[j]; |
| 237 | Fw[i][5][j] = T[i][3][j]; |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | void trans_O_3x3_4x4(float Mw[6][6][16][16], float M[3][3][16][16]) |
| 243 | { |
| 244 | float T[4][6][16]; |
| 245 | float M_[3][16]; |
| 246 | float t0[16]; |
| 247 | float t1[16]; |
| 248 | float t2[16]; |
| 249 | |
| 250 | for (int j = 0; j < 16; j++) { |
| 251 | pragma_unroll |
| 252 | for (int i = 0; i < 6; i++) { |
| 253 | PRAGMA_OMP_SIMD() |
| 254 | for (int l = 0; l < 16; l++) { |
| 255 | t0[l] = Mw[1][i][j][l] + Mw[2][i][j][l]; |
| 256 | t1[l] = Mw[3][i][j][l] + Mw[4][i][j][l]; |
| 257 | t2[l] = t1[l] * 4.0f + Mw[5][i][j][l]; |
| 258 | |
| 259 | T[0][i][l] = Mw[0][i][j][l] + t0[l] + t1[l]; |
| 260 | T[1][i][l] = (Mw[1][i][j][l] - Mw[2][i][j][l]) + |
| 261 | 2.0f * (Mw[3][i][j][l] - Mw[4][i][j][l]); |
| 262 | T[2][i][l] = t0[l] + t2[l]; |
| 263 | } |
| 264 | } |
| 265 | pragma_unroll |
| 266 | for (int i = 0; i < 3; i++) { |
| 267 | PRAGMA_OMP_SIMD() |
| 268 | for (int l = 0; l < 16; l++) { |
| 269 | t0[l] = T[i][1][l] + T[i][2][l]; |
| 270 | t1[l] = T[i][3][l] + T[i][4][l]; |
| 271 | t2[l] = t1[l] * 4.0f + T[i][5][l]; |
| 272 | |
| 273 | M_[0][l] = T[i][0][l] + t0[l] + t1[l]; |
| 274 | M_[1][l] = (T[i][1][l] - T[i][2][l]) + |
| 275 | 2.0f * (T[i][3][l] - T[i][4][l]); |
| 276 | M_[2][l] = t0[l] + t2[l]; |
| 277 | |
| 278 | for (int k = 0; k < 3; k++) { |
| 279 | M[i][k][j][l] = M_[k][l]; |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | void trans_I_4x4_3x3(float Iw[6][6][16], float I[6][6][16]) |
| 287 | { |
| 288 | float T[6][6][16]; |
| 289 | float t0[16]; |
| 290 | float t1[16]; |
| 291 | float t2[16]; |
| 292 | float t3[16]; |
| 293 | float t4[16]; |
| 294 | float t5[16]; |
| 295 | |
| 296 | pragma_unroll |
| 297 | for (int i = 0; i < 6; i++) { |
| 298 | PRAGMA_OMP_SIMD() |
| 299 | for (int v = 0; v < 16; v++) { |
| 300 | t0[v] = I[2][i][v] * -2.25f + I[4][i][v]; |
| 301 | t1[v] = I[1][i][v] * -2.25f + I[3][i][v]; |
| 302 | t2[v] = I[2][i][v] * -0.390625f + I[4][i][v]; |
| 303 | t3[v] = I[1][i][v] * -0.390625f + I[3][i][v]; |
| 304 | t4[v] = I[0][i][v] * 0.87890625f + I[4][i][v]; |
| 305 | t5[v] = I[1][i][v] * 0.87890625f + I[5][i][v]; |
| 306 | |
| 307 | T[0][i][v] = I[2][i][v] * -2.640625f + t4[v]; |
| 308 | T[1][i][v] = t1[v] * 0.625f + t0[v]; |
| 309 | T[2][i][v] = t1[v] * -0.625f + t0[v]; |
| 310 | T[3][i][v] = t3[v] * 1.5f + t2[v]; |
| 311 | T[4][i][v] = t3[v] * -1.5f + t2[v]; |
| 312 | T[5][i][v] = I[3][i][v] * -2.640625f + t5[v]; |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | pragma_unroll |
| 317 | for (int i = 0; i < 6; i++) { |
| 318 | PRAGMA_OMP_SIMD() |
| 319 | for (int v = 0; v < 16; v++) { |
| 320 | t0[v] = T[i][2][v] * -2.25f + T[i][4][v]; |
| 321 | t1[v] = T[i][1][v] * -2.25f + T[i][3][v]; |
| 322 | t2[v] = T[i][2][v] * -0.390625f + T[i][4][v]; |
| 323 | t3[v] = T[i][1][v] * -0.390625f + T[i][3][v]; |
| 324 | t4[v] = T[i][0][v] * 0.87890625f + T[i][4][v]; |
| 325 | t5[v] = T[i][1][v] * 0.87890625f + T[i][5][v]; |
| 326 | |
| 327 | Iw[i][0][v] = T[i][2][v] * -2.640625f + t4[v]; |
| 328 | Iw[i][1][v] = t1[v] * 0.625f + t0[v]; |
| 329 | Iw[i][2][v] = t1[v] * -0.625f + t0[v]; |
| 330 | Iw[i][3][v] = t3[v] * 1.5f + t2[v]; |
| 331 | Iw[i][4][v] = t3[v] * -1.5f + t2[v]; |
| 332 | Iw[i][5][v] = T[i][3][v] * -2.640625f + t5[v]; |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | void trans_W_3x3_4x4_wu(float Fw[6][6][16], float F[4][6][16]) |
| 338 | { |
| 339 | float T[6][4][16]; |
| 340 | float t0[16]; |
| 341 | float t1[16]; |
| 342 | float t2[16]; |
| 343 | float t3[16]; |
| 344 | float t4[16]; |
| 345 | |
| 346 | pragma_unroll |
| 347 | for (int i = 0; i < 4; i++) { |
| 348 | PRAGMA_OMP_SIMD() |
| 349 | for (int v = 0; v < 16; v++) { |
| 350 | t0[v] = F[2][i][v] * 0.26890756302521f; |
| 351 | t1[v] = F[0][i][v] * -0.688403361344538f - t0[v]; |
| 352 | t2[v] = F[0][i][v] * 0.119514472455649f + t0[v]; |
| 353 | t3[v] = F[1][i][v] * 0.430252100840336f + |
| 354 | F[3][i][v] * 0.168067226890756f; |
| 355 | t4[v] = F[1][i][v] * 0.179271708683473f + |
| 356 | F[3][i][v] * 0.403361344537815f; |
| 357 | |
| 358 | T[0][i][v] = F[0][i][v] * 1.13777777777778f; |
| 359 | T[1][i][v] = t1[v] - t3[v]; |
| 360 | T[2][i][v] = t1[v] + t3[v]; |
| 361 | T[3][i][v] = t2[v] + t4[v]; |
| 362 | T[4][i][v] = t2[v] - t4[v]; |
| 363 | T[5][i][v] = F[3][i][v]; |
| 364 | } |
| 365 | } |
| 366 | pragma_unroll |
| 367 | for (int i = 0; i < 6; i++) { |
| 368 | for (int v = 0; v < 16; v++) { |
| 369 | t0[v] = T[i][2][v] * 0.26890756302521f; |
| 370 | t1[v] = T[i][0][v] * -0.688403361344538f - t0[v]; |
| 371 | t2[v] = T[i][0][v] * 0.119514472455649f + t0[v]; |
| 372 | t3[v] = T[i][1][v] * 0.430252100840336f + |
| 373 | T[i][3][v] * 0.168067226890756f; |
| 374 | t4[v] = T[i][1][v] * 0.179271708683473f + |
| 375 | T[i][3][v] * 0.403361344537815f; |
| 376 | |
| 377 | Fw[i][0][v] = T[i][0][v] * 1.13777777777778f; |
| 378 | Fw[i][1][v] = t1[v] - t3[v]; |
| 379 | Fw[i][2][v] = t1[v] + t3[v]; |
| 380 | Fw[i][3][v] = t2[v] + t4[v]; |
| 381 | Fw[i][4][v] = t2[v] - t4[v]; |
| 382 | Fw[i][5][v] = T[i][3][v]; |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | void trans_O_3x3_4x4_wu(float Mw[6][6][16][16], float M[3][3][16][16]) |
| 388 | { |
| 389 | float T[3][6][16]; |
| 390 | float t0[16]; |
| 391 | float t1[16]; |
| 392 | float t2[16]; |
| 393 | float M_[3][16]; |
| 394 | |
| 395 | for (int j = 0; j < 16; j++) { |
| 396 | pragma_unroll |
| 397 | for (int i = 0; i < 6; i++) { |
| 398 | PRAGMA_OMP_SIMD() |
| 399 | for (int v = 0; v < 16; v++) { |
| 400 | t0[v] = Mw[1][i][j][v] + Mw[2][i][j][v]; |
| 401 | t1[v] = Mw[3][i][j][v] + Mw[4][i][j][v]; |
| 402 | t2[v] = t1[v] * 2.25f + Mw[5][i][j][v]; |
| 403 | |
| 404 | T[0][i][v] = Mw[0][i][j][v] + t0[v] + t1[v]; |
| 405 | T[1][i][v] = 0.625f * (Mw[1][i][j][v] - Mw[2][i][j][v]) + |
| 406 | 1.5f * (Mw[3][i][j][v] - Mw[4][i][j][v]); |
| 407 | T[2][i][v] = t0[v] * 0.390625f + t2[v]; |
| 408 | } |
| 409 | } |
| 410 | pragma_unroll |
| 411 | for (int i = 0; i < 3; i++) { |
| 412 | PRAGMA_OMP_SIMD() |
| 413 | for (int v = 0; v < 16; v++) { |
| 414 | t0[v] = T[i][1][v] + T[i][2][v]; |
| 415 | t1[v] = T[i][3][v] + T[i][4][v]; |
| 416 | t2[v] = t1[v] * 2.25f + T[i][5][v]; |
| 417 | |
| 418 | M_[0][v] = T[i][0][v] + t0[v] + t1[v]; |
| 419 | M_[1][v] = 0.625f * (T[i][1][v] - T[i][2][v]) + |
| 420 | 1.5f * (T[i][3][v] - T[i][4][v]); |
| 421 | M_[2][v] = t0[v] * 0.390625f + t2[v]; |
| 422 | } |
| 423 | |
| 424 | pragma_unroll |
| 425 | for (int k = 0; k < 3; k++) { |
| 426 | PRAGMA_OMP_SIMD() |
| 427 | for (int v = 0; v < 16; v++) { |
| 428 | M[i][k][j][v] = M_[k][v]; |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | template <bool is_fwd> |
| 436 | void input_transform_data(int image, const jit_conv_winograd_conf_t &jcp, |
| 437 | float *inp, float *tinp, bool streamout = true) |
| 438 | { |
| 439 | const int inpw = is_fwd ? jcp.iw : jcp.ow; |
| 440 | const int inph = is_fwd ? jcp.ih : jcp.oh; |
| 441 | const int l_pad = is_fwd ? jcp.l_pad : jcp.iw + jcp.r_pad - jcp.ow; |
| 442 | const int t_pad = is_fwd ? jcp.t_pad : jcp.ih + jcp.t_pad - jcp.oh; |
| 443 | const int wp_max = inpw + l_pad; |
| 444 | const int hp_max = inph + t_pad; |
| 445 | float Iw[alpha][alpha][simd_w]; |
| 446 | float I[alpha][alpha][simd_w]; |
| 447 | |
| 448 | array_offset_calculator<float, 5> input(inp, |
| 449 | jcp.mb, jcp.dimK/simd_w, inph, inpw, |
| 450 | simd_w); |
| 451 | array_offset_calculator<float, 8> output(tinp, |
| 452 | jcp.dimN_nb_block, alpha, alpha, |
| 453 | jcp.dimN_block, jcp.dimK_nb_block, jcp.dimK_block, |
| 454 | jcp.dimN_reg_block, jcp.dimK_reg_block); |
| 455 | |
| 456 | int tile_base_index = image * jcp.itiles * jcp.jtiles; |
| 457 | int tile_block_ur = tile_base_index % jcp.tile_block_ur; |
| 458 | int nb_tile_block_ur = |
| 459 | (tile_base_index / jcp.tile_block_ur) % jcp.nb_tile_block_ur; |
| 460 | int tile_block = |
| 461 | (tile_base_index / jcp.tile_block_ur) / jcp.nb_tile_block_ur; |
| 462 | |
| 463 | for (int tj = 0; tj < jcp.jtiles; tj++) { |
| 464 | for (int ti = 0; ti < jcp.itiles; ti++) { |
| 465 | for (int j = 0; j < alpha; j++) { |
| 466 | int ydim = tj * tile_size + j; |
| 467 | if ((t_pad <= ydim) && (ydim < hp_max)) { |
| 468 | float *pinp_j = inp + (ydim - t_pad) * inpw * 16 ; |
| 469 | for (int i = 0; i < alpha; i++) { |
| 470 | int xdim = ti * tile_size + i; |
| 471 | if ((l_pad <= xdim) && (xdim < wp_max)) { |
| 472 | float *pinp_i = pinp_j + (xdim - l_pad) * 16; |
| 473 | load_ps(I[j][i], pinp_i); |
| 474 | } else { |
| 475 | PRAGMA_OMP_SIMD() |
| 476 | for (int v = 0; v < simd_w; v++) { |
| 477 | I[j][i][v] = 0.0f; |
| 478 | } |
| 479 | } |
| 480 | } |
| 481 | } else { |
| 482 | for (int i = 0; i < alpha; i++) { |
| 483 | PRAGMA_OMP_SIMD() |
| 484 | for (int v = 0; v < simd_w; v++) { |
| 485 | I[j][i][v] = 0.0f; |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | trans_I_4x4_3x3(Iw, I); |
| 492 | |
| 493 | for (int j = 0; j < alpha; j++) { |
| 494 | for (int i = 0; i < alpha; i++) { |
| 495 | store_output(&(output(tile_block, j, i, |
| 496 | nb_tile_block_ur, 0, 0, |
| 497 | tile_block_ur, 0)), |
| 498 | Iw[j][i], streamout); |
| 499 | } |
| 500 | } |
| 501 | tile_block_ur++; |
| 502 | if (tile_block_ur >= jcp.tile_block_ur) { |
| 503 | tile_block_ur = 0; |
| 504 | nb_tile_block_ur++; |
| 505 | } |
| 506 | if (nb_tile_block_ur >= jcp.nb_tile_block_ur) { |
| 507 | nb_tile_block_ur = 0; |
| 508 | tile_block++; |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | template <bool is_fwd> |
| 515 | void weight_transform_data(const jit_conv_winograd_conf_t &jcp, |
| 516 | float *wp, float *twp) |
| 517 | { |
| 518 | const int kh = 3; |
| 519 | const int kw = 3; |
| 520 | array_offset_calculator<float, 6> input(wp, |
| 521 | jcp.oc/jcp.oc_simd_block, |
| 522 | jcp.ic/jcp.ic_simd_block, |
| 523 | jcp.kh, jcp.kw, |
| 524 | simd_w, simd_w); |
| 525 | array_offset_calculator<float, 8> output(twp, |
| 526 | jcp.dimM_nb_block, |
| 527 | alpha, alpha, |
| 528 | jcp.dimK_nb_block, |
| 529 | jcp.dimM_block, jcp.dimK_block, |
| 530 | simd_w, simd_w); |
| 531 | float Fw[alpha][alpha][simd_w][simd_w]; |
| 532 | float F[kh][kw][simd_w][simd_w]; |
| 533 | |
| 534 | for (int j = 0; j < kh; j++) { |
| 535 | for (int i = 0; i < kw; i++) { |
| 536 | for (int v1 = 0; v1 < simd_w; v1++) { |
| 537 | float *base_inp = is_fwd |
| 538 | ? &(input(0, 0, j, i, v1, 0)) |
| 539 | : &(input(0, 0, 2 - j, 2 - i, v1, 0)); |
| 540 | PRAGMA_OMP_SIMD() |
| 541 | for (int v2 = 0; v2 < simd_w; v2++) { |
| 542 | if (is_fwd) |
| 543 | F[j][i][v1][v2] = *(base_inp + v2); |
| 544 | else |
| 545 | F[j][i][v2][v1] = *(base_inp + v2); |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | trans_W_4x4_3x3(Fw, F); |
| 552 | |
| 553 | for (int j = 0; j < alpha; j++) { |
| 554 | for (int i = 0; i < alpha; i++) { |
| 555 | for (int v1 = 0; v1 < simd_w; v1++) { |
| 556 | PRAGMA_OMP_SIMD() |
| 557 | for (int v2 = 0; v2 < simd_w; v2++) { |
| 558 | output(0, j, i, 0, 0, 0, v1, v2) = Fw[j][i][v1][v2]; |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | template <bool is_fwd, bool with_bias, bool with_relu_presum, bool with_sum> |
| 566 | void output_transform_data(int image, const jit_conv_winograd_conf_t &jcp, |
| 567 | const post_ops_t &p_ops, float *toutp, float *pout_b, float *bias, |
| 568 | bool streamout = true) { |
| 569 | float Ow[alpha][alpha][simd_w]; |
| 570 | float O[tile_size][tile_size][simd_w]; |
| 571 | int outw = is_fwd ? jcp.ow : jcp.iw; |
| 572 | int outh = is_fwd ? jcp.oh : jcp.ih; |
| 573 | |
| 574 | /* Prepare for PostOps */ |
| 575 | bool with_relu_postsum = p_ops.find(primitive_kind::eltwise, 1) != -1; |
| 576 | |
| 577 | array_offset_calculator<float, 8> input(toutp, |
| 578 | jcp.dimN_nb_block, jcp.dimM_nb_block, |
| 579 | alpha, alpha, |
| 580 | jcp.dimN_block, jcp.dimM_block, |
| 581 | jcp.dimN_reg_block, jcp.dimM_simd_block); |
| 582 | |
| 583 | int tile_base_index = image * jcp.itiles * jcp.jtiles; |
| 584 | int tile_block_ur = tile_base_index % jcp.tile_block_ur; |
| 585 | int nb_tile_block_ur = |
| 586 | (tile_base_index / jcp.tile_block_ur) % jcp.nb_tile_block_ur; |
| 587 | int tile_block = |
| 588 | (tile_base_index / jcp.tile_block_ur) / jcp.nb_tile_block_ur; |
| 589 | |
| 590 | for (int tj = 0; tj < jcp.jtiles; tj++) { |
| 591 | for (int ti = 0; ti < jcp.itiles; ti++) { |
| 592 | for (int j = 0; j < alpha; j++) { |
| 593 | for (int i = 0; i < alpha; i++) { |
| 594 | PRAGMA_OMP_SIMD() |
| 595 | for (int v = 0; v < simd_w; v++) { |
| 596 | Ow[j][i][v] = input(tile_block, 0, |
| 597 | j, i, |
| 598 | nb_tile_block_ur, 0, |
| 599 | tile_block_ur, v); |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | trans_O_4x4_3x3(Ow, O); |
| 605 | |
| 606 | for (int j = 0; j < tile_size; j++) { |
| 607 | int ydim = tj * tile_size + j; |
| 608 | if (ydim < outh) { |
| 609 | float *pout_j = pout_b + ydim * outw * simd_w; |
| 610 | for (int i = 0; i < tile_size; i++) { |
| 611 | int xdim = ti * tile_size + i; |
| 612 | if (xdim < outw) { |
| 613 | float *pout_i = pout_j + xdim * simd_w; |
| 614 | if (is_fwd) { |
| 615 | PRAGMA_OMP_SIMD() |
| 616 | for (int v = 0; v < simd_w; v++) { |
| 617 | O[j][i][v] += with_bias ? bias[v] : 0.f; |
| 618 | O[j][i][v] = true |
| 619 | && with_relu_presum && O[j][i][v] < 0.f |
| 620 | ? O[j][i][v] |
| 621 | * jcp.eltwise.alpha |
| 622 | : O[j][i][v]; |
| 623 | } |
| 624 | } |
| 625 | if (with_sum) |
| 626 | accum_output(pout_i, O[j][i], streamout, |
| 627 | with_relu_postsum); |
| 628 | else |
| 629 | store_output(pout_i, O[j][i], streamout); |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | tile_block_ur++; |
| 635 | if (tile_block_ur >= jcp.tile_block_ur) { |
| 636 | tile_block_ur = 0; |
| 637 | nb_tile_block_ur++; |
| 638 | } |
| 639 | if (nb_tile_block_ur >= jcp.nb_tile_block_ur) { |
| 640 | nb_tile_block_ur = 0; |
| 641 | tile_block++; |
| 642 | } |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | template <bool ver_4fma> |
| 648 | void diff_src_transform_bwd_weights(int image, jit_conv_winograd_conf_t conv, |
| 649 | float *inp, float *tinp, float *Iw_temp, |
| 650 | void (*transpose_4fma_ker)(float *, float *)) |
| 651 | { |
| 652 | |
| 653 | const int ifwp = conv.iw + conv.l_pad; |
| 654 | const int ifhp = conv.ih + conv.t_pad; |
| 655 | float I[alpha][alpha][simd_w]; |
| 656 | float Iw[alpha][alpha][simd_w]; |
| 657 | |
| 658 | array_offset_calculator<float, 4> Iw_trans_temp(Iw_temp, |
| 659 | alpha, alpha, conv.tile_4fma, simd_w); |
| 660 | array_offset_calculator<float, 5> input(inp, |
| 661 | conv.mb, conv.ic/simd_w, conv.ih, conv.iw, simd_w); |
| 662 | array_offset_calculator<float, 8> output(tinp, |
| 663 | conv.nb_ic, alpha, alpha, |
| 664 | conv.tile_block, conv.ic_block, |
| 665 | conv.nb_tile_block_ur, conv.tile_block_ur, |
| 666 | conv.ic_simd_block * conv.tile_4fma); |
| 667 | |
| 668 | int tile_base_index = |
| 669 | image * (conv.itiles * conv.jtiles + conv.tile_4fma_padding); |
| 670 | int tile_4fma = 0; |
| 671 | int tile_block_ur = (tile_base_index / conv.tile_4fma) % conv.tile_block_ur; |
| 672 | int nb_tile_block_ur = |
| 673 | (tile_base_index / conv.tile_4fma / conv.tile_block_ur) |
| 674 | % conv.nb_tile_block_ur; |
| 675 | int tile_block = (tile_base_index / conv.tile_4fma / conv.tile_block_ur) |
| 676 | / conv.nb_tile_block_ur; |
| 677 | |
| 678 | for (int tj = 0; tj < conv.jtiles; tj++) { |
| 679 | for (int ti = 0; ti < conv.itiles; ti++) { |
| 680 | for (int j = 0; j < alpha; j++) { |
| 681 | int ydim = tj * tile_size + j; |
| 682 | if ((conv.t_pad <= ydim) && ydim < ifhp) { |
| 683 | for (int i = 0; i < alpha; i++) { |
| 684 | int xdim = ti * tile_size + i; |
| 685 | if ((conv.l_pad <= xdim) && xdim < ifwp) { |
| 686 | PRAGMA_OMP_SIMD() |
| 687 | for (int v = 0; v < simd_w; v++) { |
| 688 | I[j][i][v] = input(0, 0, |
| 689 | ydim - conv.t_pad, |
| 690 | xdim - conv.l_pad, v); |
| 691 | } |
| 692 | } else { |
| 693 | PRAGMA_OMP_SIMD() |
| 694 | for (int v = 0; v < simd_w; v++) { |
| 695 | I[j][i][v] = 0.0f; |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | } else { |
| 700 | for (int i = 0; i < alpha; i++) { |
| 701 | PRAGMA_OMP_SIMD() |
| 702 | for (int v = 0; v < simd_w; v++) { |
| 703 | I[j][i][v] = 0.0f; |
| 704 | } |
| 705 | } |
| 706 | } |
| 707 | } |
| 708 | trans_I_4x4_3x3(Iw, I); |
| 709 | |
| 710 | if (ver_4fma) { |
| 711 | for (int j = 0; j < alpha; j++) { |
| 712 | for (int i = 0; i < alpha; i++) { |
| 713 | float *Iw_temp_base = &(Iw_trans_temp(j, i, |
| 714 | tile_4fma, 0)); |
| 715 | PRAGMA_OMP_SIMD() |
| 716 | for (int v = 0; v < simd_w; v++) { |
| 717 | Iw_temp_base[v] = Iw[j][i][v]; |
| 718 | } |
| 719 | } |
| 720 | } |
| 721 | tile_4fma++; |
| 722 | if (tile_4fma == conv.tile_4fma) { |
| 723 | float *outp = &(output(0, 0, 0, |
| 724 | tile_block, 0, |
| 725 | nb_tile_block_ur, tile_block_ur, 0)); |
| 726 | transpose_4fma_ker(outp, (float *)Iw_temp); |
| 727 | tile_4fma = 0; |
| 728 | tile_block_ur++; |
| 729 | } |
| 730 | } else { |
| 731 | for (int j = 0; j < alpha; j++) { |
| 732 | for (int i = 0; i < alpha; i++) { |
| 733 | store_output(&(output(0, j, i, |
| 734 | tile_block, 0, |
| 735 | nb_tile_block_ur, tile_block_ur, 0)), |
| 736 | Iw[j][i], true); |
| 737 | } |
| 738 | } |
| 739 | tile_block_ur++; |
| 740 | } |
| 741 | |
| 742 | if (tile_block_ur == conv.tile_block_ur) { |
| 743 | tile_block_ur = 0; |
| 744 | ++nb_tile_block_ur; |
| 745 | } |
| 746 | if (nb_tile_block_ur == conv.nb_tile_block_ur) { |
| 747 | nb_tile_block_ur = 0; |
| 748 | tile_block++; |
| 749 | } |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | if (ver_4fma && tile_4fma < conv.tile_4fma && conv.tile_4fma_padding != 0) { |
| 754 | |
| 755 | for (int j = 0; j < alpha; j++) { |
| 756 | for (int i = 0; i < alpha; i++) { |
| 757 | for (int tb = tile_4fma; tb < conv.tile_4fma; tb++) { |
| 758 | float *Iw_temp_base = &(Iw_trans_temp(j, i, tb, 0)); |
| 759 | PRAGMA_OMP_SIMD() |
| 760 | for (int v = 0; v < simd_w; v++) { |
| 761 | Iw_temp_base[v] = 0; |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | float *outp = &(output(0, 0, 0, |
| 767 | tile_block, 0, |
| 768 | nb_tile_block_ur, tile_block_ur, 0)); |
| 769 | transpose_4fma_ker(outp, (float *)Iw_temp); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | template <bool with_bias> |
| 774 | void diff_dst_transform_bwd_weights(int image, jit_conv_winograd_conf_t conv, |
| 775 | float *inp, float *tinp, float *dbias) |
| 776 | { |
| 777 | |
| 778 | const int total_tiles = conv.itiles * conv.jtiles + conv.tile_4fma_padding; |
| 779 | float I[alpha][alpha][simd_w]; |
| 780 | float Iw[alpha][alpha][simd_w]; |
| 781 | |
| 782 | array_offset_calculator<float, 5> input(inp, |
| 783 | conv.mb, conv.oc/simd_w, conv.oh, conv.ow, conv.oc_simd_block); |
| 784 | array_offset_calculator<float, 8> output(tinp, |
| 785 | conv.nb_oc, alpha, alpha, |
| 786 | conv.tile_block, conv.oc_block, |
| 787 | conv.nb_tile_block_ur, |
| 788 | conv.tile_block_ur * conv.tile_4fma, conv.oc_simd_block); |
| 789 | |
| 790 | int tile_base_index = image * total_tiles; |
| 791 | int tile_block_ur = tile_base_index % (conv.tile_block_ur * conv.tile_4fma); |
| 792 | int nb_tile_block_ur = |
| 793 | (tile_base_index / conv.tile_block_ur / conv.tile_4fma) |
| 794 | % conv.nb_tile_block_ur; |
| 795 | int tile_block = (tile_base_index / conv.tile_block_ur / conv.tile_4fma) |
| 796 | / conv.nb_tile_block_ur; |
| 797 | |
| 798 | for (int tj = 0; tj < conv.jtiles; tj++) { |
| 799 | for (int ti = 0; ti < conv.itiles; ti++) { |
| 800 | for (int j = 0; j < alpha; j++) { |
| 801 | int ydim = tj * tile_size + j; |
| 802 | if (ydim < conv.oh) { |
| 803 | for (int i = 0; i < alpha; i++) { |
| 804 | int xdim = ti * tile_size + i; |
| 805 | if (xdim < conv.ow) { |
| 806 | float *input_base = &(input(0, 0, ydim, xdim, 0)); |
| 807 | |
| 808 | PRAGMA_OMP_SIMD() |
| 809 | for (int v = 0; v < simd_w; v++) { |
| 810 | I[j][i][v] = input_base[v]; |
| 811 | } |
| 812 | if (with_bias && j < tile_size && i < tile_size) { |
| 813 | PRAGMA_OMP_SIMD() |
| 814 | for (int v = 0; v < simd_w; v++) { |
| 815 | dbias[v] += input_base[v]; |
| 816 | } |
| 817 | } |
| 818 | } else { |
| 819 | PRAGMA_OMP_SIMD() |
| 820 | for (int v = 0; v < simd_w; v++) { |
| 821 | I[j][i][v] = 0.0f; |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | } else { |
| 826 | for (int i = 0; i < alpha; i++) { |
| 827 | PRAGMA_OMP_SIMD() |
| 828 | for (int v = 0; v < simd_w; v++) { |
| 829 | I[j][i][v] = 0.0f; |
| 830 | } |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | trans_W_3x3_4x4_wu(Iw, I); |
| 836 | |
| 837 | for (int j = 0; j < alpha; j++) { |
| 838 | for (int i = 0; i < alpha; i++) { |
| 839 | store_output(&(output(0, j, i, |
| 840 | tile_block, 0, |
| 841 | nb_tile_block_ur, |
| 842 | tile_block_ur, 0)), |
| 843 | Iw[j][i], true); |
| 844 | } |
| 845 | } |
| 846 | tile_block_ur++; |
| 847 | if (tile_block_ur >= conv.tile_block_ur * conv.tile_4fma) { |
| 848 | tile_block_ur = 0; |
| 849 | nb_tile_block_ur++; |
| 850 | } |
| 851 | if (nb_tile_block_ur >= conv.nb_tile_block_ur) { |
| 852 | nb_tile_block_ur = 0; |
| 853 | tile_block++; |
| 854 | } |
| 855 | } |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void diff_weights_transform_bwd_weights(jit_conv_winograd_conf_t conv, |
| 860 | float *wp, float *twp) |
| 861 | { |
| 862 | const int kh = 3; |
| 863 | const int kw = 3; |
| 864 | float Fw[alpha][alpha][simd_w][simd_w]; |
| 865 | float F[kh][kw][simd_w][simd_w]; |
| 866 | |
| 867 | array_offset_calculator<float, 8> input(twp, |
| 868 | conv.nb_ic, conv.nb_oc, |
| 869 | alpha, alpha, |
| 870 | conv.oc_block, conv.ic_block, |
| 871 | conv.ic_simd_block, conv.oc_simd_block); |
| 872 | array_offset_calculator<float, 6> output(wp, |
| 873 | conv.oc/simd_w, conv.ic/simd_w, |
| 874 | conv.kh, conv.kw, |
| 875 | conv.ic_simd_block, conv.oc_simd_block); |
| 876 | |
| 877 | for (int j = 0; j < alpha; j++) { |
| 878 | for (int i = 0; i < alpha; i++) { |
| 879 | for (int v = 0; v < conv.ic_simd_block; v++) { |
| 880 | PRAGMA_OMP_SIMD() |
| 881 | for (int k = 0; k < conv.oc_simd_block; k++) { |
| 882 | Fw[j][i][v][k] = input(0, 0, j, i, 0, 0, v, k); |
| 883 | } |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | trans_O_3x3_4x4_wu(Fw, F); |
| 889 | |
| 890 | for (int j = 0; j < kh; j++) { |
| 891 | for (int i = 0; i < kw; i++) { |
| 892 | for (int v = 0; v < conv.ic_simd_block; v++) { |
| 893 | store_output(&(output(0, 0, j, i, v, 0)), |
| 894 | F[j][i][v], true); |
| 895 | } |
| 896 | } |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | template <bool is_fwd> |
| 901 | void _jit_avx512_common_convolution_winograd_t<is_fwd>::_execute_data_W_S_G_D( |
| 902 | float *inp_ptr, float *out_ptr, float *wei_ptr, float *bias_ptr, |
| 903 | const memory_tracking::grantor_t &scratchpad) const { |
| 904 | const auto &jcp = kernel_->jcp; |
| 905 | const auto &p_ops = attr_->post_ops_; |
| 906 | |
| 907 | const int inph = is_fwd ? jcp.ih : jcp.oh; |
| 908 | const int inpw = is_fwd ? jcp.iw : jcp.ow; |
| 909 | const int outh = is_fwd ? jcp.oh : jcp.ih; |
| 910 | const int outw = is_fwd ? jcp.ow : jcp.iw; |
| 911 | |
| 912 | /* Note that jcp.with_eltwise is true for both fused conv+relu primitive |
| 913 | * and conv primitive with PostOps with relu before sum |
| 914 | * (PostOps relu after sum is handled later) */ |
| 915 | auto output_transform = jcp.with_bias |
| 916 | ? (jcp.with_eltwise |
| 917 | ? (jcp.with_sum |
| 918 | ? output_transform_data<is_fwd, true, true, true> |
| 919 | : output_transform_data<is_fwd, true, true, false>) |
| 920 | : (jcp.with_sum |
| 921 | ? output_transform_data<is_fwd, true, false, true> |
| 922 | : output_transform_data<is_fwd, true, false, false>)) |
| 923 | : (jcp.with_eltwise |
| 924 | ? (jcp.with_sum |
| 925 | ? output_transform_data<is_fwd, false, true, true> |
| 926 | : output_transform_data<is_fwd, false, true, false>) |
| 927 | : (jcp.with_sum |
| 928 | ? output_transform_data<is_fwd, false, false, true> |
| 929 | : output_transform_data<is_fwd, false, false, false>)); |
| 930 | |
| 931 | /* Notation: |
| 932 | FWD: dimM:oc, dimN:ntiles, dimK:ic, |
| 933 | BWD: dimM:ic, dimN:ntiles, dimK:oc, |
| 934 | FWD/BWD: V: src/diff_dst transform, U:weight transform, |
| 935 | M:dst/diff_src transform */ |
| 936 | array_offset_calculator<float, 5> input(inp_ptr, |
| 937 | jcp.mb, jcp.dimK/jcp.dimK_reg_block, inph, inpw, |
| 938 | jcp.dimK_reg_block); |
| 939 | array_offset_calculator<float, 5> output(out_ptr, |
| 940 | jcp.mb, jcp.dimM/jcp.dimM_simd_block, outh, outw, |
| 941 | jcp.dimM_simd_block); |
| 942 | array_offset_calculator<float, 6> weights(wei_ptr, |
| 943 | jcp.oc/jcp.oc_simd_block, jcp.ic/jcp.ic_simd_block, jcp.kh, jcp.kw, |
| 944 | jcp.ic_simd_block, jcp.oc_simd_block); |
| 945 | array_offset_calculator<float, 2> bias(bias_ptr, |
| 946 | jcp.dimM/jcp.dimM_simd_block, jcp.dimM_simd_block); |
| 947 | |
| 948 | array_offset_calculator<float, 8> M(is_fwd |
| 949 | ? scratchpad.template get<float>(key_wino_M) |
| 950 | : scratchpad.template get<float>(key_wino_V), |
| 951 | jcp.dimN_nb_block, jcp.dimM_nb_block, |
| 952 | alpha, alpha, |
| 953 | jcp.dimN_block, jcp.dimM_block, |
| 954 | jcp.dimN_reg_block, jcp.dimM_simd_block); |
| 955 | array_offset_calculator<float, 8> U( |
| 956 | scratchpad.template get<float>(key_wino_U), |
| 957 | jcp.dimM_nb_block, |
| 958 | alpha, alpha, |
| 959 | jcp.dimK_nb_block, |
| 960 | jcp.dimM_block, jcp.dimK_block, |
| 961 | jcp.dimK_reg_block, jcp.dimM_simd_block); |
| 962 | array_offset_calculator<float, 8> V(is_fwd |
| 963 | ? scratchpad.template get<float>(key_wino_V) |
| 964 | : scratchpad.template get<float>(key_wino_M), |
| 965 | jcp.dimN_nb_block, alpha, alpha, |
| 966 | jcp.dimN_block, jcp.dimK_nb_block, |
| 967 | jcp.dimK_block, jcp.dimN_reg_block, jcp.dimK_reg_block); |
| 968 | |
| 969 | bool V_streamout = jcp.dimN * jcp.dimK * alpha * alpha * sizeof(float) |
| 970 | > 2 * LLC_cache_size ? true : false; |
| 971 | |
| 972 | const bool output_is_aligned = ((size_t)out_ptr & (64 - 1)) == 0; |
| 973 | |
| 974 | const bool wants_padded_bias = jcp.with_bias |
| 975 | && jcp.oc_without_padding != jcp.oc; |
| 976 | float last_slice_bias[simd_w] = {0}; |
| 977 | if (wants_padded_bias) { |
| 978 | for (int oc = 0; oc < jcp.oc_without_padding % jcp.oc_simd_block; ++oc) |
| 979 | last_slice_bias[oc] = bias(jcp.dimM / jcp.dimM_simd_block - 1, oc); |
| 980 | } |
| 981 | |
| 982 | { |
| 983 | parallel_nd(jcp.mb, jcp.dimK_nb_block, jcp.dimK_block, |
| 984 | [&](int img, int K_blk1, int K_blk2) { |
| 985 | input_transform_data<is_fwd>(img, jcp, |
| 986 | &(input(img, K_blk1 * jcp.dimK_block + K_blk2, 0, 0, 0)), |
| 987 | &(V(0, 0, 0, 0, K_blk1, K_blk2, 0, 0)), V_streamout); |
| 988 | }); |
| 989 | |
| 990 | parallel_nd(jcp.nb_oc, jcp.nb_ic, jcp.oc_block, jcp.ic_block, |
| 991 | [&](int ofm1, int ifm1, int ofm2, int ifm2) { |
| 992 | float *U_base_ptr = is_fwd |
| 993 | ? &(U(ofm1, 0, 0, ifm1, ofm2, ifm2, 0, 0)) |
| 994 | : &(U(ifm1, 0, 0, ofm1, ifm2, ofm2, 0, 0)); |
| 995 | weight_transform_data<is_fwd>(jcp, |
| 996 | &(weights(ofm1 * jcp.oc_block + ofm2, |
| 997 | ifm1 * jcp.ic_block + ifm2, 0, 0, 0, 0)), U_base_ptr); |
| 998 | }); |
| 999 | |
| 1000 | parallel_nd(jcp.dimN_nb_block, alpha, alpha, jcp.dimM_nb_block, jcp.dimN_block, |
| 1001 | [&](int N_blk1, int oj, int oi, int M_blk1, int N_blk2) { |
| 1002 | |
| 1003 | kernel_->gemm_loop_ker_first_iter( |
| 1004 | (float *)&(M(N_blk1, M_blk1, oj, oi, |
| 1005 | N_blk2, 0, 0, 0)), |
| 1006 | (const float *)&(U(M_blk1, oj, oi, |
| 1007 | 0, 0, 0, 0, 0)), |
| 1008 | (const float *)&(V(N_blk1, oj, oi, |
| 1009 | N_blk2, 0, 0, 0, 0))); |
| 1010 | for (int K_blk1 = 1; K_blk1 < jcp.dimK_nb_block; K_blk1++) { |
| 1011 | kernel_->gemm_loop_ker( |
| 1012 | (float *)&(M(N_blk1, M_blk1, oj, oi, |
| 1013 | N_blk2, 0, 0, 0)), |
| 1014 | (const float *)&(U(M_blk1, oj, oi, |
| 1015 | K_blk1, 0, 0, 0, 0)), |
| 1016 | (const float *)&(V(N_blk1, oj, oi, |
| 1017 | N_blk2, K_blk1, |
| 1018 | 0, 0, 0))); |
| 1019 | } |
| 1020 | |
| 1021 | }); |
| 1022 | |
| 1023 | parallel_nd(jcp.mb, jcp.dimM_nb_block, jcp.dimM_block, |
| 1024 | [&](int img, int M_blk1, int M_blk2) { |
| 1025 | |
| 1026 | const int M_blk = M_blk1 * jcp.dimM_block + M_blk2; |
| 1027 | |
| 1028 | float *bias_ptr = wants_padded_bias |
| 1029 | && M_blk == jcp.dimM / jcp.dimM_simd_block - 1 |
| 1030 | ? last_slice_bias : &bias(M_blk, 0); |
| 1031 | |
| 1032 | output_transform(img, jcp, p_ops, |
| 1033 | &(M(0, M_blk1, 0, 0, 0, M_blk2, 0, 0)), |
| 1034 | &(output(img, M_blk, 0, 0, 0)), |
| 1035 | bias_ptr, output_is_aligned); |
| 1036 | |
| 1037 | }); |
| 1038 | |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | template struct _jit_avx512_common_convolution_winograd_t<true>; |
| 1043 | template struct _jit_avx512_common_convolution_winograd_t<false>; |
| 1044 | |
| 1045 | void jit_avx512_common_convolution_winograd_bwd_weights_t:: |
| 1046 | _maybe_execute_diff_bias_copy(float *diff_bias, |
| 1047 | const memory_tracking::grantor_t &scratchpad) const { |
| 1048 | if (pd()->wants_padded_bias()) { |
| 1049 | auto padded_bias = scratchpad.get<float>(key_conv_padded_bias); |
| 1050 | for (int oc = 0; oc < pd()->jcp_.oc_without_padding; ++oc) |
| 1051 | diff_bias[oc] = padded_bias[oc]; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | void jit_avx512_common_convolution_winograd_bwd_weights_t:: |
| 1056 | _execute_backward_weights_S_D_G_W(const exec_ctx_t &ctx, |
| 1057 | const memory_tracking::grantor_t &scratchpad) const { |
| 1058 | auto ptr_diff_dst = CTX_IN_MEM(const float *, MKLDNN_ARG_DIFF_DST); |
| 1059 | auto ptr_src = CTX_IN_MEM(const float *, MKLDNN_ARG_SRC); |
| 1060 | auto ptr_diff_weights = CTX_OUT_MEM(float *, MKLDNN_ARG_DIFF_WEIGHTS); |
| 1061 | auto ptr_diff_bias = CTX_OUT_MEM(float *, MKLDNN_ARG_DIFF_BIAS); |
| 1062 | |
| 1063 | const auto &jcp = kernel_->jcp; |
| 1064 | const int nthreads = jcp.nthr; |
| 1065 | |
| 1066 | auto diff_src_transform_bwd_weights_ver = jcp.ver == ver_4fma ? |
| 1067 | diff_src_transform_bwd_weights<true> : |
| 1068 | diff_src_transform_bwd_weights<false>; |
| 1069 | auto diff_dst_transform_bwd_weights_ver = jcp.with_bias |
| 1070 | ? diff_dst_transform_bwd_weights<true> |
| 1071 | : diff_dst_transform_bwd_weights<false>; |
| 1072 | |
| 1073 | array_offset_calculator<float, 5> src((float *)ptr_src, |
| 1074 | jcp.mb, jcp.ic/simd_w, jcp.ih, jcp.iw, simd_w); |
| 1075 | array_offset_calculator<float, 5> diff_dst((float *)ptr_diff_dst, |
| 1076 | jcp.mb, jcp.oc/simd_w, jcp.oh, jcp.ow, simd_w); |
| 1077 | array_offset_calculator<float, 6> diff_weights(ptr_diff_weights, |
| 1078 | jcp.oc/simd_w, jcp.ic/simd_w, jcp.kh, jcp.kw, simd_w, simd_w); |
| 1079 | array_offset_calculator<float, 2> diff_bias(pd()->wants_padded_bias() |
| 1080 | ? scratchpad.get<float>(key_conv_padded_bias) : ptr_diff_bias, |
| 1081 | jcp.oc/simd_w, simd_w); |
| 1082 | |
| 1083 | array_offset_calculator<float, 8> U( |
| 1084 | scratchpad.get<float>(key_wino_U), |
| 1085 | jcp.nb_ic, jcp.nb_oc, |
| 1086 | alpha, alpha, |
| 1087 | jcp.oc_block, jcp.ic_block, |
| 1088 | jcp.ic_simd_block, jcp.oc_simd_block); |
| 1089 | |
| 1090 | array_offset_calculator<float, 8> M( |
| 1091 | scratchpad.get<float>(key_wino_M), |
| 1092 | jcp.nb_oc, alpha, alpha, |
| 1093 | jcp.tile_block, jcp.oc_block, |
| 1094 | jcp.nb_tile_block_ur, jcp.tile_block_ur * jcp.tile_4fma, |
| 1095 | jcp.oc_simd_block); |
| 1096 | array_offset_calculator<float, 8> V( |
| 1097 | scratchpad.get<float>(key_wino_V), |
| 1098 | jcp.nb_ic, alpha, alpha, |
| 1099 | jcp.tile_block, jcp.ic_block, |
| 1100 | jcp.nb_tile_block_ur, jcp.tile_block_ur, |
| 1101 | jcp.ic_simd_block * jcp.tile_4fma); |
| 1102 | |
| 1103 | const int trans_buffer_size = alpha * alpha * jcp.tile_4fma |
| 1104 | * jcp.ic_simd_block; |
| 1105 | array_offset_calculator<float, 2> trans_buffer( |
| 1106 | scratchpad.get<float>(key_conv_tr_src), |
| 1107 | nthreads, |
| 1108 | trans_buffer_size); |
| 1109 | |
| 1110 | array_offset_calculator<float, 2> diff_bias_prv( |
| 1111 | scratchpad.get<float>(key_conv_bia_reduction), |
| 1112 | nthreads, |
| 1113 | jcp.oc); |
| 1114 | |
| 1115 | PRAGMA_OMP(parallel num_threads(nthreads)) |
| 1116 | { |
| 1117 | if (jcp.with_bias) { |
| 1118 | parallel_nd_in_omp(nthreads, jcp.oc, [&](int ithr, int ofm) { |
| 1119 | diff_bias_prv(ithr, ofm) = 0.0f; |
| 1120 | }); |
| 1121 | |
| 1122 | PRAGMA_OMP(for nowait) |
| 1123 | for (int bofm = 0; bofm < jcp.oc / simd_w; bofm++) { |
| 1124 | PRAGMA_OMP_SIMD() |
| 1125 | for (int v = 0; v < simd_w; v++) |
| 1126 | diff_bias(bofm, v) = 0.0f; |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | const int ithread = mkldnn_get_thread_num(); |
| 1131 | |
| 1132 | parallel_nd_in_omp(jcp.mb, jcp.nb_ic, jcp.ic_block, |
| 1133 | [&](int img, int ifm1, int ifm2) { |
| 1134 | float *transb = jcp.ver == ver_4fma |
| 1135 | ? &(trans_buffer(ithread, 0)) |
| 1136 | : NULL; |
| 1137 | diff_src_transform_bwd_weights_ver(img, jcp, |
| 1138 | &(src(img, ifm1 * jcp.ic_block + ifm2, |
| 1139 | 0, 0, 0)), |
| 1140 | &(V(ifm1, 0, 0, 0, ifm2, 0, 0, 0)), |
| 1141 | transb, |
| 1142 | kernel_->transpose_4fma_ker); |
| 1143 | }); |
| 1144 | |
| 1145 | parallel_nd_in_omp(jcp.mb, jcp.nb_oc, jcp.oc_block, |
| 1146 | [&](int img, int ofm1, int ofm2) { |
| 1147 | float *dbias = jcp.with_bias |
| 1148 | ? &(diff_bias_prv(ithread, |
| 1149 | simd_w * (ofm1 * jcp.oc_block + ofm2))) |
| 1150 | : NULL; |
| 1151 | diff_dst_transform_bwd_weights_ver(img, jcp, |
| 1152 | &(diff_dst(img, ofm1 * jcp.oc_block + ofm2, |
| 1153 | 0, 0, 0)), |
| 1154 | &(M(ofm1, 0, 0, 0, ofm2, 0, 0, 0)), |
| 1155 | dbias); |
| 1156 | }); |
| 1157 | |
| 1158 | PRAGMA_OMP(barrier) |
| 1159 | |
| 1160 | for (int ifm1 = 0; ifm1 < jcp.nb_ic; ifm1++) { |
| 1161 | parallel_nd_in_omp(alpha, alpha, jcp.nb_oc, |
| 1162 | [&](int oj, int oi, int ofm1) { |
| 1163 | kernel_->gemm_loop_ker_first_iter( |
| 1164 | (float *)&(U(ifm1, ofm1, oj, oi, |
| 1165 | 0, 0, 0, 0)), |
| 1166 | (const float *)&(M(ofm1, oj, oi, |
| 1167 | 0, 0, 0, 0, 0)), |
| 1168 | (const float *)&(V(ifm1, oj, oi, |
| 1169 | 0, 0, 0, 0, 0))); |
| 1170 | for (int tile_block = 1; tile_block < jcp.tile_block; |
| 1171 | tile_block++) { |
| 1172 | kernel_->gemm_loop_ker((float *)&(U(ifm1, ofm1, |
| 1173 | oj, oi, |
| 1174 | 0, 0, 0, 0)), |
| 1175 | (const float *)&(M(ofm1, oj, oi, tile_block, |
| 1176 | 0, 0, 0, 0)), |
| 1177 | (const float *)&(V(ifm1, oj, oi, tile_block, |
| 1178 | 0, 0, 0, 0))); |
| 1179 | } |
| 1180 | }); |
| 1181 | } |
| 1182 | |
| 1183 | PRAGMA_OMP(barrier) |
| 1184 | |
| 1185 | parallel_nd_in_omp(jcp.nb_ic, jcp.nb_oc, jcp.oc_block, jcp.ic_block, |
| 1186 | [&](int ifm1, int ofm1, int ofm2, int ifm2) { |
| 1187 | diff_weights_transform_bwd_weights(jcp, |
| 1188 | &(diff_weights(ofm1 * jcp.oc_block + ofm2, |
| 1189 | ifm1 * jcp.ic_block + ifm2, 0, 0, 0, 0)), |
| 1190 | &(U(ifm1, ofm1, 0, 0, ofm2, ifm2, 0, 0))); |
| 1191 | }); |
| 1192 | |
| 1193 | if (jcp.with_bias) { |
| 1194 | PRAGMA_OMP(for) |
| 1195 | for (int ofm1 = 0; ofm1 < jcp.oc / simd_w; ofm1++) { |
| 1196 | for (int ithr = 0; ithr < nthreads; ithr++) { |
| 1197 | float* base_bias_ptr = &(diff_bias(ofm1, 0)); |
| 1198 | float* base_bias_prv_ptr = &(diff_bias_prv( |
| 1199 | ithr * jcp.oc + ofm1 * simd_w)); |
| 1200 | PRAGMA_OMP_SIMD() |
| 1201 | for (int ofm2 = 0; ofm2 < simd_w; ofm2++) { |
| 1202 | base_bias_ptr[ofm2] += base_bias_prv_ptr[ofm2]; |
| 1203 | } |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | _maybe_execute_diff_bias_copy(ptr_diff_bias, scratchpad); |
| 1210 | } |
| 1211 | |
| 1212 | } |
| 1213 | } |
| 1214 | } |
| 1215 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
| 1216 | |